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Abstract: Degree sequence measurements on graphs have attracted a lot of research interest in recent
decades. Multiplying the degrees of adjacent vertices in graph Ω provides the multiplicative first
Zagreb index of a graph. In the context of graph theory, the generalized multiplicative first Zagreb
index of a graph Ω is defined as the product of the sum of the αth powers of the vertex degrees of
Ω, where α is a real number such that α 6= 0 and α 6= 1. The focus of this work is on the extremal
graphs for several classes of graphs including trees, unicyclic, and bicyclic graphs, with respect to
the generalized multiplicative first Zagreb index. In the initial step, we identify a set of operations
that either increases or decreases the generalized multiplicative first Zagreb index for graphs. We
then involve analysis of the generalized multiplicative first Zagreb index achieving sharp bounds
by characterizing the maximum or minimum graphs for those classes. We present applications of
the generalized multiplicative first Zagreb index Πα

1 for predicting the π-electronic energy Eπ(β) of
benzenoid hydrocarbons. In particular, we answer the question concerning the value of α for which
the predictive potential of Πα

1 with Eπ for lower benzenoid hydrocarbons is the strongest. In fact,
our statistical analysis delivers that Πα

1 correlates with Eπ of lower benzenoid hydrocarbons with
correlation coefficient ρ = −0.998, if α = −0.00496. In QSPR modeling, the value ρ = −0.998 is
considered to be considerably significant.
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MSC: 05C92; 05C09; 05C76

1. Introduction and Preliminaries

We call the “graphical invariant” a quantity associated with a graph whose value
is preserved throughout automorphisms of the graph. These topological descriptors are
also known as the topological invariants in chemical graph theory. Molecular descriptors
may be useful for describing chemical and biological properties notably toxicity, physio-
chemical, and thermodynamical characteristics, and for quantitative structure–property
relationships (QSPR) and quantitative structure-activity relationships (QSAR) analysis.

Without exception, all of the graphs in this paper will be undirected and simple (no
loops or multiple edges). We denote Ω = (V(Ω), E(Ω)), to be any graph where V(Ω) (resp.
E(Ω)), is the collection of vertices (resp. edges). Gutman and Trinajstić [1] investigated the
effect of molecular structure on the total π-electron energy, then introduced the significant
indices named, “Zagreb indices”. They further studied the significance of these indices
in mathematical chemistry as discussed herein [2]. The first and second Zagreb indices
M1(Ω) and M2(Ω) for any (molecular) graph Ω are defined as

M1(Ω) = ∑
u∈V(Ω)

degΩ(u)2,

M2(Ω) = ∑
uv∈E(Ω)

degΩ(u) · degΩ(v).
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The topological indices M1(Ω) and M2(Ω), are used to measure the degree of branch-
ing in the molecular carbon skeleton [3,4]. Multiple chemical and mathematical uses of
Zagreb indices provided remarkable results, (see [5–7]). Additionally, the classical Zagreb
indices M1(Ω) and M2(Ω) have been discussed by many researchers [8–11]. Similarly,
many researchers explored the connection and comparison between M1(Ω) and M2(Ω)
in [12–16]. It should be noted that some academics have also referred to the first Zagreb
index M1(Ω) as the Gutman index (see quote [3]). Specifically, a synopsis of the most
essential characteristics of M1(Ω) and M2(Ω) have been discussed in [17–19]. Deng [18]
provided a unified method for determining the maximum and minimum Zagreb indices for
trees, unicyclic graphs, and bicyclic graphs. For further up-to-date information on regular
Zagreb indices, we refer the reader to [20,21] and their corresponding cited works.

The multiplicative variants of the Zagreb indices are proposed in 2010 by Todeschini
et al. [22]. They have been defined as follows:

Π1 = Π1(Ω) = ∏
u∈V(Ω)

degΩ(u)2,

Π2 = Π2(Ω) = ∏
uv∈E(Ω)

degΩ(u) · degΩ(v),

Note that, Π2(Ω) = ∏
uv∈E(Ω)

degΩ(u) · degΩ(v) = ∏
u∈V(Ω)

degΩ(u)degΩ(u)

Multiplicative Zagreb indices with given order and size of different graphs such as
bipartite graphs, trees and certain nanotubes have been extensively studied in [5,23–25].
Similarly, Wang et al. [26] discussed the multiplicative Zagreb indices of extremal trees
with a given number of vertices of maximum degree and Bozovic et al. [27] defined
chemical trees with extreme values of a few types of multiplicative Zagreb indices. Then,
Eliasi et al. [28,29] discussed a simple approach to multiplicative Zagreb indices and multi-
plicative first Zagreb index for trees [28].

