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Abstract: The quantile regression model is widely used in variable relationship research of moderate
sized data, due to its strong robustness and more comprehensive description of response variable
characteristics. With the increase of data size and data dimensions, there have been some studies
on high-dimensional quantile regression under the classical statistical framework, including a high-
efficiency frequency perspective; however, this comes at the cost of randomness quantification, or the
use of a lower efficiency Bayesian method based on MCMC sampling. To overcome these problems,
we propose high-dimensional quantile regression with a spike-and-slab lasso penalty based on
variational Bayesian (VBSSLQR), which can, not only improve the computational efficiency, but also
measure the randomness via variational distributions. Simulation studies and real data analysis
illustrated that the proposed VBSSLQR method was superior or equivalent to other quantile and
nonquantile regression methods (including Bayesian and non-Bayesian methods), and its efficiency
was higher than any other method.

Keywords: quantile regression; spike-and-slab prior; variational Bayesian; high-dimensional data
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1. Introduction

Quantile regression, as introduced by Koenker and Bassett (1978) [1], is an important
statistical inference about the relationship between quantiles of the response distribution
and available covariates, and can offer a practically significant alternative to the traditional
mean regression, because it provides a more comprehensive description of the response
distribution than the mean. Moreover, quantile regression can capture the heterogeneous
impact of regressors on different parts of the distribution [2], has excellent computational
properties [3], exhibits robustness to outliers, and has a wide applicability [4]. For these
reasons, quantile regression has attracted extensive attention in the literature. For example,
see [5] for a Bayesian quantile regression with asymmetric Laplace distribution used to
specify the likelihood, [6] for a Bayesian nonparametric approach to inference for quantile
regression, ref. [7] for a mechanism of Bayesian inference of quantile regression models,
and [8] for model selection in quantile regression, among others.

Although there is a growing literature on quantile regression, to the best of our knowl-
edge, little of the existing quantile regression models have focused on high-dimensional
data with variable numbers and larger sample sizes. In practice, a large number of variables
may be collected and some of these will be insignificant and should be excluded from
the final model. In the past two decades, there has been active methodological research
on penalized methods for significant variable selection in linear parametric models. For
example, see [9] for ridge regression, ref. [10] for a least absolute shrinkage and selection
operator (Lasso), ref. [11] for smoothly clipped absolute deviation penalty (SCAD), ref. [12]
for elastic net penalty, and ref. [13] for adaptive lasso methods. These methods have
been extended to quantile regression; for example, see [14] for a L1-regularization method
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for quantile regression, and ref. [15] for variable selection of quantile regression using
SCAD and adaptive-Lasso penalties. Nevertheless, the aforementioned regularization
methods discussed are both computationally complex and unstable. Additionally, they
fail to account for prior information about parameters, which can lead to an unsatisfactory
parametric estimation accuracy. In recent decades, Bayesian approaches to variable selec-
tion and parameter estimation have garnered significant attention. This is because they can
substantially enhance the accuracy and efficiency of parametric estimation, by imposing
various priors on model parameters, consistently selecting crucial variables, and providing
more information for variable selection than penalization methods for highly nonconvex
optimization problems. For example, see [16] for a Bayesian Lasso where the L1 penalty is
involved in Laplace prior, [17] for a Bayesian form of adaptive Lasso, ref. [18] for Bayesian
Lasso quantile regression (BLQR), and [19] for Bayesian adaptive Lsso quantile regression
(BALQR). The literature mentioned above implemented the standard Gibbs sampler for
posterior computation, which is not easily scalable for high-dimensional data, where the
number of variables is large compared with the sample size [20].

To address this issue, the Bayesian variable selection method with a spike-and-slab
prior [20] has been favored by researchers, and this can be applied to high-dimensional
data at the cost of a heavy computation burden. As a computationally efficient alternative
to Markov chain Monte Carlo (MCMC) simulation, variational Bayes (VB) methods are
gaining traction in machine learning and statistics for approximating posterior distributions
in Bayesian inference. High-efficiency variational Bayesian spike-and-slab lasso(VBSSL) has
been explored for certain high-dimensional models. Ray and Szabo (2022) [21] used a VBSSL
method in a high-dimensional linear model, with regression coefficient’s prior specified
as a mixture of Laplace distribution and Dirac mass. Yi and Tang (2022) [22] used VBSSL
technology in high-dimensional linear mixed models, with a interesting prior parameter
as a mixture of two Laplace distributions. However, to the best of our knowledge, there
has been little work done on a VBSSL method for quantile regression. Xi et al. (2016) [23]
considered Bayesian variable selection for nonparametric quantile regression with a small
variable dimension, in which a spike-and-slab prior was chosen as a mixture of the point
mass at zero and normal distribution. In this paper, to reduce the computational burden
and quantify the parametric uncertainty, we propose quantile regression with spike-and-
slab lasso penalty based on variational Bayesian (VBSSLQR), in which the prior is a mixture
of two Laplace distributions, with a smaller or larger variance, respectively.

The main contributions of this paper are as follows: First, our proposed VBSSLQR
method can perform variable selection for high-dimensional quantile regression at a rela-
tively low computational cost, and without the need for nonconvex optimization, while also
avoiding the curse of dimensionality problem. Second, in contrast to mean regressions, our
proposed quantile approach offers a more systematic strategy for analyzing how covariates
impact the various quantiles of the response distribution. Third, in ultra-high-dimensional
regression, the mean regression errors are frequently presumed to be subGaussian, which
is not required in our setting.

The rest of the paper is organized as follows: In Section 2, for high-dimensional data,
we propose an efficient quantile regression with a spike-and-slab lasso penalty based
on variational Bayes (VBSSLQR). In Section 3, we randomly generate high-dimensional
data with n = 200 and p = 500 (excluding intercept items), and perform 500 simulation
experiments, to explore the performance of our algorithm and compare it with other
quantile regression methods (Bayesian and non-Bayesian) and nonquantile regression
methods. The results show that our method is superior to other approaches in the case of
high-dimensional data. We applied VBSSLQR to a real dataset that contained information
about crime in various cities in the United States, and compared it with other quantile
regression methods. The results showed that our method also had a good performance
and excellent efficiency with real data, and the relevant results are shown in Section 4.
Some concluding remarks are given in Section 5. Technical details are presented in the
Appendices A–D.
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2. Models and Methods
2.1. Quantile Regression

Consider a dataset of n independent subjects. For the ith subject, let yi be the response,
while xi = (1, xi1, ..., xir)

> is an (r + 1)× 1 predictor vector, a simple linear regression model
is defined as follows:

yi = x>i β + εi, i = 1, 2, · · · , n, (1)

where β = (β0, β1, · · · , βr)> is the regression coefficient vector with β0 corresponding to the
intercept terms, and εi represents the error term with unknown distribution. It is usual to
assume that the τth quantile of the random error term is 0; that is, Qτ(εi) = 0 for 0 < τ < 1.
According to this assumption, the form of τth quantile regression of model (1) is specified
as follows:

Qyi (τ|xi) = x>i β, (2)

where Qyi (τ|xi) is the inverse cumulative distribution function of yi, given xi evaluated at
τ. The estimate of the regression coefficient vector β in Equation (2) is

β̂ = argmin
β∈Rr+1

[
∑

i:yi≥xi β

τ|yi − x>i β|+ ∑
i:yi<xi β

(1− τ)|yi − x>i β|
]

= argmin
β∈Rr+1

n

∑
i=1

ρτ(yi − x>i β),

(3)

where the loss function ρτ(µ) = µ× (τ − I(µ < 0)) with the indicator function I(·).
In light of [5,24], minimizing Equation (3) is equivalent to maximizing the likeli-

hood of n independent individuals with the ith one distributed as an asymmetric Laplace
distribution (ALD) specified as

p(yi|xi, β, σ, τ) =
τ(1− τ)

