
Citation: Zwawi, M.; Khan, A.;

Bahadar, A.; Algarni, M. Study of

Steam-Induced Convection in a

Rotating Vertical Flow Channel.

Mathematics 2023, 11, 79. https://

doi.org/10.3390/math11010079

Academic Editors: Mohsen Sharifpur,

Josua P. Meyer and S. Suseel

Jai Krishnan

Received: 20 November 2022

Revised: 13 December 2022

Accepted: 19 December 2022

Published: 25 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Study of Steam-Induced Convection in a Rotating Vertical
Flow Channel
Mohammed Zwawi 1,* , Afrasyab Khan 2, Ali Bahadar 3 and Mohammed Algarni 1

1 Department of Mechanical Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
2 Research Institute of Mechanical Engineering, Department of Vibration Testing and Equipment Condition

Monitoring, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia
3 Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
* Correspondence: mzwawi@kau.edu.sa

Abstract: The phenomenon of steam–water direct contact condensation has significance in a wide
range of industrial applications. Superheated steam was injected upward into a cylindrical water
vessel. Visual observations were conducted on a turbulent steam jet to determine the dimensionless
steam jet length compared to the steam nozzle exit diameter and the steam maximum swelling ratio as
a function of steam mass flux at the nozzle exit, with a gas steam flux ranging from 295–883 kg/m2s.
The Reynolds number based on the steam jet’s maximum expansion ranged from 41,000 to 93,000.
Farther above of the condensation region, the jet evolved as a single-phase heated plume, surrounded
by ambient water. Mean axial central velocity profiles were determined against the steam mass
flux ranging from 295–883 kg/m2s to observe the exponential drop in the mean axial velocity as
the vertical distance increased. The radial velocity distribution within the spread of the jet was
determined to be self-similar, and the radial distribution of the velocity profile followed the Gaussian
function, after the proper scaling of the vertical distance and the axial mean velocity.

Keywords: DCC steam injection; single-phase thermal plume; mean axial velocity; plume Richardson
number

MSC: 76B10

1. Introduction

There have been numerous processes (e.g., combustion, nuclear, etc.) involving the
injection of steam into liquid (e.g., water), with the main purpose of obtaining high heat
and mass transfer rates owing to the direct contact between the phases of the same fluid or
different fluids. Such processes are operated at varying conditions, leading or not leading
to complete phase transformation [1]. For instance, steam originates from the orifices into
the water, with ensuing heat transport into the water surrounding the steam. However,
the transfer of heat to the remote locations within a column relies mainly on flow-induced
mixing and dilution. The consequence of an injection of a fluid into a sufficiently large tank
containing a motionless fluid is a jet, which is highlighted by a mean velocity characterized
by an axisymmetric distribution of self-preserving velocity [2–4]. However, inducing
saturated or superheated vapors into the liquid led to the formation of condensing jets,
which has been proven valuable towards achieving high mixing and heating rates [5].
The self-preservation of the velocity profiles in the case of non-condensing jets has been
broadly investigated, focusing on a region apart from a point source [6–12]. However, over
the span of last 25 years, the velocity distribution of the jets in the vicinity of the exit of
the fluid nozzle, as well as the far field have been analyzed [11,13,14]. In these studies,
the perception of self-similarity in the away field of the jets was analyzed in relation to
the mean axial velocity profiles and the resulting turbulence of the jets. The concept of
scaling the parameter of self-similarity at a distance farther from jet’s origin depends on the
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effective radius of the spread of the jet when the bulk density of the jet farther away from
the exit is the same as the mass flux and the momentum flux of the jet at the exit [2,10,15].

There are many investigations regarding saturated and superheated steam injection
into the water (e.g., [16–24], in which a strong entrainment and part dissipation of the
axial momentum occurs in the consolidated condensation of the steam jet and within the
interface between the steam and the surrounding liquid. However, a single-phase thermal
liquid jet remains farther from the condensation region. Studies involving an upward
steam injection into the confined pool of water provided information on the steam jet-
induced mean velocity distribution, as well as the turbulence [3,19,25–27]. The turbulence
associated with the steam jet, as well as the continuation of the condensed single-phase jet
at upward distances far removed from the exit, is vital for the usefulness of the flow and
the thermal mixing in the pool, as related to the safety aspects of the nuclear reactor, which
are directly linked to the combined elements of the steam imitated turbulent jet [19,28]. The
studies used a pitot tube to measure the velocity profiles of the turbulent jet and extracted
mixing details associated with the steam injection. However, Hussein et al. [7] applied
a PIV technique to determine the features of the steam jet, including the mean velocity
and turbulent properties, whereas Choo et. al. [19] used PIV to characterize the flow and
mixing of the steam using upward and downward injections in a confined pool of water.
They extracted the velocity profiles of the single-phase jet at different upstream distances
from the PIV velocity vectors.