Using the definition Π∗1 = Π∗1(Ω) = ∏uv∈E(Ω)(degΩ(u) + degΩ(v)), Eliasi and Iran-
manesh et al. [30] have recently presented a new index as the multiplicative form of
conventional first Zagreb index M1(Ω). For the same reason, the generalized multiplicative
version of the standard first Zagreb index is defined as Πα

1 = Πα
1(Ω) = ∏

uv∈E(Ω)

(degΩ(u) +

degΩ(v))α, where α is a real number such that α 6= 0 and α 6= 1.
Horoldagva and Xu [31] discussed the multiplicative first Zagreb index for extremal

graphs and Xu and Das [32] defined the multiplicative first Zagreb index for trees, unicyclic,
and bicyclic graphs. Similarly, Alfuraidan et al. and Vetrík et al. [24,33] discussed the
general multiplicative Zagreb indices for trees and unicyclic graphs. In accordance with the
concept, we refer to the generalized multiplicative first Zagreb index as Πα

1(Ω). According
to the information provided in [22], the generalized multiplicative first Zagreb index is
different from the first multiplicative Zagreb index. For instance, Πα

1(P3) = 92α, whereas
Π1(P3) = 4.

Consider Tn, Un, and Bn to be the collection of trees, unicyclic graphs, and bicyclic
graph with n vertices, respectively. The structure of the article is as followed. In order
to understand the notations in the main results, Section 1 explains the introduction and
preliminaries. Section 2, auxiliary results and a few transformations of graphs that in-
crease/decrease the generalized multiplicative first Zagreb index of graphs are classified.
In Section 3, we illustrate proofs of the main results of the paper. Section 2 provides practical
applicability of Πα

1 for QSPR modeling of benzenoid hydrocarbons for determining their
π-electronic energy Eπ measured in β units.

2. Auxiliary Results

Here, we discuss certain graph changes that can either increase or decrease a graph’s
generalized multiplicative first Zagreb index. The graphs of types Tn, Un, and Bn that are
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extremal with respect to generalized multiplicative first Zagreb index are determined by
using these transformations.

The following basic results has been shown in [30].

Theorem 1 ([30]). The path graph Pn achieves the least multiplicative first Zagreb index among
all connected graphs with given order n.

Specifically, we present a modification to graphs that minimizes the generalized
multiplicative first Zagreb index, Πα

1 . The following results can be easily derived by using
the definition of generalized multiplicative first Zagreb index.

Lemma 1 ([32]). Assume that Ω is a graph that comprises two nonadjacent vertices say u, v and
e ∈ E(Ω). We obtain Π∗1(Ω) < Π∗1(Ω + uv) and Π∗1(Ω) > Π∗1(Ω− e).

Lemma 2. Suppose a graph Ω with non-adjacent vertices u, v ∈ V(Ω) and e ∈ E(Ω). Then
by employing the definition of the generalized multiplicative first Zagreb, we have Πα∗

1 (Ω) <
Πα∗

1 (Ω + uv) and Πα∗
1 (Ω) > Πα∗

1 (Ω− e) for α > 0.

Transformation 1. Consider a connected graph Ω with vertex labeled by v. We deduce Ω
′

from
Ω by affixing two paths at vertex v say, X : {vw1w2 . . . wk} (resp. Y : {vu1u2 . . . ul}) of length k
(resp. l). Next, Ω

′′
= Ω

′ − vu1 + wkul .

Lemma 3. Consider Ω
′

and Ω
′′

are two graphs as constructed in Transformation 1. Then,
Πα

1(Ω
′′
) < Πα

1(Ω
′
).

Proof. Let v be a vertex with degree y > 0 in a connected graph say, Ω. Let deg1, deg2, . . . , degy

be the degrees of adjacent vertices of v. For some k, l ≥ 2, according to the concept of the
generalized multiplicative first Zagreb index,

Πα
1(Ω

′
)−Πα

1(Ω
′′
) =

y

∏
j=1

(y + 2 + dj)
α(y + 4)α(y + 4)α3α3α4(k+l−4)α

−
y

∏
j=1

(dj + y + 1)α(y + 3)α3α4(k+l−2)α

=
y

∏
j=1

(dj + y + 1)α3α4(k+l−4)α
(
(y + 4)2α − (y + 3)α16α

)
≥ (y + 4)2α − (y + 3)α16α

> 0 f or α > 0, y > 0

This completes the proof.

Remark 1. It is easy to see that continuously applying Transformation 1 can transform any tree T
with size m associated with a graph Ω into a path Pm+1. Within this analysis, we demonstrate that
Lemma 3 minimizes the generalized multiplicative first Zagreb index.

By combining Theorem 1 with Lemma 1, we construct the following result, where
generalized multiplicative first Zagreb index of trees from Tn decreases.

Theorem 2. Consider any tree tn ∈ Tn with n ≥ 4 different from Pn. Then Πα∗
1 (Pn) < Πα∗

1 (tn).