σ
exp

{
−ρτ

(
yi − µi

σ

)}
, (4)

where the local parameter µi = x>i β, the scale parameter σ > 0, and the skewness parameter
τ is between 0 and 1; obviously, ALD is a Laplace distribution when τ = 0.5 and µi = 0.
However, it is computationally infeasible to carry out statistical inference based directly on
Equation (4) involving the nondifferentiable point µi. Following [25], Equation (4) can be
rewritten in the following hierarchical fashion:

yi = x>i β + k1zi +
√

k2σziξi,

zi|σ
i.i.d.∼ Exp

(
1
σ

)
,

ξi
i.i.d.∼ N(0, 1),

zi is independent of ξi,

(5)

where k1 = 1−2τ
τ(1−τ)

, k2 = 2
τ(1−τ)

and Exp
(

1
σ

)
denotes the exponential distribution with

mean σ, whose specific density function is p(zi|σ) = 1
σ exp

(
− 1

σ zi

)
I(zi > 0). Equation (5)

illustrates that an asymmetric Laplace distribution can also be represented as a mixture
of exponential and standard normal distributions, which allows us to express a quantile
regression model as a normal regression model, in which the response has the following
conditional distribution:

yi|xi, β, zi, σ
ind∼ N

(
x>i β + k1zi, k2σzi

)
.

For the above-defined quantile regression model with high-dimensional covariate
vector (r is large enough), it is of interest to estimate the parameter vector β and to identify
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the critical covariates. To this end, we considered Bayesian quantile regression based on
spike-and-slab lasso, as follows:

2.2. Bayesian Quantile Regression Based on a Spike-and-Slab Lasso

As early as 2016, Xi et al. [23] applied a spike-and-slab prior to Bayesian quantile
regression, but their proposed prior was a mixture of zero particle and normal distribution
with large variance, and the estimate of posterior density was obtained using a Gibbs
sampler. To offer novel theoretical insights into a class of continuous spike-and-slab priors,
Rockova (2018) [26] introduced a novel family of spike-and-slab priors, which are a mixture
of two density functions with spike or slab probability. In this paper, we adopt a spike-and-
slab lasso prior with a mixture of two Laplace distributions with large or small variance,
respectively [26], which facilitates the variational Bayesian technique for approximating
the posterior density of parameters and for improving the efficiency of the algorithm. In
light of ref. [26], given the indicator γj = 0 or 1, the prior of β in the Bayesian quantile
regression model (5) can be written as

π(β|γ) =
r

∏
j=0

π(β j|γj) =
r

∏
j=0

[
γjΨ0(β j|λ0) + (1− γj)Ψ1(β j|λ1)

]
, (6)

where the Laplace density Ψ0(β j|λ0) =
λ0
2 exp(−λ0|β j|) and Ψ1(β j|λ1) =

λ1
2 exp(−λ1|β j|)

with precision parameters λ0 and λ1 satisfying that λ0 � λ1, the indicator variable set
γ = {γj|j = 0, 1, · · · , r}, the jth variable is active when γj = 0, and inactive otherwise.
Similarly to [27], the Laplace distribution for the regression coefficient β j can be represented
as a mixture of a normal distribution and an exponential distribution, specifically the
distribution of β j can be expressed as a hierarchical structure, as follows:

β j | h2
0j, h2

1j, γj
ind.∼ γjN

(
0, h2

0j

)
+
(
1− γj

)
N
(

0, h2
1j

)
,

h2
0j | λ2

0
i.i.d.∼ Exp

(
λ2

0
2

)
,

h2
1j | λ2

1
i.i.d.∼ Exp

(
λ2

1
2

)
,

γj
i.i.d.∼ B(πγ),

(7)

where B(πγ) denotes the Bernoulli distribution, with πγ being the probability that indicator
variable γj equals one for j = 0, 1, · · · , r, and specifies the prior of πγ as a Beta distribution
Be
(
aπγ , bπγ

)
, where hyperparameters aπγ and bπγ , λ2

0, and λ2
1 are regularization parameters

to identify important variables, for which we consider the following conjugate priors:

λ2
0 ∼ Ga

(
νλ0 , 1

)
, λ2

1 ∼ Ga
(
νλ1 , 1

)
,

where Ga(a, b) denotes the gamma distribution with shape parameter a and scale parameter
b. As mentioned above, λ0 and λ1 should satisfy that λ0 � λ1, to this end, we select
hyperparmeters νλ0 and νλ1 to satisfy that νλ0 � νλ1 . The prior of scale parameter σ in (5)
is an inverse gamma distribution IG(aσ, bσ) of the hyperparameters aσ = 1 and bσ = 0.01
in the paper leading to almost non-informative prior.

Under a Bayesian statistical paradise, based on the above priors and likelihood of quan-
tile regression, it is required to induce the following posterior distribution π(θ|D) ∝ p(θ, D),
where θ = {β, z, σ, γ, h2

0, h2
1, λ2

0, λ2
1, πγ}, the latent variable set z = {zi|i = 1, · · · , n},

h2
0 = {h2

0j|j = 0, 1, · · · , r}, h2
1 = {h2

1j|j = 0, 1, · · · , r}, observing set D = {y, x} with the
response set y = {yi|i = 1, · · · , n} and covariate set x = {xi|i = 1, · · · , n}. Based on the hi-
erarchical structure (5) of the quantile regression likelihood p(yi|xi, β) and the hierarchical
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structure (7) of the spike-and-slab prior to regression coefficient vector β, we derive the
joint density

p(θ, D) =
n

∏
i=1

N(yi | x>i β + k1zi, k2σzi)Exp(zi | σ−1)Ga(λ2
0|νλ0 , 1)Ga(λ2

1|νλ1 , 1)

×
r

∏
j=0

[
N(β j | 0, h2

0j)
]γj
[

N(β j | 0, h2
1j)
](1−γj)

Exp(h2
0j |

λ2
0

2
)Exp(h2

1j |
λ2

1
2
)

×
r

∏
j=0

B(γj | 1, πγ)Be(πγ|aπγ , bπγ )IG(σ|aσ, bσ)

∝
n

∏
i=1

(k2σzi)
− 1

2 exp

(
−
(yi − x>i β− k1zi)

2

2k2σzi

)
1
σ

exp
(
− zi

σ

)
(λ2

0)
vλ0−1exp(−λ2

0)

× (λ2
1)

(vλ1−1)exp(−λ2
1)

r

∏
j=0

 1√
h2

0j

exp

(
−

β2
j

2h2
0j

)γj
 1√

h2
1j

exp

(
−

β2
j

2h2
1j

)(1−γj)

×
λ2

0
2

exp

(
−

λ2
0

2
h2

0j

)
λ2

1
2

exp

(
−

λ2
1

2
h2

1j

)
r

∏
j=0

π
γj
γ (1− πγ)

1−γj π
aπγ−1
γ (1− πγ)

bπγ−1

× baσ
σ

Γ(aσ)
σ−aσ−1exp

(
− bσ

σ

)
.

(8)

Although sampling from the aforementioned posterior is simple, it becomes increas-
ingly time-consuming for higher dimension quantile models. To tackle this issue, we
developed a faster and more efficient alternative method based on variational Bayesian.

2.3. Quantile Regression with a Spike-and-Slab Lasso Penalty Based on Variational BAYESIAN

At present, the most commonly variational Bayesian approximation posterior distri-
bution methods use mean field approximation theory [28], which has the highest efficiency
among variational methods, especially for those parameters or parameter block with conju-
gate priors. Bayesian quantile regression needs to take into account that the variance of
each observation value is different, and each yi corresponds to a potential variable zi, which
will result in the algorithm efficiency of quantile regression being lower than that of general
mean regression. Therefore, in this paper, we use the variational Bayesian algorithm of
the mean field approximation, which is the most efficient algorithm, to derive the quantile
regression model with the spike-and-slab lasso penalty.

