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Abstract: The effective recognition of patterns from blurred images presents a fundamental difficulty
for many practical vision tasks. In the era of deep learning, the main ideas to cope with this
difficulty are data augmentation and deblurring. However, both facing issues such as inefficiency,
instability, and lack of explainability. In this paper, we explore a simple but effective way to define
invariants from blurred images, without data augmentation and deblurring. Here, the invariants are
designed from Fractional Moments under Projection operators (FMP), where the blur invariance and
rotation invariance are guaranteed by the general theorem of blur invariants and the Fourier-domain
rotation equivariance, respectively. In general, the proposed FMP not only bears a simpler explicit
definition, but also has useful representation properties including orthogonality, statistical flexibility,
as well as the combined invariance of blurring and rotation. Simulation experiments are provided
to demonstrate such properties of our FMP, revealing the potential for small-scale robust vision
problems.
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1. Introduction

In many real-world vision tasks, it is an inevitablity that researchers conduct analyses
on degraded versions of the original scene. Blurring is a common type of image degradation
that usually occurs in imperfect imaging, e.g., out of focus, camera or object motion. In this
paper, the blur is formalized as the following simple but reasonably accurate model [1].
The blurred image fh is the result of ideal scene f convolved by a Point-Spread Function
(PSF) h, i.e., fh(x, y) = ( f ∗ h)(x, y). Moreover, the modern image processing software,
e.g., Photoshop, can simulate blurring effects based on the above formalization, with
potential use in general image retouching and even malicious adversary attacks against
automatic systems. Therefore, an efficient and secure vision algorithm naturally requires
the robustness to blur.

1.1. Current Solutions

Robust visual algorithms heavily rely on robust data representations [2]. In this
regard, current typical deep-learning representations [3], mainly Convolutional Neural
Networks (CNN), are not designed to be robust to blurring at the architectural level. As
a remedy, there are two popular data-level ideas to improve the robustness of learning
representations:

• Data augmentation which includes blurred image samples in the training phase for
boosting the CNN to adapt to blurred patterns;

• Deblurring as data pre-processing, which attempts to restore an ideal scene from
blurred images for the regular (without blur augmentation) CNN inference.
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However, the above two ideas face issues such as inefficiency, instability, and lack of
explainability:

• Regarding the efficiency, data augmentation and pre-processing clearly increase the
computational cost of the training and inference phases, respectively;

• Regarding the stability, blind deblurring is an ill-posed inverse problem, and the
introduced recovery artifacts also strongly disturb the CNN representations [4];

• Regarding the explainability, neither of these ideas can achieve a guaranteed robust-
ness with respect to a given class of blurs—their effectiveness is somewhat empirical.

On the non-learning path, moments and moment invariants have been well established,
towards the in-form robustness with respect to various forms of image distortion [5].

In particular, orthogonal moments and moment invariants may be the most popular
class for real-world tasks. They provide geometric invariance while providing a certain
robustness to signal loss (including blurring) due to the orthogonality. However, such
robustness is restricted from a Fourier perspective: only a few low-order moments capturing
low-frequency information are stable while the rest remain sensitive to signal loss. One will
have to face a tricky contradiction between discriminability and robustness in the design of
the algorithm.

Recently, such moments and invariants have been extended to a fractional domain of
orders, yielding new time-frequency discriminability and hence somewhat alleviating the
above contradiction. However, both integer and fractional moment invariants still lack the
guaranteed robustness to blurring.

To address above issue, the researchers have specifically designed blur invariants,
formed in Fourier domain by special projection operator [6]. As a key theoretical contribu-
tion, such projection-based methods are recently integrated and generalized into a unified
theorem, General Theorem of Blur Invariants (GTBI) [7], which does not require any prior
knowledge of the blur type.

1.2. Motivations

On the other hand, such Fourier-domain blur invariants are not robust to geometric
transformations. With this lack, the existing ideas expand above blur invariants via integer
geometric/complex moments, and then introducing combined invariance by Substitution
Theorem (ST) based on corresponding geometric invariants. However, this expanded ver-
sion has a quite complicated explicit form, and it is even more complicated after introducing
the combined invariance.

1.3. Contributions

In this paper, we explore a simple but effective way to define combined invariants,
which are designed from Fractional Moments under Projection operators (FMP).