The experimental work conducted thus far in the field of the direct contact condensa-
tion of a steam jet driven, horizontally or vertically, into subcooled water is summarized
in Table 1. The details provided here involve both geometrical (i.e., steam orientation,
nozzle diameter, and column size) and operating (i.e., steam mass flux, water subcooling
temperature) conditions, as well as flow regimes observed in these experimental works.

Table 1. Condensation regimes and experimental parameters for steam injected into subcooled water.

Investigations Injector
Diameter (mm)

Injector Exit
Orientation

Steam Mass Flux
(kg/m2s) or

Flowrate (g/s)

Water
Subcooling (◦C) Flow Regimes

[29] 0.4–9.5 Horizontal
injection 332–2050 28–79 Vapor cavity

[3] 4.45–10.85 Horizontal,
vertical, L = 0.12 m 330–550 kg/m2s 17-82 SC-IOC *, CO-BCO *

[4] 5 Vertical upward <1.6 g/s,
1.6–6.1 g/s 16.5

Discreet bubbling
transition to unstable

axisymmetric jet

[5] 1.6 Vertical upward 15–22 cm/s bubble
rise velocity 15–100

Bubbling, bubble
oscillation, bubble

collapse at
pressures > 10.3 bars

[6] 3.0 Vertical upward,
z0 = 0

Steam inlet
pressure:
0.3 MPa

(T = 135 ◦C)

25–60

Turbulent steam jet,
followed by

thermally stratified
plume

[7] 2.2 and 3.0 Horizontal 298–723 20–70 Supersonic jet

[8] 50.8 Horizontal
17.8 *, 20 and

50 g/s * 0.5% air
mass fraction

60–66 Bubbling turbulent
jet

[9] 2.5
Vertical upward

and vertical
downward

300.28–650.77 30–60

Turbulent jet
(vertical up) and

pool mixing
(vertical down)
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Table 1. Cont.

Investigations Injector
Diameter (mm)

Injector Exit
Orientation

Steam Mass Flux
(kg/m2s) or

Flowrate (g/s)

Water
Subcooling (◦C) Flow Regimes

[10] 8 Vertical upward 150–500 (water rate
0.14–6.65 kg/s) 20–70

Hemispherical,
conical, ellipsoidal,

cylindrical,
divergent steam

plume

[11] 6 and 8 Vertical upward 8.34–50.13 40–85 Bubble regime

* SC: Stable condensation, CO: Condensation oscillation, IOC: Interfacial oscillation condensation, BCO: Bubbling
condensation oscillation.

2. Equipment and Instrumentation
2.1. Experimental Setup

The experimental setup is illustrated in Figure 1. As seen in this Figure 1, the experi-
mental setup consisted of a cylindrical column of 12 cm in diameter and 1 m in height. The
column was made of Perspex, and its thickness was 2 mm. The Perspex cylinder contained
a nozzle (id 6 mm) inserted through a bottom stainless-steel plate. The nozzle was con-
structed from stainless steel, with an inner adiabatic coating to avoid condensation along
the inner surface of the nozzle. As illustrated in Table 2, the steam was injected at absolute
pressure extending from 3 to 8.5 bars to deliver steam at 295 kg/m2s to 883 kg/m2s, whereas
the temperature of the subcooled water in the column was held at 25–50 ◦C (i.e., 298–323 K)
respectively. Lip seals were installed covering the joint between the column base and the
nozzle, as well as between the column and the steel plate, to prevent leakage from the
column base. Among the two ports installed on the divergent section of the nozzle, one
port was used to mount the temperature sensor (K-type thermocouple), and the other port
housed the pressure sensor to measure the pressure at the approximate location inside the
nozzle exit. Stale steam was acquired from an electric steam generator (Type K-DH, Electric
Steam Generator AB & Co, Copenhagen, Denmark, flow rate = 5–270 kg/h) at 2–10 bars,
(working pressure = 2–8.5 bars). A vortex steam flowmeter was utilized with the steam
flowmeter, exhibiting about 0.75% accuracy.
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Figure 1. (a) Schematic of an experimental setup and (b–d) the geometrical arrangements of the
sensors used; (e) the schematic flow diagram.