By repeatedly employing Lemma 3 and Remark 1, we acquire Theorem 2. Next, we
present some auxiliary operations.
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Transformation 2. Let Ω be a connected graph with uv edge such that degΩ(v) ≥ 2. Let
{v, v1, v2, . . . , vt} be adjacent vertices to u such that {uv1, uv2, . . . , uvt} is a set of pendant edges.

Next, we construct Ω
′
= Ω− {uv1, uv2, . . . , uvt}+ {vv1, vv2, . . . , vvt}.

Lemma 4. Suppose Ω and Ω
′

represent two different graphs. Then, Πα
1(Ω) < Πα

1(Ω
′
).

Proof. Suppose Ωo = Ω− u, v1, v2, . . . , vt. Suppose that degΩo = y > 0

Πα
1(Ω

′
)−Πα

1(Ω) = (y + t + 2)tα+α
y

∏
j=1

(dj + y + t + 1)α

− (y + t + 1)α(t + 2)tα
y

∏
j=1

(dj + y + 1)α

=
y

∏
j=1

(dj + y + 1)α

(
(y + t + 2)tα+α − (y + t + 1)α(t + 2)tα

)
≥ ((y + t + 2)tα+α − (y + t + 1)α(t + 2)tα

> 0 f or α > 0, y > 0

Remark 2. Note that, by repeatedly applying Transformation 2, any tree T of size m that is
associated with Ω can be transformed to a star Pm+1. Generalized multiplicative first Zagreb index
keeps increasing by employing Lemma 4, as long as, this analysis has been performed correctly.

Transformation 3. Let u and w be a non-pendant adjacent vertex with different neighbor vertices
in a non-trivial connected graph say, Ω. Next, we deduce a resulting graph symbolized by Ω

′
, which

is acquired by associating the vertices u and w to a new vertex by p and attaching a pendant vertex
indicated by q to the vertex p.

Lemma 5. Suppose Ω and Ω
′

are two graphs. Then Πα
1(Ω) < Πα

1(Ω
′
).

Proof. Suppose that the neighbors of u are {u1, u2 . . . , us}with degrees {deg(u1), . . . , deg(us)},
respectively, and the neighbors of w are {w1, w1 . . . , wt}with degrees {deg(w1), . . . , deg(wt)},
respectively.

Πα
1(Ω

′
)−Πα

1(Ω) = (s + t + 2)α
s

∏
j=1

(degΩ′ (uj) + s + t + 1)α
t

∏
j=1

(degΩ′ (wj) + s + t + 1)α

− (s + t + 2)α
s

∏
j=1

(degΩ(uj) + s + 1)α
t

∏
j=1

(degΩ(wj) + t + 1)α

≥
s

∏
j=1

(degΩ′ (uj) + s + t + 1)α
t

∏
j=1

(degΩ′ (wj) + s + t + 1)α

−
s

∏
j=1

(degΩ(uj) + s + 1)α
t

∏
j=1

(degΩ(wj) + t + 1)α

> 0 f or α > 0, s, t > 0

Transformation 4. Let Ω be a connected graph that comprises pendant path X = {u1u2 . . . ut−1ut}
identifying at vertex u1 such that u1 is adjacent with two different vertices say w and x other than u2.
Next, we deduce Ω

′
= Ω− {wu1 + wut}.
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Lemma 6. Assume that the two graphs are labeled Ω and Ω
′
. Then Πα

1(Ω) > Πα
1(Ω

′
).

Proof. Suppose that degΩ(w) = p > 1 and degΩ′ (x) = q > 1. For t ≥ 2, by using the
concept of generalized multiplicative first Zagreb index,

Πα
1(Ω)−Πα

1(Ω
′
) = (p + 3)α(q + 3)α5α4(t−2)α3α − (p + 2)α(q + 2)α4tα

4(t−2)α[(p + 3)α(q + 3)α5α3α − 42α(p + 2)α(q + 2)α]

> 0 f or α > 0, 0 ≤ p, q ≤ 29

Using Transformations 2 and 4, we can have the following transformation.

Transformation 5. Let Ω be connected graph with path X = {xu1u2 . . . uty} such that degΩ(uj) =

2 and degΩ(p) ≥ 2, degΩ(q) ≥ 2, for some j = 1, 2, .., t. Ω
′
= Ω−{u2u3, u3u4, . . . , ut−1ut, uty}

+{u1u3, u1u4, . . . , u1ut, u1y}.

From Lemmas 4 and 6, the following lemma satisfies.

Lemma 7. Consider connected graphs say, Ω and Ω
′
. then Πα

1(Ω) < Πα
1(Ω

′
)

Lemma 8. Let deg1, deg2, . . . , degt be t non-negative integers. Now, we construct a function

z(y) = (y + t + 1)yα
t

∏
j=1

(degj + y + t)

where y > 0 is a variant.