Theoretically, the blur invariance and rotation invariance of FMP are guaranteed by
the GTBI and the Fourier-domain rotation equivariance, respectively. From a statistical
perspective, the proposed FMP representations can be considered as flexible and orthogonal
statistics in frequency domain, where both properties are beneficial for the discriminability.

In summary, the proposed FMP not only has a simpler explicit definition, but also has
useful representation properties including orthogonality, statistical flexibility, as well as the
combined invariance of blurring and rotation.

1.4. Organizations

The rest of this paper is organized as follows. We first briefly review the studies of
blur invariants and fractional moments in the following Section 2. As the core of this
paper, we formulate the basic definitions of FMP and the derived important properties in
Sections 3 and 4, respectively. Furthermore, Section 5 reports the comparative results of
our FMP with state-of-the-art orthogonal moments and deep learning representations with
data augmentation or deblurring. In Section 6, we give the conclusion of this paper and
point out future work on stability.
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2. Related Works

In this section, we briefly review the relevant studies on blur invariants and fractional
moments, which are linked to the proposed methodology.

2.1. Blur Invariants

In the community of moment and moment invariants, the blur invariants are a recent
idea compared to the geometric invariants, where geometric ones can even be traced back
to David Hilbert (1890s) [8].

In pioneer papers (1990s) [9], Flusser et al. achieved heuristic blur invariance by re-
stricting the definition of PSF. Such problem modeling and solving ideas have been adopted
by many later researchers. Therefore, a series of blur invariants are derived with respect to
centrosymmetric blur [10], axially symmetric blur [11], motion blur [12], circularly sym-
metric blur [13], arbitrary N-fold symmetric blur [6], and arbitrary (anisotropic) Gaussian
blur [14]. In the last two works, the authors developed projection-based invariants in the
Fourier domain, and the restrictions on the PSF were greatly relaxed.

Recently, the above projection-based approach was extended to a very strong theorem,
i.e., General Theorem of Blur Invariants (GTBI) [7], where the construction of invariants
occurs regardless of the specific form of the PSF and the dimensionality of the image.
This remarkable work moves blur invariants from being constructed heuristically to being
constructed by a unified theory.

Turning to the topic of combined invariants for image representation, i.e., geometric
invariance is further introduced into the above blur invariants. A typical solution in this
regard is to expand the Fourier-domain blur invariants by means of classical moments,
e.g., geometric moments and complex moments. Then, the combined invariance is intro-
duced in the expanded version by Substitution Theorem (ST) [7] with geometric/complex
moment invariants.

Note that such expanded blur invariants as well as the corresponding combined
invariants exhibit quite complicated explicit forms. Therefore, this paper attempts to give
an alternative path for the construction of combined invariance with respect to blurring
and rotation, without going through the tricky moment expansion.

2.2. Fractional Moments

We start the topic of fractional moments with the information suppression problem [15].
Indeed, the regional information of the image represented by the moments is closely related
to the distribution of zeros of basis functions [15]. The suppression is a unnecessary bias of
zeros toward certain non-discriminative regions, causing the information in other more
discriminative regions to be ignored.

This information suppression problem was first analyzed in Zernike Moments (ZM),
both theoretically and empirically [16]. Here, the solution suggested by the authors is
to use the moments with uniformly distributed zeros, e.g., Orthogonal Fourier–Mellin
Moments (OFMM).

As a more systematic idea, Hoang et al. [17] proposed a class of fractional moments
with adjustable zeros, i.e., Generic Polar Harmonic Transforms (GPHT). From a classical
signal processing perspective, such fractional moments are time-frequency analysis meth-
ods. Its apparent ability to resolve the phenomenon of information suppression and, more
generally, to alleviate the inherent contradiction between robustness and discriminability
of classical moments. In this path, many classical moments are extended to the fractional
domain of orders, e.g., fractional Legendre moments [18], fractional OFMM [19], fractional
ZM [20], fractional Chebyshev moments [21], and Fractional Jacobi–Fourier Moments
(FJFM) [22]. As unified mathematical tools, GPHT and FJFM are more general definitions
covering other fractional moments.

Note that the above fractional moments are all designed in the original image domain
and robustness/invariance to blurring is not discussed. Therefore, this paper focus on
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fractional moments in transformation domains, for satisfying both blurring invariance and
rotation invariance.

3. Fractional Moments under Projection: Definition

In this section, we formulate the most basic components in this paper, covering the
general definition of FMP and two kinds of radial basis functions.