Based on variational theory, we choose a densities for random variables θ from varia-
tional family F , which having the same support Θ as the posterior density π(θ |D). We
approximate the posterior density π(θ |D) by any variational density q(θ) ∈ F . The varia-
tional Bayesian method is to seek the optimal approximation to π(θ |D) by minimizing the
Kullback-Leibler divergence between q(θ) and π(θ |D), which is an optimization problem
that can be expressed as:

q∗(θ) = argmin
q(θ)∈F

KL[q(θ) ‖ π(θ |D)],

where KL[q(θ) ‖ π(θ |D)] =
∫

Θ
q(θ)log q(θ)

π(θ |D)
dθ, which is not less than zero and equal to

zero if, and only if, q(θ) ≡ π(θ |D). The posterior density π(θ |D) = p(θ,D)
p(D)

with the joint
distribution p(θ, D) of parameter θ and data D and the marginal distribution p(D) data D.
Since p(D) =

∫
Θ

p(θ, D)dθ, which does not have an analytic expression for our considered
model, it is rather difficult to implement the optimization problem presented above. It is
easy to induce that

log p(D) = KL[q(θ) ‖ π(θ |D)] + L{q(θ)} ≥ L{q(θ)},
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in which the evidence lower bound (ELOB) L{q(θ)} = Eq(θ)[log p(θ, D)]− Eq(θ)[log q(θ)]
with Eq(θ)[·] representing the expectation taken with respect to the variational density
q(θ). Thus, minimizing KL[q(θ) ‖ π(θ |D)] is equivalent to maximizing L{q(θ)} because
logp(D) does not depend on θ. That is,

q∗(θ) = argmin
q(θ)∈F

KL[q(θ) ‖ π(θ |D)] = argmax
q(θ)∈F

L{q(θ)},

which indicates that seeking the optimal approximation problem of π(θ |D) becomes
maximizing L{q(θ)} under the variational family F . The complexity of the approximation
problem heavily is related to the variational family F . Therefore, choosing a comparatively
simple variational family F to optimize the objective function L{q(θ)} with respect to q(θ)
is fascinating.

Following the commonly used approach to choosing a tractable variational family F in
the variational studies, we consider the frequently-used mean-field theory, which assumes
that blocks of θ are mutually independent and each is measured by the parameters of the
variational density. Obviously, the variational density q(θ) is assumed to be factorized
across the blocks of θ:

q(θ) =
r

∏
j=0

q1(β j, γj)q2(h2
0j)q3(h2

1j)
n

∏
i=1

q4(zi)q5(λ
2
0)q6(λ

2
1)q7(πγ)q8(σ) ≡

8

∏
s

qs(θs),

in which form of each variational densities qs(θs)’s is unknown, but the above assumed
factorization across components is predetermined. Moreover, the best solutions for qs(θs)’s
are to be achieved by maximizing L{q(θ1, · · · , θ8)} with respect to variational densities
q1(θ1), · · · , q8(θ8) by the coordinate ascent method, where θ = {θ1, · · · , θ8} where θs
can be either a scalar or a vector. This means that when the correlation between several
unknown parameters or potential variables cannot be ignored, they should be put in the
same block and merged into θs. Following the idea of the coordinate ascent method given
in ref. [29], when fixing other variational factors qk(θk) for k 6= s, i.e., the optimal density
q∗s (θs), which maximizes L{q(θ)} with respect to qs(θs), is shown to take the form

q∗s (θs) ∝ exp{E−θs [log p(θ, D)]}, (9)

where log p(θ, D) is the logarithm of the joint density function and E−s[·] is the expectation
taken with respect to the density ∏k 6=s qk(θk) for s = 1, · · · , 8.

According to Equations (8) and (9), we can derive the variational posterior for each
parameter as follows (see Appendix A for the details):

β j
i.i.d.∼ µγj N

(
µ0j, σ2

0j

)
+ (1− µγj)N

(
µ1j, σ2

1j

)
, for j = 1, · · · , r,

h2
0j

i.i.d.∼ µγj GIG
(

1
2

, Eλ2
0
(λ2

0), σ2
0j + µ2

0j

)
+ (1− µγj)Exp

(
1
2

Eλ2
0
(λ2

0)

)
,

h2
1j

i.i.d.∼ (1− µγj)GIG
(

1
2

, Eλ2
1
(λ2

1), σ2
1j + µ2

1j

)
+ µγj Exp

(
1
2

Eλ2
1
(λ2

1)

)
,

λ2
0∼Ga

(
r + 1 + νλ0 , 1 +

1
2

r

∑
j=1

Eh2
0j
(h2

0j)

)
,

λ2
1∼Ga

(
r + 1 + νλ1 , 1 +

1
2

r

∑
j=1

Eh2
1j
(h2

1j)

)
,

γj
i.i.d.∼ B

(
1, (1 + eζi )−1

)
, for j = 0, 1, · · · , r,

πγ∼Be

(
a +

r

∑
j=0

µγj , r + 1 + b−
r

∑
j=0

µγj

)
,
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zi
i.i.d.∼ GIG

(
1
2

, azi , bzi

)
, for i = 1, 2, · · · , n,

σ∼IG
(

3
2

n + aσ, cσ

)
,

where GIG(·, ·, ·) denotes generalized inverse Gaussian distribution,

µ0j = σ2
oj

Eσ(σ−1)

k2

n

∑
i=1

[
Ezi

(
z−1

i

)(
yi − x>i,(−j)µβ(−j)

)
− k1

]
xij,

σ2
0j =

[
Eh2

0j |γj=1

(
h−2

0j

)
+

Eσ(σ−1)

k2

n

∑
i=1

x2
ijEzi

(
z−1

i

)]−1

,

µ1j = σ2
1j

Eσ(σ−1)

k2

n

∑
i=1

[
Ezi

(
z−1

i

)(
yi − x>i,(−j)µβ(−j)

)
− k1

]
xij,

σ2
1j =

[
Eh2

1j |γj=0(h
−2
1j ) +

Eσ(σ−1)

k2

n

∑
i=1

x2
ijEzi

(
z−1

i

)]−1

,

(10)

and

ζ j = Eπγ(log(1− πγ))− Eπγ(log πγ) +
1
2

Eh2
0j |γj=1(log h2

0j)−
1
2

Eh2
1j |γj=0(log h2

1j)

+
1
2
{log σ2

1j − log σ2
0j}+

1
2
(logσ2

1j − logσ2
0j) +

1
2
(µ2

1j(σ
2
1j)
−1 − µ2

0j(σ
2
0j)
−1),

azi =
Eσ(σ−1)

k2

(
k2

1 + 2k2

)
,

bzi =
Eσ(σ−1)

k2
[(yi − x>i µβ)

2 + x>i Σβxi],

cσ =
1

2k2

n

∑
i=1
{k2

1µzi + Ezi (z
−1
i )[(yi − x>i µβ)

2 + x>i Σβxi]

− 2k1(yi − x>i µβ)}+
n

∑
i=1

µzi + bσ.

In the above equation, µλ2
0
= Eλ2

0
(λ2

0), and µλ2
1
, µβ j , µγj , µzi are similar to µλ2

0
,

µβ = (µβ0 , µβ1 , · · · , µβp)
>with µβ j = µγj µ0j + (1− µγj)µ1j, and µβ(−j)

is a p× 1 vector with

the jth component of vector µβ deleted, Σβ = diag
(

σ2
β0

σ2
β1

, · · · σ2
βp

)
with

σ2
β j
= µγj σ

2
0j + (1− µγj)σ

2
1j + µγj(1− µγj)(µ0j − µ1j)

2.
In the section above, we derived the variational posterior of each parameter. Using the

idea of coordinate axis optimization, we can update each variational distribution iteratively
until it converges.