Lemma 9. Suppose z(y) be a function illustrated in Lemma 8. Then, for any non-negative integers
p and q, we obtain z(p + q)z(0) > z(p)z(q).

Proof. Given that z(y) > 0 for some y > 0. Consequently, to reach a result, it is sufficient
to show that ln z(p + q) + ln z(0) > ln z(p) + ln z(q).

Now, we consider a new function g(y) = ln z(y) + ln z(0) − ln z(y1) − ln z(y − y1)
where 0 < y1 < y is an invariant. Introduce new function h(y) = α ln(y + t + 1) + αy

y+t+1 +
m

∑
j=1

α

degi + y + t
, then we have

h
′
(y) =

α

(y + t + 1)
− m + 1

(y + t + 1)2 +
α

((
y

∏
j=1

degj + y + t)2)

=
(y + 1)α + (α− 1)t + α− 1

(y + t + 1)2 +
α

(
y

∏
j=1

degj + y + t)2

> 0 f or α ≥ 1
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Consequently, we claim that h(y) is absolutely non-decreasing if y > 0. Hence, we
obtain

g(y) = ln(y + t + 1)yα + ln(
y

∏
j=1

degj + y + t)α − ln((y− y1) + t + 1)(y−y1)α

+ ln(
y

∏
j=1

degj + (y− y1) + t)α

g
′
(y) =

yα

(y + t + 1)
+ α ln(y + t + 1) +

α

(
y

∏
j=1

dj + y + t)

− (y− y1)α

((y− y1) + t + 1)
+ α ln((y− y1) + t + 1) +

α

(
y

∏
j=1

+(y− y1) + t)

= h(y)− h(y− y1)

> 0

So, g(y) is also absolutely non-decreasing for y > 0. Therefore, as a result g(y) >
g(y1) = 0. Consider y = p + q, y1 = p, then we have g(p + q) > g(p) = 0, which shows
ln z(p + q) + ln z(0)− ln z(p)− ln z(q) > 0. The proof is complete.

Transformation 6. Let Ω be connected graph comprises two vertices u and w such that pendent
vertices u1u2, . . . , up (resp. w1w2, . . . , wq) identifying at vertex u (resp. w). Construct Ωo = Ω−
{u1u2, . . . , uk, w1w2, . . . , wl}. In Ωo, vertex u (resp. w) has adjacent vertices say, u

′
1u
′
2, . . . , u

′
r

(resp. w
′
1w
′
2, . . . , w

′
r) with degΩo (uj) = degΩo (wj) = degj for j = 1, 2, .., r.

Next, we derive Ω
′
= Ω− {uu1, uu2, . . . , uup}+ {wu1, wu2, . . . , wup}. Similarly, Ω

′′
=

Ω− {ww1, ww2, . . . , wwq}+ {uw1, uw2, . . . , uwq}.

Lemma 10. Let Ω, Ω
′
, and Ω

′′
be a non-trivial connected graphs. Then Πα

1(Ω) < Πα
1(Ω

′
) =

Πα
1(Ω

′′
)

Proof. By employing the definition of generalized multiplicative first Zagreb, we have

Πα
1(Ω

′
)−Πα

1(Ω) = Πα
1(Ω

′′
)−Πα

1(Ω)

≥ (p + q + t + 1)pα+qα
t

∏
j=1

(degj + p + q + t)α
t

∏
j=1

(degj + t)α

− (p + t + 1)pα(q + t + 1)qα
t

∏
j=1

(degj + p + t)α
t

∏
j=1

(degj + q + t)α

> 0

by employing Lemma 9. The proof is complete.

3. Main Results

If T is a tree, then it can be transformed into a path, usually described as a caterpillar,
by removing all of the pendant vertices that are attached to it. The caterpillar tree is also
recognized as the Gutman tree (for references, see [2,5]. Now we evaluate the Tn tree with
the maximum generalized multiplicative first Zagreb index.

Theorem 3. Consider a tree tn ∈ Tn with n ≥ 4 dissimilar from Sn. Then Πα∗
1 (tn) < Πα∗

1 (Sn).
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Proof. The maximum generalized multiplicative first Zagreb index of a tree in Tn is a
caterpillar, as determined by employing Lemma 4 and Remark 2. We illustrate that any
caterpillar can be transformed into a star Sn with a bigger generalized multiplicative first
Zagreb index by considering Transformations 3 and 5 derived from Lemmas 5 and 7.
Consequently, the conclusion of this theorem follows directly.

Similarly, we can obtain the following result.

Theorem 4. Consider a graph Ω ∈ Tn dissimilar from Sn and Pn. Therefore, Πα∗
1 (Pn) <

Πα
1(Ω) < Πα

1(Sn).