Definition 1. (Fractional moments under projection). For an image function f , the fractional
moments under projection are defined as the following inner product:〈

I f , Vα
nm

〉
=
∫∫

D
[Vα

nm(ξx, ξy)]
∗I f (ξx, ξy)dξxdξy, (1)

where I f is of blur invariance and is defined in the Fourier domain by GTBI [7]:

I f (ξx, ξy) =
F ( f )(ξx, ξy)

F (P f )(ξx, ξy)
, (2)

with orthogonal projector P : L → S , mapping the image space L into a given class (which we
want to design the invariants) of PSFs S ⊂ L, where P2 = P and the P is called orthogonal when
S⊥(L	 S).

The Vα
nm is the basis function of order parameter (n, m) ∈ Z2 and fractional parameter α ∈ R+

over the domain D ∈ R2, where ∗ is the complex conjugate. Here, orthogonality and rotation
invariance structures are imposed on the definition of basis functions [5]:

Vα
nm(r cos θ, r sin θ) ≡ Vα

nm(r, θ)
∆
= Rα

n(r)Am(θ), (3)

with angular basis function Am(θ) = exp(jmθ) (j =
√
−1) and radial basis function Rα

n(r)

satisfying the weighted orthogonality condition:
1∫

0
Rα

n(r)[Rα
n′(r)]

∗rdr = 1
2π δnn′ over a unit-disk

domain D = {(r, θ) : r ∈ [0, 1], θ ∈ [0, 2π)}.

In the Definition 1, I f can be considered as the blur-invariant part of f in the Fourier
domain. Here, its invariance derives from the equivariance of projector P with respect to
blurring, i.e., P( f ∗ h) = P f ∗ h for any h ∈ S . Furthermore, this equivariance is in fact
ensured by the orthogonality of projector P. For more details on the proof, we refer the
reader to the GTBI by Flusser et al. [7].

Note that the explicit definition of Rα
n is not yet given and bears numerous potential

forms (see [5] for a survey). Considering the representation capability and discussion
generality, we introduce two classes of radial basis functions based on harmonic and
polynomial functions, respectively.

Definition 2. (Harmonic radial basis function). The complex exponential functions [23]
in Fourier analysis can satisfy the weighted orthogonality condition in Definition 1, leading to an
explicit form:

Rα
n(r) =

√
αrα−2

2π
exp(j2nπrα), (4)

where the orthogonality holds for all possible α.
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Definition 3. (Polynomial radial basis function). A class of classical orthogonal polyno-
mials, Jacobi polynomials [22], can satisfy the weighted orthogonality condition in Definition 1,
leading to an explicit form:

Rα
n(r; p, q) =

√
αrαq−2(1− rα)p−q(p + 2n)Γ(q + n)n!

2πΓ(p + n)Γ(p− q + n + 1)

×
n

∑
k=0

(−1)kΓ(p + n + k)rαk

k!(n− k)!Γ(q + k)
,

(5)

where n ∈ N and the polynomial parameters p, q ∈ R must fulfill: p− q > −1, q > 0; similarly,
the orthogonality holds for all possible α, p, and q.

Here, we have specified the FMP of Definition 1 into harmonic and polynomial
versions, corresponding Definitions 2 and 3, respectively. As to be discussed later, the
proposed harmonic/polynomial FMP is a generic and flexible representation in Fourier
domain, with in-form blurring and rotation invariance.

4. Fractional Moments under Projection: Property

In this section, we give some important properties derived from above definitions,
covering the generic/flexible nature, rotation invariance, and blurring robustness.

Property 1. (Generic and flexible nature). By changing the parameter value of α, a specific class
of FMP representations can be obtained from the generic Definitions 1∼3. Note that members of
this class share beneficial Properties 2 and 3, while also being complementary in discriminative
information since the distribution of zeros of Rα

n(r) is flexible depending on α.

Remark 1. As can be seen from the above property, the fractional parameter α in Definitions 2
and 3 allows a generic and flexible representation, meaning potential discriminability for various
vision tasks. Mathematically, the number and location of zeros of the basis functions determine
the frequency and spatial properties of the represented information, respectively, [15]. In our FMP,
(n, m) and α explicitly encode the number and location of zeros of the basis functions:

• The number of zeros in the radial and angular directions is proportional to n and m, respec-
tively.