For this reason, we list the variational Bayesian spike-and-slab lasso quantile regression
(VBSSLQR) algorithm as shown in Algorithm 1:
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Algorithm 1 Variational Bayesian spike-and-slab lasso quantile regression (VBSSLQR).

Input:
Data y, predictors x, prior parameters νλ0 = 104,νλ1 = 1, aσ = 1, bσ = 0.01, a = b = 1,
precision ε = 0.01 and quantile τ;

Output:
Optimized variational parameters Eβ j(β j), Varβ j(β j) for j = 0, 1, · · · , r and the corre-
sponding Bayesian confidence interval.
Initialize: µ

(0)
β ; E(0)

h2
0j |γj=1

( 1
h2

0j
) = 0.01; E(0)

h2
1j |γj=0

( 1
h2

1j
) = 1;µ(0)

γ = 0.5;

E(0)
λ2

0
(λ2

0) = 100; E(0)
λ2

1
(λ2

1) = 1; E(0)
πγ

(log πγ) = 0;E(0)
σ (σ−1) = 1;

E(0)
πγ

(log (1− πγ)) = −1;γ(0) = 0; E(0)
zi (zi) = E(0)

zi (z−1
i );

while |d(t)| > ε do

for j = 0 to r do

Update σ2(t+1)
0j , µ

(t+1)
0j , σ2(t+1)

1j and µ
(t+1)
1j according to Equation (10).

Update E(t+1)
h2

0j |γj=1
(h2

0j), E(t+1)
h2

0j
(h2

0j), E(t+1)
h2

0j |γj=1
(h−2

0j ), E(t+1)
h2

0j |γj=1
(log h2

0j) according to q(h2
0j),

Update E(t+1)
h2

1j |γj=0
(h2

1j), E(t+1)
h2

1j
(h2

1j), E(t+1)
h2

1j |γj=0
(h−2

1j ), E(t+1)
h2

1j |γj=0
(log h2

1j) according to q(h2
1j),

Update E(t+1)
γj (γj) according to the variational posterior q(γj),

Update E(t+1)
β j

(β j) and Var(t+1)
β j

(β j),
end for
Update E(t+1)

λ2
0

(λ2
0) according to the variational posterior q(λ2

0),

Update E(t+1)
λ2

01
(λ2

1) according to the variational posterior q(λ2
1),

Update E(t+1)
πγ

(πγ), E(t+1)
πγ

(log πγ) and E(t+1)
πγ

(log (1− πγ)) according to q(πγ),
for i = 1 to n do

Update E(t+1)
zi (zi) and E(t+1)

zi (z−1
i ) according to the variational posterior q(zi),

end for
Update E(t+1)

σ (σ) and E(t+1)
σ (σ−1) according to the variational posterior q(σ),

|d(t+1)| = max
{
|θ(t+1)

q1 − θ
(t)
q1 |, ..., |θ(t+1)

qm − θ
(t)
qm |
}

,
end while

In Algorithm 1 above, Ψ(·) is the digamma function and the expectation E(t+1)
h2

0j |γj=1
(log h2

0j)

of log h2
0j with respect to generalized inverse Gaussian distribution. Thus, we assume that

x ∼ GIG(p, a, b), then:

Ex(log x) =
dKp(

√
ab)

dp

Kp(
√

ab)
− 1

2
ln(

a
b
), (11)

where Kp(·) represents the Bessel function of the second kind. Note that there is no
analytic solution or function to the differential of the modified Bessel function. Therefore,
we approximate Ex(log x) using the second-order Taylor expansion of log x . This paper
lists the expectations of some parameter functions about variational posteriors involved in
Algorithm 1; see Appendix B for details. Based on our proposed VBSSLQR algorithm, in the
next section, we randomly generate high-dimensional data, conduct simulation research,
and compare the performance with other methods. Notably, the asymptotic variance
of the quantile regression is reciprocal proportional to the density of the errors at the
quantile point. In cases where n is small and we estimate extreme quantiles, the correlating
asymptotic variance will be large, resulting in less precise estimates [23]. Therefore, the
regression coefficient is difficult to estimate at an extreme quantile and this is feasible when
the sample sizes needs to be increased appropriately.
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3. Simulation Studies

In this section, we used simulated high-dimensional data with a sample size n = 200
and variable number r = 500, in order to study the performance of VBSSLQR and com-
pare it with existing methods, including linear regression with a lasso penalty (Lasso),
linear regression with an adaptive lasso penalty (ALasso), quantile regression with a lasso
penalty (QRL), quantile regression with an adaptive lasso penalty (QRAL), Bayesian regu-
larized quantile regression with a lasso penalty (BLQR), and Bayesian regularized quantile
regression with an adaptive lasso penalty (BALQR). The data in the simulation studies
were generated using Equation (1), in which the covariate vector xi was randomly gener-
ated from the multivariate normal distribution N(0, Σ) with the (k, l)th of Σ being 0.5|k−l|.
Among these covariates, we only considered the ten important explanatory variables that
have significant impact on the dependent variable. We set the 1, 51, 101, 151, 201, 251, 301,
351, 401, and 451 predictors to be active, and their regression coefficients are −3, −2.5, −2,
−1.5, −1, 1, 1.5, 2, 2.5, 3, and the rest are zero. In addition, we discuss the performance of
various approaches in the case of two types of random error; namely, independent and
identically distributed (i.i.d.) random errors and heterogeneous random errors.

3.1. Independent and Identically Distributed Random Errors Random

In this subsection, with reference to [19,23], we set the random errors εi’s in Equation (1)
to be independently and identically distributed and consider the following five different
distributions with τ quantile being zero:

• The error εi
i.i.d.∼ N(−µ, 1) with µ being the τ quantile of N(0, 1), for i = 1, · · · , n;

• The error εi
i.i.d.∼ Laplace(−µ, 1) with µ being the τ quantile of Laplace(0, 1), where

Laplace(a, b) denotes the Laplace distribution with location parameter a and scale
parameter b;

• The error εi
i.i.d.∼ 0.1N(−µ1, 9) + 0.9N(−µ2, 1) with µ1 and µ2 respectively being the τ

quantile of N(0, 9) and N(0, 1);

• The error εi
i.i.d.∼ 0.1Laplace (−µ1, 9) + 0.9Laplace(−µ2, 1) with µ1 and µ2 respectively

being the τ quantile of Laplace(0, 9) and Laplace(0, 1);

• The error εi
i.i.d.∼ Cauchy(−µ, 0.2) with µ being the τ quantile of Cauchy(0, 0.2), where

Cauchy(a, b) denotes the Cauchy distribution with location parameter a and scale
parameter b;

For all of the above error distributions with any τ ∈ (0.3, 0.5, 0.7), we ran 500 replica-
tions for each method, and evaluated the performance using two criteria. The first criterion
was the median of mean absolute deviations (MMAD), which quantifies the general distance
between the estimated conditional quantile and the true conditional quantile. Specifically,
the mean absolute deviation (MAD) in any replication is defined as 1

n ∑n
i=1 |xiβ− xi β̂τ)|,

where β̂τ is the estimate of regression coefficient β given τ. The second criterion of the
mean of true positives (TP) and false positives (FP) was selected for each method.