Let T
′
n be a collection of trees with vertices n such that there exists a vertex of degree

at most 3. Consider that S
′
n is a resulting graph from Sn−1 by identifying isolated edges

to isolated vertex of Sn−1. Eliasi and Iranmanesh [32] established the second minimum
multiplicative first Zagreb index for all connected graphs with vertices n. The following
result classifies the second maximum or the minimum generalized multiplicative first
Zagreb index for graphs Tn.

Theorem 5. Consider Ω ∈ Tn to be a graph dissimilar from Sn, Pn, S
′
n and any tree t

′
n ∈ T

′
n. Then

we have Πα∗
1 (t

′
n) < Πα∗

1 (Ω) < Πα∗
1 (S

′
n).

Proof. Let tn ∈ Tn be a graph different from Sn, Pn, S
′
n, and any tree t

′
n ∈ T

′
n. By repeatedly

employing Remark 1 and Lemma 3, tn can be transformed to any tree with n vertices such
that there exists a vertex of degree at most 3, where the generalized multiplicative first
Zagreb index decreases. Consequently, the left inequality, is satisfied.

Equivalently, the generalized multiplicative first Zagreb index increases when tn ∈ Tn
is transformed to a caterpillar with diameter 3. A double star graph is basically a caterpillar
with diameter 3, symbolized by Sn1,n2 for 1 ≤ n1 ≤ n2 and n1 + n2 = n − 2, which is
generated by identifying n1 (resp. n2) isolated vertices to isolated vertex P2 (resp. other
vertex). Next, we claim that Πα

1Sn1,n2 have the largest value if n1 = 1 and n2 = n − 3.
Otherwise, n1 = 2. By employing Transformation 6 and Lemma 10, we obtain S1,n−3 such
that Πα

1(S1,n−3) > Πα
1(S1,n−3)(Sn1,n2), which satisfies the right inequality.

A graph Ω which comprises at most one cycle with a maximum degree of three and
other vertices with a degree at most two is called a sun graph [34]. The following result
shows the Πα

1 decreases for graphs in Un.

Theorem 6. Consider Ω ∈ Un is a graph that is dissimilar from C
′
n. Then, Πα

1(C
′
n) < Πα

1(Ω).

Proof. Given that the unicyclic graph Ω can be transformed to a sun graph which decreases
the generalized multiplicative first Zagreb index Πα

1 by employing Lemma 3 and Remark 1.
The generalized multiplicative first Zagreb index Πα

1 gets decreased by repeatedly employ-
ing Lemma 6 to any sun graph as long as it is not the cycle C

′
n. Then Πα

1(C
′
n) < Πα

1(Ω)
is satisfied.

A graph Ω which comprises at most one cycle and all its isolated vertices transform it
into a cycle, called cycle-caterpillar. Consider cycle-caterpillar with cycle Cp if p is its girth.
Consider Cn,p is a resulting graph by joining n− p isolated edges to a vertex of Cp. The
following result shows that the generalized multiplicative first Zagreb index Πα

1 increases
for graphs in Un.

Theorem 7. Assume that Ω ∈ Un is a graph with at most one cycle that is dissimilar from Cn,3.
Then Πα

1(Cn,3) > Πα
1(Ω).
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Proof. We claim that the generalized multiplicative first Zagreb index increases for graphs
in Un are cyclic caterpillar by repeatedly employing Lemma 4 and Remark 2. Next,
the generalized multiplicative first Zagreb index increases when any cyclic caterpillar
can be transformed to a cyclic caterpillar with triangle C

′
3 = u1u2u3u1, by employing

Transformations 3 and 5 and Lemmas 7 and 5.
Consider, C

′
3(n1, n2, n3) be the cyclic caterpillar with n vertices generated by joining

nk isolated vertices to vertex vk for some k = 1, 2, 3. By employing Transformation 6 at most
twice and Lemma 10, we can construct the graph Cn,3 with Πα

1(C
′3
n ) > Π∗α1 (C

′
3(n1, n2, n3)),

ending the proof of this result.

The following result immediately follows by combining Theorems 6 and 7, where
extremal graphs from Un with respect to the generalized multiplicative first Zagreb index
are classified.

Theorem 8. Let Ω ∈ Un be a graph that is dissimilar from C
′
3 and C

′
n. Then we have Πα

1(C
′
n) <

Πα
1(Ω) < Πα

1(C
′3
n ).

Next, we discuss extremal graphs from Bn with respect to the generalized multiplica-
tive first Zagreb index. Let Ω ∈ Bn be a graph with at least two cycles. The following three
cases classified its structure of cycles [35].

1. Let vo be a common vertex for two cycles Ca and Cb.
2. There exists a path graph of length m > 0 attached with cycles Ca and Cb.
3. There exists a common path of length m > 0 between Cm+n and Cm+p cycles.