• The location of zeros in the radial direction is biased towards 0 or 1 corresponding to α < 1 or
α > 1, where α = 1 means a uniformly distributed zeros.

Property 2. (Rotation invariance). Suppose fR is a rotated version of image f by an angle ϕ
about the center, when projector P is rotation equivariance, there must be a function J other than
constant functions such that:

J ({
〈
I fR , Vα

nm

〉
}) ≡ J ({

〈
I f , Vα

nm

〉
}), (6)

i.e., satisfying the rotation invariance, for all possible input images and FMP parameters.

Proof. The proof of (6) is based on the 2D-Fourier rotation equivariance for I f (ξx, ξy) and
the 1D-Fourier translation theorem for Am(θ).

For convenience, we denote the rotation operator about the center as Θ, i.e., fR = Θ f .
Firstly, the Fourier transform F is widely known to have equivariance to rotations in the
classical literature as F (Θ f ) = ΘF ( f ). Secondly, we have assumed the equivariance of
projector P to rotation, i.e., PΘ f = ΘP f . With the above properties, it is easy to derive:

IΘ f =
F (Θ f )
F (PΘ f )

=
ΘF ( f )
F (ΘP f )

=
ΘF ( f )

ΘF (P f )
= Θ(

F ( f )
F (P f )

) = ΘI f . (7)
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We introduce a polar form of the frequency domain: I(ξx, ξy) = I(r cos θ, r sin θ) =
I(r, θ). Then (7) can be rewritten as I fR(r, θ) = I f (r, θ + ϕ).

With the above rotation equivariance of I , it can be derived that the FMP representa-
tions before and after image rotation will differ by only a phase term (with respect to the
rotation angle): 〈

I fR(r, θ), Vα
nm(r, θ)

〉
=
〈
I f (r, θ + ϕ), Vα

nm(r, θ)
〉

=
〈
I f (r, θ′), Vα

nm(r, θ′ − ϕ)
〉

=
〈
I f (r, θ′), Vα

nm(r, θ′)
〉
[Am(−ϕ)]∗

=
〈
I f , Vα

nm

〉
Am(ϕ),

(8)

with θ′ = θ + ϕ, where the second pass holds due to Fourier translation theorem of Am(θ).
Here, a naive definition of J is the magnitude operator:

J ({〈I•, Vα
nm〉})

∆
= |〈I•, Vα

nm〉|, (9)

hence |
〈
I fR , Vα

nm

〉
| = |

〈
I f , Vα

nm

〉
Am(ϕ)| = |

〈
I f , Vα

nm

〉
|. For the more generalized defini-

tion of J , interested readers are referred to [24].

Property 3. (Blurring robustness). Suppose fh is a blurred version of image f convolved by a func-
tion h: fh = f ∗ h, the FMP is more robust than the counterpart in the original image domain [22,23]
under the sense of l-norm distance of representation variations:

||{
〈
I fh

, Vα
nm

〉
} − {

〈
I f , Vα

nm

〉
}||l ≤ ||{〈 fh, Vα

nm〉} − {〈 f , Vα
nm〉}||l , (10)

and the equality holds if and only if h = id.

Proof. The proof of (10) is based on the blur invariance of I , the linearity of inner product,
the positive definiteness of norm, as well as the completeness and orthogonality of the
basis functions V.

For the left side of (10), i.e., the variation of FMP representation, we can rewrite it as:

||{
〈
I fh

, Vα
nm

〉
} − {

〈
I f , Vα

nm

〉
}||l

= ||{
〈
I fh
− I f , Vα

nm

〉
}||l

= ||{〈0, Vα
nm〉}||l = 0,

(11)

where the first pass holds due to the linearity of inner product and the second pass holds
as the blur invariance of (2) is guaranteed by GTBI.

For the right side of (10), i.e., the variation of the image-domain counterpart represen-
tation, we can rewrite it as:

||{
〈

fη , Vα
nm
〉
} − {〈 f , Vα

nm〉}||l
= ||{〈 fh − f , Vα

nm〉}||l
= ||{〈d, Vα

nm〉}||l ≥ 0,

(12)

where d = f ∗ h− f = f ∗ (h− id) can be considered as image residual. Here, we assert
that ||{〈d, Vα

nm〉}||l ≥ 0 and the equality holds if and only if d = 0, i.e., h = id.
Without loss of generality, we assume that there exists d 6= 0, such that ||{〈d, Vα

nm〉}||l =
0. Based on this assumption, it is known that d /∈ {Vα

nm}, due to ||{〈d, Vα
nm〉}||l = ||δ||l 6= 0
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if d ∈ {Vα
nm}. Taken together, the above assumption means that d is a nonzero element that

does not belong to the set of basis functions, while being orthogonal to any element in this
set for guaranteeing ||{〈d, Vα

nm〉}||l = 0. This obviously conflicts with the completeness
and orthogonality of the basis functions in a Hilbert space. Therefore, this assumption does
not hold.