Table 2. Experimental operating conditions.

Parameters Operating Range

Steam inlet absolute pressure ps (bars) 3.0–8.5

Steam mass flux at nozzle exit Ge (kg/m2s) 295–883

Ambient pressure at submerged nozzle exit pa (bars) 1.07–1.073

Water temperature Tf
◦C (K) 25–50 (298–323)

Submerged height of nozzle exits hsub (m) 0.61

Vessel inner diameter (m) 0.12

Nozzle exit diameter de (m) 0.006

The remixing of the hot water from the top into the lower region of the column was
prevented by the use of 5 inlet ports and 5 outlet (drainage) ports/ducts, which were
located at a height of 20 cm from the base of the column. The inner diameter of each of
these ducts was 20 mm, due to the lip seal-based joint with the column, provided through
the stainless-steel enclosure ring inhibiting the lip seal, as seen in Figure 1. The direction
of the injection of the cold water and the drainage of the hot/warm water through the
10 top-mounted ducts is along the periphery of the inner column wall. In this way, the
cold water was introduced into the column in the form of circulating currents. The outlet
ducts were also aligned with the curved body of the inner surface of the walls of the
column, as shown in Figure 1. The 5 drainage ducts were joined together into a single
pipe. A temperature sensor was mounted on this pipe, which was used for measuring
the temperature of the drained water to control the amount of the injected water using an
89C51 micro-controller-based electronic control system (ECS) by adjusting the amount of
the injected tap water at a temperature value from the subcooled range using a servo motor.
The constant drainage of the hot water from the top was assured by draining the warm
water from the top. In addition, 6 temperature sensors were mounted to the inner body of
the column at the heights (h) of 0.2–2.5, 5, 10, 15, 20, 30, 40, 50, and 60 cm from the exit of
the nozzle. These 6 temperature sensors were also connected to the ECS, which helped to
automate the injection of the tap water into the column. The flow rate of the cooling water
injected from the top varied between 0.001–0.0032 L/s.

2.2. PIV Technique

A PIV unit, along with a camera (Megaplus ES1.0, Kodak/Roper Scientific/USA) hav-
ing a resolution 2048× 2048~7.4 µm2 in each pixel, was used to measure the pointwise fluid
velocity in the present experimental investigations. The laser exhibited a pulse frequency
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of ~15 Hz and a power 200 mJ/pulse, with a national electronics data acquisition and data
processing software module. Polyamide particles of 50 µm in diameter and a density of
1.03 kg/m3 were chosen to illuminate the flow, as their density was nearly the same as
that of the water. A laser sheet of 2 mm thickness was initially directed on the column in
three horizontal positions; whereas afterwards, PIV was used to obtain the velocity cross-
sectional scans at different heights, i.e., h = 0–100 mm, 100–200 mm, 200–300 mm, and
300–400 mm from the nozzle exit, and a high speed camera (Megaplus ES1.0, Kodak/Roper
Scientific/USA) was positioned in accordance to the measurement slice to capture the
images of the steam jet or the plume. All the raw data were processed through the data
acquisition consisting of an A/D converter and the PC. The measurements were obtained
at a rate of 10 Hz for a duration of 600 s, which was equivalent to ~6000 frames.

The CCD camera was tuned in such a way that it could adjust each of the frames in
focusing the region that met the regional focus of the plan at the desired height from the
nozzle’s exit. Any irregularity found in the obtained PIV frames was removed through
detection analysis. The precise measurement related to the magnification of the laser pulse,
as well as the separation between the pulses, was linked to perform the calibration of
the PIV system, and the pulse separation was estimated by guiding the laser sheet onto
the photodetector, which was connected to the oscilloscope. This indicated the extent
of separation with respect to the distance between the point of the laser emergence and
its incidence on the photodetector. The errors associated with the magnification were
estimated by focusing the laser sheet on a given dimensional grid and comparing the ratio
of the given grid spacing with the known grid spacing. This guided the determination
of the range of the optical distortions. In cases where there was no distortion, the value
of the ratio did not vary at any of the heights along the fluid domain. The uncertainties
associated with the measurements are within 0.1–0.3%. The significant geometrical details
of the experimental setup, including the nozzle dimensions and the range of the operating
parameters, are summarized in Table 2.