Table 1 shows the median and standard deviation (SD) of MADs estimated using each
method for simulations with homogeneous errors. It is clear that our method was either
optimal (bold) in all cases, especially in quantile τ = 0.3, 0.7, or that our approach was
significantly superior to the other six methods. When the error distribution was normal, a
Laplace and normal mixture, the MMAD of the BALQR method was suboptimal. When
the error distribution was Cauchy, the MMAD of the QRL approach was suboptimal, but
Table 2 shows that this sacrificed the complexity of the model. When the error distribution
was a Laplace mixture, the MMAD of the lasso approach was suboptimal; however, it
selected an overfitting quantile regression model with about 30 FP variables, as can be
seen from Table 2. It is particularly important to note that, in the case of high dimensional
data, the MMAD for the quantile regression model with the lasso penalty or adaptive lasso
penalty is not less than the MMAD for general linear models with a lasso penalty. Therefore,
it is inappropriate to use a lasso penalty or adaptive lasso in this case.
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Table 1. The median and standard deviation of 500 MADs estimated using various methods in
simulations with i.i.d. errors.

Quantile Error Distribution
Method

Lasso ALasso QRL QRAL BLQR BALQR VBSSLQR

τ = 0.3

normal 0.60 (0.06) 0.89 (0.14) 0.88 (0.07) 3.90 (0.20) 1.28 (0.17) 0.55 (0.09) 0.21 (0.05)
Laplace 0.72 (0.08) 0.97 (0.15) 1.06 (0.15) 3.95 (0.20) 1.44 (0.21) 0.68 (0.20) 0.24 (0.06)

normal mixture 0.76 (0.09) 1.04 (0.14) 1.02 (0.15) 3.95 (0.21) 1.42 (0.19) 0.71 (0.16) 0.23 (0.05)
Laplace mixture 0.89 (0.13) 1.13 (0.18) 1.24 (0.33) 4.06 (0.23) 1.69 (0.32) 1.07 (0.31) 0.26 (0.07)

Cauchy 1.23 (4.59) 1.46 (12.07) 0.59 (0.62) 4.24 (12.40) 1.92 (1.07) 1.98 (4.95) 0.11 (0.60)

τ = 0.5

normal 0.40 (0.05) 0.81 (0.16) 0.80 (0.07) 3.90 (0.21) 1.21 (0.19) 0.29 (0.07) 0.20 (0.05)
Laplace 0.56 (0.08) 0.90 (0.17) 1.01 (0.16) 3.96 (0.21) 1.35 (0.22) 0.46 (0.23) 0.20 (0.05)

normal mixture 0.53 (0.07) 0.89 (0.17) 0.96 (0.13) 3.95 (0.20) 1.36 (0.25) 0.41 (0.21) 0.21 (0.05)
Laplace mixture 0.74 (0.13) 1.02 (0.20) 1.20 (0.22) 4.01 (0.23) 1.72 (0.32) 0.83 (0.32) 0.21 (0.06)

Cauchy 1.31 (28.87) 1.44 (10.15) 0.48 (0.16) 4.40 (32.20) 2.026 (1.16) 4.28 (4.47) 0.07 (0.71)

τ = 0.7

normal 0.61 (0.06) 0.93 (0.16) 0.88 (0.07) 3.88 (0.21) 1.22 (0.19) 0.56 (0.11) 0.20 (0.05)
Laplace 0.71 (0.08) 1.02 (0.16) 1.06 (0.16) 3.97 (0.20) 1.36 (0.27) 0.67 (0.20) 0.25 (0.07)

normal mixture 0.75 (0.09) 1.06 (0.17) 1.01 (0.14) 3.94 (0.21) 1.32 (0.23) 0.75 (0.19) 0.22 (0.05)
Laplace mixture 0.89 (0.13) 1.20 (0.21) 1.24 (0.32) 4.01 (0.22) 1.65 (0.33) 0.99 (0.36) 0.26 (0.09)

Cauchy 1.22 (8.78) 1.60 (8.43) 0.60 (0.60) 4.27 (13.65) 2.28 (1.25) 3.02 (2.91) 0.12 (1.14)

The bold represents the optimal result in each scenario.

In order to show the results of variable selection more intuitively, we introduced TP
(true positives) and FP (false positives), to calculate the mean of TP and FP of 500 repeated
simulations, respectively. Detailed results are shown in Table 2 below:

Table 2. Mean TP/FP of various methods for simulation with i.i.d. errors.

Quantile Error Distribution
Method

Lasso ALasso QRL QRAL BLQR BALQR VBSSLQR
TP/FP TP/FP TP/FP TP/FP TP/FP TP/FP TP/FP

τ = 0.3

normal 10.00/38.24 9.80/0.20 10.00/175.01 5.00/95.33 8.48/0.00 10.00/0.02 10.00/0.02
Laplace 10.00/40.43 9.75/0.34 9.99/169.28 5.00/94.88 8.06/0.00 9.86/0.13 10.00/0.01

normal mixture 10.00/38.84 9.73/0.31 9.99/163.96 5.00/95.39 8.19/0.00 9.90/0.10 10.00/0.00
Laplace mixture 10.00/37.99 9.62/0.71 9.87/146.31 5.00/95.25 7.43/0.00 9.50/0.70 10.00/0.01

Cauchy 8.21/29.05 7.95/7.09 9.87/97.34 4.66/94.49 6.11/0.00 7.35/13.24 9.83/0.00

τ = 0.5

normal 10.00/39.00 9.75/0.29 10.00/156.04 5.00/94.73 8.37/0.00 10.00/0.01 10.00/0.01
Laplace 10.00/38.06 9.69/0.47 9.99/107.53 5.00/95.30 7.97/0.00 9.81/0.09 10.00/0.00

normal mixture 10.00/39.03 9.69/0.57 10.00/112.74 5.00/95.33 8.10/0.00 9.86/0.06 10.00/0.00
Laplace mixture 10.00/39.71 9.55/0.83 9.94/71.54 5.00/94.77 7.40/0.00 9.53/0.47 10.00/0.00

Cauchy 8.19/29.31 8.04/7.06 10.00/8.50 4.55/95.67 5.53/0.00 6.03/22.94 9.77/0.00

τ = 0.7

normal 10.00/38.85 9.70/0.41 10.00/174.87 5.00/95.40 8.41/0.00 9.99/0.03 10.00/0.01
Laplace 10.00/37.68 9.64/0.67 9.99/168.15 5.00/95.05 7.91/0.00 9.77/0.13 10.00/0.01

normal mixture 10.00/38.38 9.63/0.63 9.99/165.65 5.00/95.76 8.11/0.00 9.88/0.08 10.00/0.01
Laplace mixture 10.00/39.64 9.41/1.22 9.88/150.33 5.00/95.56 7.32/0.00 9.50/1.03 9.99/0.01

Cauchy 8.35/30.24 7.54/8.17 9.89/97.85 4.65/95.19 5.73/0.00 6.81/17.95 9.36/0.00

The bold represents the optimal result in each scenario.

It is possible to conclude from the results in Table 2 that the lasso method can generally
select all true active variables, but it fits many false active variables; and when the random
error is a Cauchy distribution, it cannot select all true active variables; A lasso approach can
identify true active variables, but there are also some misjudged behaviors, especially when
the random error distribution is a Cauchy distribution; Although the QRL approach can
identify real active variables, it still contains many false active variables, and the model it
identifies has a high complexity; the QRAL method cannot identify all true active variables,
and incorrectly identifies some inactive variables; In the case of high-dimensional data, the
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BLQR approach cannot select all the true active variables, but it also does not incorrectly
select inactive variables. The true active variable selected using the BALQR method is
better than using the BLQR method, but some inactive variables are incorrectly selected,
especially when the random error distribution is the Cauchy distribution. Our VBSSLQR
method not only had the smallest MMAD, but also could select true active variables and
eliminate most false active variables. As a whole, our method was superior to the other six
methods for variable selection, especially in quantile τ = 0.3, 0.7, performing significantly
better than BLQR, BALQR, and QRL.