It can be noted that the correctness of (11) and (12) implies in fact the correctness of
the original property (10).

Note that the ideal identities in Properties 2 and 3 may no longer hold for the discrete
domain, which involve resampling and requantization errors. Interested readers can access
our symmetrical work on noise-invariant representation in [25].

5. Experiments

In this section, we will evaluate the robustness and discriminability of the proposed
FMP, by intuitive feature histogram and quantitative pattern recognition on challenging
blurred images.

5.1. Implementation Details

Before giving the results, we first specify the implementation details of our FMP. In
fact, the Definition 1 of FMP is a very broad formulation that does not rely on the specific
type of image blurring.

Throughout the experimental section, we take the centrosymmetric blurring as an
example and form a specific practice of FMP accordingly. Hence, the set of centrosymmetric
PSFs is S = {h : h(x, y) = h(−x,−y)}. With the relevant papers on GTBI [7], we define the
orthogonal projector as P f (x, y) = ( f (x, y) + f (−x,−y))/2, yielding a special form of (2)
as I f = tan(∠F ( f )).

Note that the I f (ξx, ξy) is of a fractional form (2), with certain numerical instability
when the denominator is small. In our implementation, we evade this issue by restricting
the frequency range with the natural image prior: {(ξx, ξy) : ||(ξx, ξy)||∞ ≤ 10}.

5.2. Feature Histogram

For this part, we evaluate the robustness by visualizing the FMP representation with
different blurring conditions, which will also demonstrate the non-trivial nature of the
representation.

As shown in Figure 1, the experiment is executed on the well-known degraded image
dataset CIDIQ [26] involving centrosymmetric Gaussian blurring. Here, the CIDIQ includes
23 clean images, each one corresponds to 5 blurred versions at different levels, for a total of
115 images.

 
Figure 1. Samples of blurred images with different levels (from right to left).

As shown in Figures 2 and 3, we present the magnitude of harmonic/polynomial FMP
over clean and blurred images, where the harmonic FMP is of α = 1, n = 5, and m = 4,
and the polynomial FMR is of α = 1, p = 1, q = 1, n = 5, and m = 4. Note that the value is
always almost constant within each individual blurring series (regardless of blurring level)
while significantly different for distinct images. This phenomenon means that our FMP
has ideal blurring robustness as well as sufficient discriminability for distinct images (i.e.,
non-trivial nature of such invariants).
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   Figure 2. The harmonic FMP magnitudes over different images (from right to left) with different
levels of blurring (from front to back).

 

  Figure 3. The polynomial FMP magnitudes over different images (from right to left) with different
levels of blurring (from front to back).

5.3. Pattern Recognition

For this part, we directly verify the robustness to rotation and blurring as well as
the discriminability to distinct images, by employing pattern recognition with different
blurring and orientation conditions.

The testing images are derived from the COREL dataset [27], with four orientations
and also with blurring of:

• Gaussian: G1 (σx = 5, σy = 10, θ = 0, and L = 10× 10), G2 (same as G1 except θ = 45◦),
and G3 (same as G1 except σx = 10 and L = 20× 20);

• Disc: D1 (L = 7× 7) and D2 (L = 9× 9);
• Motion: M1 (L = 10 and θ = 20◦) and M2 (L = 20 and θ = 45◦).

The comparison methods involved in this experiment include:

• Classical moment representations: ART [28], GFD [29], and ZM [30];
• Fractional moments (FM) representations, as the image-domain counterpart of FMP,

i.e., FJFM (p, q, α) [22] and GPCET (α) [23], with their popular special cases OFMM [31],
JFM [32], EFM [33], and PCET [34];

• FMP representations, i.e., all FMP counterparts for the above FM;
• Deep learning representations: GoogLeNet [35] and ResNet-50 [36] with rotation/blur

data augmentation and deblurring [37] as data preprocessing.