The graphs Ca,b, Ca,m,b and Cn,m,p (where 1 ≤ m ≤ min{n, p}) corresponding to the
cases above are called main subgraphs of Ω

′ ∈ Bn of type (1), (2) and (3), respectively.
Consider B

′
n is a resulting graph generated from joining two adjacent edges in Sn

among its three isolated vertices. Bn comprises only those graphs which are generated
by the removal of an edge of a complete graph K4 for n = 4. Otherwise, for n = 5, the
generalized multiplicative first Zagreb index Πα

1 increases for B
′
n among all graphs of Bn.

Next, we will discuss graphs in Bn for n ≥ 6.

Theorem 9. Consider Ω ∈ Bn is a graph with n ≥ 6 dissimilar from B
′
n. Then Πα

1(Ω) < Πα
1(B

′
n).

Proof. Consider Ω
′′ ∈ Bn is a graph achieving largest generalized multiplicative first

Zagreb index Πα
1 . Let B

′′
n be a subgraph of Ω

′′
and its structure similar to any type of

case defined in Theorem 8. By employing Remark 2, it is obvious that Ω
′′

can be con-
struct by joining some isolated edges to some vertices of the graph B

′′
n. Considering the

Transformations 3 and 5 and consequently Lemmas 5 and 7, any graph Ω ∈ Bn of type (2)
can be transformed to Ω

′
of type (1) achieving maximum generalized multiplicative first

Zagreb index.
Next, consider that type (1) and (3) in Bn.

Claim 1. Any cycle of B
′′
n comprises the length less than 5.

Proof. Otherwise, if B
′′
n is of type (1), we can construct a different graph Ω

′′
1 from Ω

′′
such

that Πα
1(Ω

′′
) < Πα

1(Ω
′′
1), by employing Transformations 3, 5 and Lemmas 5, 7, which is

contradiction to our choice of Ω
′′
.

Next, we assume that B
′′
n is of type 3. Let B

′′
n
∼= ϑn,m,p with 1 ≤ m ≤ min{n, p} and

n+ p ≥ 5, where n, p � 3. According to formation of Ω
′′
, by employing Transformation 3 or

Transformation 5 to B
′′
n ∈ Ω

′′
, there exist another graph Ω

′′
2 ∈ Bn achieving minimum gen-

eralized multiplicative first Zagreb index by Lemmas 5 and 7, which is again contradiction
to our choice of Ω

′′
. The proof of Claim 1 is complete.
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It is obvious any cycle in B
′′
n has length 3 or 4, by By Claim 1. If B

′′
n is a graph of type

(1) then B
′′
n
∼= C

′
3,3. Otherwise, B

′′
n
∼= ϑ2,1,2. Assume that C

′
3,3(η1, η2) is a resulting graph

generated by joining η1 (resp. η2) isolated vertices to a vertex of degree 2 (resp. degree
4). Similarly, ϑ2,1,2(η1, η2) is a resulting graph generated by joining η1 (resp. η2) isolated
vertices to a vertex of degree 2 (resp. degree 3). According to structure of C

′
3,3 and ϑ2,1,2,

we deduce Ω
′′

graph in the form of C
′
3,3(η1, η2) (resp. ϑ2,1,2(η1, η2)) with η1 + η2 = n− 5,

(resp. η1 + η2 = n− 4). By employing the concept of generalized multiplicative first Zagreb
index, we obtain

Πα
1(C

′
3,3(η1, η2))

α = 4α(η1 + 3)η1α(η1 + η2 + 6)α(η1 + 4)α(η2 + 6)3α(η2 + 5)η2α

= 4α(n + 1)α(η + 3)η1α(η1 + 4)α(η2 + 6)3α(η2 + 5)η2α

Πα
1(ϑ2,1,2(η1, η2))

α = 5α(η1 + 3)η1α(η2 + 4)η2α(η1 + η2 + 5)α(η1 + 5)α

= ·(η2 + 6)α(η2 + 5)α

= 5α(η1 + 3)η1α(η2 + 4)η2α(n + 1)α(η1 + 5)α(η2 + 6)α(η2 + 5)α

Claim 2. If η1 = 0. η2 = n− 5, then Πα
1(C

′
3,3(η1, η2))

′α reduces its largest values.

Proof. In order to prove this claim, it is sufficient to find the maximum values of (η1 +
3)η1α(η1 + 4)α(η2 + 6)3α(η2 + 5)η2α, where η1 + η2 = n − 5. It is clear from factors that
maximum value achieve if η2 ≥ η1, that is, η1 ≤ (n− 5)/2. Therefore, we only explain the
maximum value of (η1 + 3)η1α(η1 + 4)α(n− η1 + 1)3α(n− η1)

(n−η1−5)α. So, we assume a
function,

f (x) = (y + 4)α(y + 3)αy(n− y + 1)3α(n− y)(n−y−5)α

where 0 ≤ y ≤ n−5
2 and α ≥ 0

f
′
(y) = f (y)

[
− α

(y + 4)(y + 3)
− 2α(n− 2y− 2)