3.2. Heterogeneous Random Errors

Now we consider the case of heterogeneous random errors, to demonstrate the perfor-
mance of our method. In this subsection, the data were generated from the following model:

yi = x>i β + (1 + ui)εi, (12)

where ui
i.i.d.∼ U(0, 1), in which U(a, b) represents the uniform distribution with support set

(a, b). The design matrix xi was generated in the same way as above, and the regression
coefficient β was set as before. Furthermore, in the simulation study, we combined xi and
ui; that is, ui was also a covariate. Finally, random error εi was also generated from the five
different distributions defined in Section 3.1.

We also studied the performance of the quantile τ ∈ (0.3, 0.5, 0.7) under the different
methods and simulated 500 times, to calculate the MMAD and mean of TP/FP. We list the
experimental results in Tables 3 and 4.

Table 3. The median and standard deviation of 500 MADs were estimated via various methods for
simulations with heterogeneous random errors.

Quantile Error Distribution
Method

Lasso ALasso QRL QRAL BLQR BALQR VBSSLQR

τ = 0.3

normal 0.91 (0.10) 1.13 (0.15) 1.31 (0.14) 3.96 (0.22) 1.57 (0.22) 0.90 (0.20) 0.30 (0.07)
Laplace 1.08 (0.13) 1.24 (0.17) 1.61 (0.39) 4.09 (0.23) 1.93 (0.29) 1.23 (0.35) 0.36 (0.13)

normal mixture 1.14 (0.14) 1.32 (0.17) 1.55 (0.35) 4.06 (0.24) 1.92 (0.31) 1.31 (0.35) 0.33 (0.11)
Laplace mixture 1.36 (0.21) 1.51 (0.23) 2.34 (0.60) 4.27 (0.26) 2.30 (0.42) 2.05 (0.52) 0.39 (0.24)

Cauchy 1.91 (102.51) 1.94 (33.45) 1.17 (0.80) 4.80 (19.32) 2.49 (1.11) 3.90 (3.39) 0.15 (0.98)

τ = 0.5

normal 0.61 (0.08) 0.93 (0.17) 1.21 (0.12) 3.96/0.21 1.39 (0.27) 0.50 (0.22) 0.30 (0.07)
Laplace 0.87 (0.13) 1.12 (0.20) 1.53 (0.25) 4.09 (0.23) 1.84 (0.33) 1.06 (0.35) 0.29 (0.08)

normal mixture 0.81 (0.12) 1.08 (0.19) 1.44 (0.21) 4.05 (0.23) 1.77 (0.31) 1.08 (0.37) 0.31 (0.08)
Laplace mixture 1.12 (0.21) 1.31 (0.25) 1.84 (0.32) 4.28 (0.29) 2.25 (0.41) 1.65 (0.56) 0.32 (0.12)

Cauchy 1.93 (2.23) 1.93 (107.59) 0.74 (0.27) 4.93 (15.90) 2.88 (1.23) 3.72 (4.80) 0.09 (0.88)

τ = 0.7

normal 0.92 (0.09) 1.20 (0.17) 1.32 (0.14) 3.97/0.20 1.38 (0.26) 0.86 (0.21) 0.31 (0.09)
Laplace 1.07 (0.13) 1.31 (0.18) 1.61 (0.37) 4.09 (0.22) 1.95 (0.33) 1.29 (0.31) 0.37 (0.15)

normal mixture 1.14 (0.14) 1.40 (0.19) 1.53 (0.33) 4.08 (0.23) 1.85 (0.36) 1.31 (0.29) 0.34 (0.10)
Laplace mixture 1.38 (0.20) 1.58 (0.23) 2.16 (0.61) 4.32 (0.28) 2.37 (0.52) 1.86 (0.50) 0.40 (0.25)

Cauchy 1.76 (3.76) 2.01 (17.31) 1.24 (0.76) 4.65 (31.22) 4.01 (1.30) 4.31 (18.21) 0.16 (1.04)

The bold represents the optimal result in each scenario.

For heterogeneous random errors, our approach was still the best, similarly to for i.i.d.
random errors. It is noteworthy that the VBSSLQR method was more robust than the other
methods, and our method had the smallest MMAD change compared to the case of i.i.d.
random errors. We can see that the MMAD of our method remained basically unchanged,
while the MMAD of the other six methods differed by more than 0.5 compared to the i.i.d.
random errors in some states.

We also investigated the mean of TP and FP for heterogeneous random errors under
different quantiles τ. The results are listed in Table 4, which shows that the effect of variable
selection of heterogeneous random errors was slightly lower than the effect of variable



Mathematics 2023, 11, 2232 12 of 22

selection of i.i.d. random errors under the same sample size, but our method still provided
the best selection results.

Table 4. Mean TP/FP of the various methods for simulations with heterogeneous random errors.

Quantile Error Distribution
Method

Lasso ALasso QRL QRAL BLQR BALQR VBSSLQR
TP/FP TP/FP TP/FP TP/FP TP/FP TP/FP TP/FP

τ = 0.3

normal 10.00/40.76 9.72/0.35 9.98/170.29 5.00/95.23 7.97/0.00 9.75/0.13 10.00/0.03
Laplace 10.00/38.80 9.54/0.83 9.73/140.09 4.99/94.59 7.23/0.00 9.31/1.20 9.97/0.05

normal mixture 10.00/38.79 9.59/0.74 9.74/136.63 5.00/95.82 7.29/0.00 9.35/1.23 9.98/0.04
Laplace mixture 9.95/37.96 9.17/2.07 8.82/76.98 4.96/95.42 6.53/0.00 8.51/4.48 9.83/0.05

Cauchy 7.46/26.86 7.15/10.23 9.56/66.04 4.43/95.56 4.86/0.00 5.73/24.57 9.52/0.00

τ = 0.5

normal 10.00/39.21 9.67/0.44 9.99/142.56 5.00/95.56 7.93/0.00 9.86/0.16 10.00/0.05
Laplace 10.00/39.03 9.49/0.93 9.81/89.76 5.00/95.33 7.07/0.00 9.32/1.09 9.99/0.01

normal mixture 10.00/38.44 9.51/0.86 9.83/85.73 4.99/95.27 7.41/0.00 9.28/0.96 9.99/0.02
Laplace mixture 9.96/38.91 9.26/2.08 9.33/31.13 4.95/95.76 6.23/0.00 8.75/4.13 9.97/0.02

Cauchy 7.24/25.47 7.23/9.37 9.99/4.30 4.26/95.95 4.54/0.00 5.92/24.88 9.60/0.00

τ = 0.7

normal 10.00/40.58 9.59/0.52 9.98/171.43 5.00/95.53 7.88/0.00 9.76/0.16 10.00/0.07
Laplace 10.00/39.20 9.44/1.14 9.74/144.66 4.99/95.20 6.87/0.00 9.26/0.97 9.95/0.06

normal mixture 10.00/38.29 9.38/1.14 9.76/138.14 5.00/95.49 7.04/0.00 9.30/1.30 9.99/0.02
Laplace mixture 9.96/38.88 9.08/2.37 8.93/85.78 4.96/95.02 5.95/0.00 8.69/3.50 9.81/0.05

Cauchy 7.64/27.34 7.16/10.19 9.61/68.75 4.52/96.36 3.59/0.00 5.79/24.92 9.46/0.00

The bold represents the optimal result in each scenario.