In Table 1, we list the correct classification percentages for non-learning representations,
i.e., classical moment representations, FM representations, and FMP representations.
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• Classical moment representations and FM representations do not have guaranteed
blur invariance. Their scores are unstable under various blurring types or intensities.
Here, the worst case occurs for high-intensity Gaussian blurring G3.

• Our FMP achieves robustness gains with respect to its FM counterpart, while being
sufficient in discriminability. All the FMP representations achieve ∼100% correct
classification on rotated and centrosymmetric blurred images just as expected in
Section 4.

Table 1. Correct Classification Percentages (%) for Classical Moment Representations, FM Represen-
tations, and FMP Representations.

Method
Blurring Type

G1 G2 G3 D1 D2 M1 M2

ART 83 83 47 99 93 100 99
GFD 76 75 43 99 88 100 98
ZM 99 99 81 100 100 100 100

OFMM/FJFM(2,2,1) 73 70 33 99 88 100 98
JFM(3,3)/FJFM(3,3,1) 76 76 45 99 86 100 98

FJFM(3,3,2) 78 78 42 99 92 100 99
EFM/GPCET(1) 66 66 38 93 78 100 90
PCET/GPCET(2) 62 62 31 95 70 99 93

GPCET(1.5) 65 62 33 91 75 99 91

OFMMP/FJFMP(2,2,1) 100 100 100 100 100 100 100
JFMP(3,3)/FJFMP(3,3,1) 100 100 100 100 100 100 100

FJFMP(3,3,2) 100 100 100 100 100 100 100
EFMP/GPCETP(1) 100 100 100 100 100 100 100
PCETP/GPCETP(2) 100 100 100 100 100 100 100

GPCETP(1.5) 100 100 100 100 100 100 100

In Table 2, we list the correct classification percentages for learning representations
with rotation and blur data augmentation or deblurring as data preprocessing.

• With only rotation data augmentation, learning representations cannot yet achieve
satisfactory classification accuracy, where the additional cost is an 8-fold increase in
training size.

• Concerning both rotation and blur data augmentation, learning representations per-
form significantly better but still do not achieve >90% accuracy for any blurring types,
where the additional cost is a 16-fold increase in training size.

• With rotation data augmentation and deblurring, learning representations perform
even worse than without the blur data augmentation, potentially due to the recovery
error introduced by the deblurring algorithm [37], where the additional cost is the
preprocessing for each testing image. Note that such a performance gap was also
observed in [4].

• Further, our FMP achieves significantly better scores with respect to the state-of-the-art
learning representations, meaning FMP is competitive for small-scale robust vision
problems even in the deep-learning era.
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Table 2. Correct Classification Percentages (%) for Learning Methods (With Augmentation and
Deblurring) Compared to the Average Results of FM and FMP Representations.

Method Training Size
Blurring Type

G1 G2 G3 D1 D2 M1 M2

GoogLeNet (rotation data augmentation) ×8 26 22 5 43 27 74 28
GoogLeNet (rotation and blur data augmentation) ×16 72 69 60 81 76 85 60

GoogLeNet (rotation data augmentation and deblurring) ×8 23 21 5 34 26 45 17

ResNet-50 (rotation data augmentation) ×8 20 20 6 44 23 77 46
ResNet-50 (rotation and blur data augmentation) ×16 78 75 68 88 81 87 67

ResNet-50 (rotation data augmentation and deblurring) ×8 12 11 4 25 18 31 24

FM (average results) ×1 70 69 37 96 82 100 95

FMP (average results) ×1 100 100 100 100 100 100 100

6. Conclusions

In this paper, we have provided a simple but effective way to define robust image
representation for blur and orientation variants. We refer to this approach as “Fractional
Moments under Projection operators (FMP)”, which is characterized by orthogonality,
generality, flexibility, as well as the combined invariance of blurring and rotation.

The definitions and properties of FMP have been well formalized through the general
theorem of blur invariants and the general theorem of in-/equi-/co-variance. Moreover,
simulation experiments validate the beneficial properties of FMP, revealing the potential
for small-scale robust vision problems.

Since the GTBI definition involves a fractional form, the direct discrete implementation
exhibits a certain numerical instability when the denominator is small. Therefore, our future
work will address numerical issues related to the discrete implementation of FMP.
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