(n− y + 1)(y + 3)
+

5α

(n− y + 1)(n− y)

+ ln(
(y + 3)
(n− y)

)α

]
As we know, 0 ≤ y ≤ n−5

2 and α ≥ 0, then (y + 3) < (n− y) and (n− 2y− 2) ≥ 3
With the help of these results, we obtain

− 2α(n− 2y− 2)
(n− y + 1)(y + 3)

+
5α

(n− y + 1)(n− y)
< 0

Additionally,

0 ≤ (
(y + 3)
(n− y)

) ≤ 1

hence

ln(
(y + 3)
(n− y)

)α ≤ 0

f
′
(y) < 0,

Hence, f (y) is a non-increasing function for y ≤ (n − 5)/2 and α ≥ 0. Conse-
quently, f (y) ≤ 4α(n + 1)3αn(n−5)α achieve maximum value if y = 0, equivalently, η1 = 0,
η2 = n− 5. Which is the required result.

Similarly, Πα
1(ϑ2,1,2(n

′
1, n

′
2)) achieving maximum values when η1 = 0, η2 = n− 4.

From above discussion, we claim that Ω
′′

is one of two graphs (C
′
3,3(0, n − 5)) and
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(ϑ2,1,2(η1, η2)) ∼= B
′
n, In addition, Πα

1(C
′
3,3(0, n− 5)) = 42αn + 14α(n)(n−5)α

Πα
1(ϑ2,1,2(0, n− 4)) = 5αn + 12α(n + 2)(n)(n−4)α

Πα
1(ϑ2,1,2(0, n− 4))−Πα

1(C
′
3,3(0, n− 5)) = 5αn + 12α(n + 2)(n)(n−4)α

− 42αn + 14α(n)(n−5)α

> 0, α > 0

Now we introduce three subsets of the set Bn as follows: B1n = Ca,b : a + b− 1 = n;
B2n = Ca,m,b p, l, q : a + b + m− 1 = n;
B3n = ϑn,m,p : n + m + p− 1 = n.

Let Gj be any graph from Bjn for j = 1, 2, 3. Then,
Πα

1(Ω1) = 64α4(n−3)α

Πα
1(Ω2) = 54α4(n−4)α6α if m = 1

Πα
1(Ω2) = 56α4(n−4)α if m > 1

Πα
1(Ω3) = 54α4(n−4)α6α if m = 1

Πα
1(Ω3) = 56α4(n−4)α if m > 1

Theorem 10. Assume that Ωn is a graph in Bn \ B2n

⋃
B3n where n ≥ 6 and K be a graph in

B2n

⋃
B3n with m = 1. Then we have Πα

1(K) < Πα
1(Ωn).

Proof. We claim that the graph from Bn achieving the minimum generalized multiplica-
tive first Zagreb index must be a graph from the set B1n

⋃
B2n

⋃
B3n , by employing the

Lemmas 3 and 6 and Remark 1.
From the above calculation of graph Ωj in Bjn) with j = 1, 2, 3, we have Πα

1(Ω1)−
Πα

1(Ω2) > 0 and Πα
1(Ω1)−Πα

1(Ω3) > 0 Considering the difference of Πα
1(Ωj) for j = 2, 3

when m is different, which is the required result.

The following result characterizes graphs from Bn with respect to the generalized
multiplicative first Zagreb index.

Theorem 11. Let K be a graph in B2n

⋃
B3n with m = 1. Let Ωn be a graph in Bn \ B2n

⋃
B3n

different from B
′
n. Then, Πα

1(K) < Πα
1(Ωn) < Πα

1(B
′
n).

4. Applications of Πα
1 in QSPR Modeling of Benzenoid Hydrocarbons

This section intends to present the practical applicability of Πα
1 in QSPR modeling

of benzenoid hydrocarbons. In [36], the authors investigated the predictive potential
of commonly occurring degree-based topological indices for measuring Eπ(β) of lower
benzenoid hydrocarbons. They consider Πα

1 with α = 1 and showed that it correlated with
Eπ(β) having the correlation coefficient ρ = 0.2361 which is very poor. They raised the
question that for which value of α, for which the correlation coefficient between the index
Πα

1 and Eπ of lower benzenoid hydrocarbons is the strongest. This section answers that
question and shows that for α = −0.00496, we obtain the strongest correlation coefficient
of ρ = −0.998 between the index Πα

1 and Eπ of lower benzenoid hydrocarbons.
Chen [37] conducted a similar study on the general Randić Rα and general sum-

connectivity index SCIα and showed that α = −0.2661 (resp. α = −0.5601) provides the
best correlation with Eπ with Rα (resp. SCIα) among all the values of α ∈ R. We extend
that study to Πα

1 and show that for α = −0.00496, we obtain the strongest correlation
coefficient of ρ = −0.998 between the index Πα

1 and Eπ of lower benzenoid hydrocarbons.
At first, we retrieve the experimental data of Eπ for the 30 lower benzenoid hydrocarbons
from [38] and then compute their Πα

1 values. Table 1 present the molecules, their Eπ and
the corresponding Πα

1 index for 30 lower benzenoid hydrocarbons.
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Table 1. The generalized multiplicative first Zagreb index Πα
1 , α ∈ R of 30 lower benzenoid hydro-

carbons with their Eπ(β).