We also calculated the mean execution times of various Bayesian quantile regressions
under different quantile τ for different distributions of random errors, and list the results
in Table A1 of Appendix C, which illustrates that our proposed VBSSLQR approach was a
lot more efficient than BLQR and BALQR, for which we sampled MCMC 1000 times and
discarded the first 500 times, and made a statistical inference based on 500 samples (the
experimental study shows that the algorithm converged after 500 samples). In order to
illustrate the feasibility of applying our proposed VBSSLQR to cases with smaller effect
sizes, we changed the above active predictors to 1, while the other settings remained
unchanged. The performance of our proposed method is shown in Table A2, which
illustrates that the results were not significantly different from those of Tables 1 and 2 when
random errors had an independent identical distribution, and slightly worse than those of
Tables 3 and 4 when the random errors were heterogeneous.

4. Examples

In this section, we analyzed a real dataset containing information about crime in
various cities across the United States. This dataset is accessible from the University of
Irvine machine learning repository (http://archive.ics.uci.edu/ml/datasets/communities+
and+crime, accessed on 1 May 2023). We calculated the per capital rate of violent crimes
by dividing the total number of violent crimes by the population of each city. The violent
crimes considered in our analysis were those classified as murder, rape, robbery, and assault,
as per United States law. The observed individuals were communities. The dataset has
116 variables, where the first four columns are response, name of the community, code of
county, and code of community; the middle features are demographic information about
each community, such as population, age, race, and income; and the final columns are
regions. According to the source: “the data combines socio-economic data from the 1990
US Census, law enforcement data from the 1990 US LEMAS survey, and crime data from
the 1995 FBI UCR”. This dataset has been applied for quantile regression [30]. The dataset
is available at

• train set: https://academics.hamilton.edu/mathematics/ckuruwit/Data/Crime/
train.csv (accessed on 1 May 2023).

http://archive.ics.uci.edu/ml/datasets/communities+and+crime
http://archive.ics.uci.edu/ml/datasets/communities+and+crime
https://academics.hamilton.edu/mathematics/ckuruwit/Data/Crime/train.csv
https://academics.hamilton.edu/mathematics/ckuruwit/Data/Crime/train.csv
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• test set: https://academics.hamilton.edu/mathematics/ckuruwit/Data/Crime/test.
csv (accessed on 1 May 2023).

Our dependent variable of interest was the murder rate of each city, denoted as yi for
the ith city. As the murder rate denotes the most dangerous violent crimes, we choose this
variable. Studying factors correlated with the response dependent variable is of significant
importance for the public and law enforcement agencies.

To adapt the data to our model, we preprocessed the data as follows:

• Delete columns from the data set that contain missing data.
• Delete the data when the response variable yi equals 0, because this is not an issue of

interest to us.
• Transform yi: y′i = log yi

1−yi
and let y′i be the new response variable.

• Convert some qualitative variables into quantitative variables.
• Standardized covariates.

After the above data preprocessing, we obtained 1060 observation objects and 95 co-
variates in the training set, and we obtained 122 observation objects and 95 covariates in
the testing set. We implemented a quantile regression model between the 96 predictors
(including intercept) and the response y′i with different quantiles.

In this section, we compare QRL, QRAL, BLQR, and BALQR with our method VB-
SSLQR for real datasets, all with quantile penalty regression. Under different quantiles
τ ∈ (0.1, 0.3, 0.5, 0.7, 0.9), we compared the performance of the different approaches. We
counted the root mean squared error (RMSE) of each method under each quantile τ and
the number of selected active variables, to evaluate the performance of each approach

on the test set, where the RMSE was evaluated using RMSE =
√

1
n ∑n

i=1(yi − ŷτi)2 with
ŷτi being the fitted value of response yi under quantile τ. Finally, the results are listed in
Table 5 below.

Table 5. RMSE of fitting test dataset and the number of active variables for the various methods for
the real dataset.

Method
RMSE/Number of Active Variables

τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

QRL 1.36/64 0.94/65 1.09/66 0.93/57 1.21/53
QRAL 3.11/37 3.05/40 3.08/37 2.84/36 3.10/32
BLQR 1.34/1 1.08/1 1.03/1 1.08/1 1.30/1

BALQR 1.67/2 1.08/1 1.02/1 1.08/1 1.30/1
VBSSLQR 1.34/12 0.94/9 0.78/12 0.83/7 1.14/9

The bold represents the optimal result in each scenario.

To visually show the results listed in Table 4, the best results are in bold under
each quantile τ. Clearly, our method performed better than the other methods for all
quantiles, and the active variables selected by our method were suitable, which means
that our method was very competitive compared with the other methods. The BLQR
and BALQR approaches could only identify the intercept, and they could not identify
the variables that really affected the response quantile. The QRL and QRAL methods
were prone to overfitting, because they recognized too many active variables. Finally,
the efficiency of our method with real data was also significantly higher than that of the
other approaches. Although BLQR, QRL, and our proposed method had the same RMSE
performance at τ = 0.1, 0.3, BLQR showed underfitting and QRL showed overfitting. Thus,
we believe there is sufficient evidence to show that our method was very competitive with
the other approaches.

Similarly to [30], we list the active variables selected under each quantile in Table 6.
Thus, Table 6 shows the variable selection of our proposed method with real data.

https://academics.hamilton.edu/mathematics/ckuruwit/Data/Crime/test.csv
https://academics.hamilton.edu/mathematics/ckuruwit/Data/Crime/test.csv
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Table 6. Crime data analysis: variable selection.

Quantile Level (τ) Quantile Specific Variables

0.1

racepctblack pctUrban PctLess9thGrade TotalPctDiv

PctNotHSGrad PctOccupMgmtProf FemalePctDiv PctPersDenseHous

NumInShelters PctHousOccup PctBornSameState

0.3
racepctblack NumInShelters FemalePctDiv PctPersDenseHous

TotalPctDiv PctHousOwnOcc RentLowQ MedRent

0.5

racePctWhite racePctHisp FemalePctDiv TotalPctDiv

PctWorkMom PctSpeakEnglOnly HousVacant PctVacantBoarded

RentLowQ MedRent NumInShelters

0.7
racePctWhite racePctAsian FemalePctDiv TotalPctDiv

PctVacantBoarded NumInShelters

0.9
racePctWhite racePctAsian indianPerCap PctOccupManu

MalePctDivorce PctHousOccup PctVacantBoarded NumInShelters

In the above table, our method selected only a small number of predictors at each
quantile level. Notably, only the variable “NumInShelters” had an impact on the response
at all quantiles; the variables “FemalePctDiv” and “TotalPctDiv” had an impact on the
response at τ = 0.1, 0.3, 0.5, 0.7; the variable “PctVacantBoarded” had an impact on the
response at τ = 0.5, 0.7, 0.9; the variable “racePctWhite” had an impact on the response at
τ = 0.5, 0.7, 0.9; and the other variables affected a few quantiles of response. Therefore, the
five variables selected from the quantile regression model were

• PctVacantBoarded: percentage of households that are vacant and boarded up to
prevent vandalism.

• NumInShelters: number of shelters in the community.
• FemalePctDiv: percentage of females who are divorced.
• TotalPctDiv: percentage of people who are divorced.
• racePctWhite: percentage of people of white race.

In order to obtain a better understanding of these five common variables, we plot their
correlation to the response.

Figure 1 depicts the relationship between the five common variables and the murder
rate. Only the correlation between the NumInShelters and murder rate is not obvious, with
MalePctDivorce, RentLowQ, racePctWhite, and PctVacantBoarded significantly affecting
the murder rate. The variable racePctWhite and murder rate are negatively correlated, while
FemalePctDiv, TotalPctDiv, PctVacantBoarded, and murder rate are positively correlated.
This result was in accordance with the practical situation, and it can be seen that our results
were basically consistent with that of [30]. Our method could more comprehensively select
important variables under the same quantile. Therefore, the percentage of females who
are divorced, percentage of persons who are divorced, the percentage of households that
are vacant and boarded up to prevent from vandalism, and the percentage of people with
white race affect the murder rate.
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Figure 1. Correlation between murder rate and common variables.

5. Conclusions

In this paper, we propose variational Bayesian spike-and-slab lasso quantile regres-
sion variable selection and estimation. This method applies spike-and-slab lasso prior
to each regression coefficient β, thus punishing the regression coefficient β. The spike
prior distribution we choose is a small variance Laplace distribution, while the slab prior
distribution is a large variance Laplace distribution [26]. It is precisely because it punishes
each regression coefficient β that it has a powerful variable selection function, but this also
brings a problem of low efficiency, especially when introducing a spike-and-slab prior into
quantile regression (note, the algorithm efficiency of quantile regression is inherently lower
than that of general regression approaches). In order to solve the problem of inefficiency
(influenced by both the quantile regression and spike-and-slab lasso prior) and to make
the algorithm feasible. We introduced a variational Bayesian method, to approximate the
posterior distribution of each parameter. The simulation studies and real data analyses
illustrated that the quantile regression with the spike-and-slab lasso penalty based on
variational Bayesian method performed effectively and exhibited a robust competitiveness
compared with other approaches (Bayesian method or non-Bayesian method, quantile
regression, or nonquantile regression), especially in the case of high-dimensional data. In
future research work, it would be significant to improve the interpretability and computa-
tional efficiency of ultra-high-dimensional quantile regression based on VB and dimension
reduction techniques.
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quantile regression (note, the algorithm efficiency of quantile regression is inherently lower
than that of general regression approaches). In order to solve the problem of inefficiency
(influenced by both the quantile regression and spike-and-slab lasso prior) and to make
the algorithm feasible. We introduced a variational Bayesian method, to approximate the
posterior distribution of each parameter. The simulation studies and real data analyses
illustrated that the quantile regression with the spike-and-slab lasso penalty based on
variational Bayesian method performed effectively and exhibited a robust competitiveness
compared with other approaches (Bayesian method or non-Bayesian method, quantile
regression, or nonquantile regression), especially in the case of high-dimensional data. In
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Appendix A. Deduction

Based on the mean-field variational Formula (9), from the joint density (8), it is required
to induce the following variational distributions.
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,

where µβ(−j)
= Eβ(−j)

(β(−j)). therefore, given γj = k, for k = 0 and 1, then

q1(β j | γj = k) ∝exp
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http://archive.ics.uci.edu/ml/datasets/communities+and+crime
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− 1
k2

n

∑
i=1

xij(Ezi (z
−1
i )(yi − x>i,(−j)µβ(−j)

)− k1)β j

}
,

β j | γj = 1 i.i.d.∼ N(µ0j, σ2
0j),

therefore β j
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similarly,
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∫
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therefore zi
i.i.d.∼ GIG( 1
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with k1 and k2 being constants and Σβ is a (p + 1)× (p + 1) diagonal matrix with jth entry
being Var(β j).
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Appendix B. Expectation

The expectation of some parameter functions about variational posteriors:
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Since σ ∼ IG( 3
2 n + aσ, cσ), therefore
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kj))
−1.

Since πγ ∼ Be(a + ∑r
j=0 Eγj(γj), r + b + 1−∑r

j=0 Eγj(γj)), therefore

Eπγ(log πγ) = Ψ(a +
r

∑
j=0

Eγj(γj))−Ψ(a + b + r + 1),

Eπγ(log (1− πγ)) = Ψ(r + b + 1−
r

∑
j=0

Eγj(γj))−Ψ(a + b + r + 1),

Eπγ(πγ) = (a +
r

∑
j=0

Eγj(γj))(a + r + b + 1)−1.

Since γj
i.i.d.∼ B

(
1, (1 + eζi )−1), therefore

Eγj(γj) = p(γj = 1) = (1 + eζi )−1.

Appendix C. Efficiency Comparison between Bayesian Quantile Regression Methods

Table A1. Mean execution times of the various Bayesian quantile regression methods in the simulation.

Quantile Error Distribution
Method

i.i.d. Random Errors Heterogenous Random Errorss
BLQR BALQR VBSSLQR BLQR BALQR VBSSLQR

τ = 0.3

normal 146.45 s 144.56 s 18.06 s 146.48 s 174.88 s 28.77 s
Laplace 145.26 s 144.62 s 18.82 s 145.86 s 173.44 s 30.08 s

normal mixture 144.52 s 145.27 s 18.11 s 143.48 s 147.63 s 28.99 s
Laplace mixture 145.86 s 146.28 s 19.07 s 145.82 s 171.69 s 30.38 s

Cauchy 145.24 s 144.63 s 16.06 s 145.89 s 174.68 s 25.64 s

τ = 0.5

normal 144.62 s 144.52 s 15.30 s 144.67 s 174.39 s 25.23 s
Laplace 144.54 s 145.26 s 15.00 s 144.57 s 172.84 s 24.51 s

normal mixture 144.62 s 145.26 s 15.39 s 144.63 s 173.62 s 25.21 s
Laplace mixture 147.68 s 145.83 s 15.14 s 147.62 s 172.25 s 25.13 s

Cauchy 145.21 s 144.53 s 12.38 s 145.86 s 173.42 s 20.72 s

τ = 0.7

normal 147.29 s 144.37 s 18.74 s 146.48 s 173.46 s 31.05 s
Laplace 144.62 s 145.27 s 19.89 s 144.64 s 174.61 s 33.86 s

normal mixture 145.84 s 145.24 s 19.00 s 145.27 s 172.84 s 31.60 s
Laplace mixture 147.57 s 147.98 s 19.88 s 147.68 s 173.42 s 34.31 s

Cauchy 145.87 s 142.86 s 16.87 s 146.28 s 173.45 s 28.12 s

The bold represents the optimal result in each scenario and “s” denotes seconds.
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Appendix D. Simulation Studies for Cases with Smaller Effect Sizes

Table A2. The performance of our proposed method for cases with smaller effect sizes.

Quantile Distribution
Errors

i.i.d. Random Errors Heterogenous Random Errorss
MMAD(sd) TP FP MMAD(sd) TP FP

τ = 0.3

normal 0.21(0.05) 10.00 0.13 0.33(0.10) 10.00 0.25
Laplace 0.25(0.08) 10.00 0.15 0.42(0.34) 9.56 0.37

normal mixture 0.23(0.06) 10.00 0.07 0.36(0.16) 9.93 0.23
Laplace mixture 0.29(0.10) 9.99 0.16 0.98(0.50) 8.32 0.38

Cauchy 0.12(0.55) 9.43 0.00 0.16(0.76) 8.73 0.01

τ = 0.5

normal 0.20(0.06) 10.00 0.16 0.32(0.09) 10.00 0.29
Laplace 0.20(0.06) 10.00 0.06 0.32(0.11) 9.99 0.20

normal mixture 0.22(0.06) 10.00 0.10 0.34(0.10) 10.00 0.21
Laplace mixture 0.22(0.07) 10.00 0.06 0.33(0.26) 9.76 0.17

Cauchy 0.07(0.50) 9.55 0.00 0.10(0.69) 9.00 0.00

τ = 0.7

normal 0.21(0.06) 10.00 0.13 0.34(0.10) 10.00 0.37
Laplace 0.25(0.08) 10.00 0.15 0.40(0.18) 9.91 0.38

normal mixture 0.23(0.06) 10.00 0.16 0.36(0.12) 9.99 0.31
Laplace mixture 0.27(0.09) 10.00 0.17 0.43(0.30) 9.66 0.33

Cauchy 0.11(0.61) 9.38 0.00 0.15(0.67) 9.13 0.00
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