Molecule Eπ(β) Πα
1

Benzene 8 4096α

Naphthalene 13.6832 15360000α

Anthracene 19.3137 57600000000α

Phenanthrene 19.4483 55296000000α

Tetracene 24.9308 216000000000000α

Benzo[c]phenanthrene 25.1875 199065600000000α

Benzo[a]anthracene 25.1012 207360000000000α

Chrysene 25.1922 199065600000000α

Triphenylene 25.2745 191102976000000α

Pyrene 22.5055 12441600000000α

Pentacene 30.544 810000000000000000α

Benzo[a]tetracene 30.7255 777600000000000000α

Dibenzo[a,h]anthracene 30.8805 746496000000000000α

Dibenzo[a,j]anthracene 30.8795 746496000000000000α

Pentaphene 30.7627 777600000000000000α

Benzo[g]chrysene 30.999 687970713600000000α

Pentahelicene 30.9362 716636160000000000α

Benzo[c]chrysene 30.9386 716636160000000000α

Picene 30.9432 716636160000000000α

Benzo[b]chrysene 30.839 746496000000000000α

Dibenzo[a,c]anthracene 30.9418 716636160000000000α

Dibenzo[b,g]phenanthrene 30.8336 746496000000000000α

Perylene 28.2453 42998169600000000α

Benzo[e]pyrene 28.3361 44789760000000000α

Benzo[a]pyrene 28.222 44789760000000000α

Hexahelicene 36.6814 2579890176000000000000α

Benzo[ghi]perylene 31.4251 9674588160000000000α

Hexacene 36.1557 3037500000000000131072α

Coronene 34.5718 2176782336000000000000α

Ovalene 46.4974 380849837506559992795192360960α

Next, we executed the data in Table 1 in our Matlab program and show that for
α = −0.00496, the correlation coefficient ρ = −0.998 between the index Πα

1 and Eπ of lower
benzenoid hydrocarbons is the strongest. Figure 1 shows the curve depicting the α vs. ρ
curve with the value of α for which the correlation coefficient ρ is the strongest. Figure 2
delivers a closer look at the curve explaining the dynamics of α vs. ρ values.

Figure 1. Curve incorporating the strongest ρ for benzenoid hydrocarbons.
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Figure 2. A closer look at the α vs. ρ curve.

The Πα
1 with α = −0.00496 delivering the strongest correlation with Eπ for benzenoid

hydrocarbons has been studied further. We conduct a detailed statistical analysis between
Πα

1 with α = −0.00496 and Eπ . Our statistical model shows that the most suitable regression
model for Πα

1 and Eπ is, in fact, linear. Next, we present the linear regression model with a
95% confidence interval for its slope and intercept, the determination coefficient r2 and the
standard error of fit s between Πα

1 and Eπ .

Eπ(β) = 160.5346±3.2098 − 159.3616±3.8629Πα
1 , ρ = −0.998, r2 = 0.9960, s = 0.4511

Next, we construct the scatter plot between Πα
1 with α = −0.00496 and Eπ for the 30

lower benzenoid hydrocarbons. Figure 3 exhibits the scatter plot.

Figure 3. Scatter plot between Πα
1 with α = −0.00496 and Eπ .

Note that Gutman & Tošović [39] in their seminal work showed that if the correlation
coefficient between a topological descriptor and a chemical property is |ρ| > 0.95, then the
topological descriptor is considered significant and warrants its further usage in QSPR and
QSAR modeling.
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5. Concluding Remarks

This paper studied some extremal values of the generalized multiplicative first Zagreb
index Πα

1 and derived sharp upper and lower bounds on it. In particular, we found
sharp upper and lower bounds on Πα

1 , α ∈ R for trees, unicylic and bicyclic graphs and
characterized graphs achieving those bounds. Our results generalize some results in the
literature studying Πα

1 . We also present the practical applicability of Πα
1 in QSPR modeling

answering an open question asking for which value of α, the correlation between Πα
1 and the

π-electronic energy is the strongest. Our statistical analysis shows that for α = −0.00496,
the correlation coefficient ρ = −0.998 between the index Πα

1 and Eπ of lower benzenoid
hydrocarbons is the strongest.

The correlation coefficient ρ = −0.998 strongly meets the criteria set up by Gutman &
Tošović [39] and thus, Πα

1 warrants its further employability in QSPR and QSAR modeling.
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