Each of the lasers was exposed in a synchronized fashion for a duration of 0.1 s. The
water was held at the desired temperature in a range of 25–50 ◦C, with a gap of 5 ◦C
between the two adjacent cases. The largest difference between the water temperature
at the mid-section of the column and the top of the column was 4.85 ◦C. For instance,
within 13 min from the onset of the steam injection, the top surface of the column could
achieve the temperature of 25 ◦C. Subsequent to the remaining phases of the experiments,
simultaneous measurements for temperature and velocity were collected to compute the
influence of the condensation potential and the measurement of the momentum on the
engulfment and entrainment. The distance between the two sensors was maintained at
about 2.5 cm to prevent the influence of the hot wire on the temperature being measured
by the LM35 temperature sensor.

3. Empirical Correlations and Physical Analysis
3.1. Vertical Upward Injection of Steam into a Pool of Subcooled Water
3.1.1. Overall Jet/Plume Layout

A schematic of a steam jet escaping out of the nozzle’s exit into the subcooled water,
followed by steam condensation and the development of a single-phase thermal water
plume, along with the creation of self-preserving regions of a thermal plume, can be seen
in Figure 2. A complete picture of the steam plume surrounded by the subcooled water
is based on visual observations, as well as the PIV measurements of the upward steam
injection into the pool of water, which was studied extensively [2,3,17,19] by and others.
Steam exits from the nozzle into the pool of water as an intense jet. The inside of the jet
is filled with steam, and the outer boundary is an interface between the steam and the
water [20]. The steam’s jet exhibits a swollen portion at some distance downstream of
the nozzle exit, and subsequently, the jet narrows down as the rapid contraction towards
the middle line sets in, and this continues to a point where the jet breaks into two phases:
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steam and water. This region has been referred to as the development region of a thermal
single-phase plume, which spreads radially as it propagates upward due to its buoyancy.
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The steam jet close to the nozzle exit region resembles an onion-like shape, with
most of the swelling in the middle, and constricted lower and upper regions. This can be
achieved through realization of the momentum balance. In a segment near the exit of the
steam nozzle, there is an obvious element of radial momentum. However, the existence of
the steam–water interface acts to entrain the water surrounding the steam inside, and the
mass conservation contributes towards deflecting the steam outward [30]. In the present
situation, however, the dominance of condensation within the steam–water interface acts
to further decrease the interface. Moreover, the contribution of the buoyancy to the shaping
of the steam jet’s profile cannot be ruled out.

At a short distance from the onion-shape region of the steam jet, a little-developed
section can be seen in Figure 2a. With the use of PIV measurements, this region was
described as a condensed steam jet [26]. However, further downstream of this region, the
sustained thermal profile, owing to the competing forces associated with the momentum,
the radial entrainment of the outside layer of the plume with the surrounding water can be
noted, and to some extent, buoyancy also contributes to this profile. Further, the interaction
of the large-scale interfacial instabilities with the surrounding water is characterized as
entrainment, whereas the dissipation of the small-scale eddies is defined as the engulfment.
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3.1.2. Overall Jet/Plume Layout

Based on their experimental data, Kerney et. al. [28] proposed a correlation for the
penetration of vapor jets (Lj) into the subcooled liquid, which was validated for upward
steam injection into the subcooled water. The correlation is expressed as:

Lj

de
= 0.2588BC

−1

√
Ge

Gm
(1)

where BC is the condensation potential, which was defined by [17] as:

BC =
hfs − hα

he − hfs
(2)

where hfs is the enthalpy of saturated liquid, hα is the enthalpy of the liquid at ambient
condition, and he is the steam enthalpy at the nozzle exit. Moreover, [13] also found an
empirical correlation for steam jet penetration into the subcooled liquid, which was based
on the steam mass flux (applicable at Ge > 200 kg/m2s) and the condensation potential,
expressed as

Lj

de
= 0.5923BC

−0.66(
Ge

Gm
)
0.3444

(3)

The subscripts e and m represent the values of G at the nozzle exit and the jet’s mean
value, respectively, and BC can alternatively be expressed as:

BC =
cp,f(Ts−Tf)

hfg
(4)

where cp,f is the liquid specific heat (j/kg. ◦C), and hfg is the latent heat of vaporiza-
tion (j/kg). Kim et. al. [31] found that their data for steam jet length correlated to the
following relationship:

Lj

de
= 0.503BC

−0.70127(
Ge

Gm
)
0.47688

(5)

Another empirical correlation was suggested by [21] for a supersonic steam injection
into the pool of water, expressed as:

Lj

d
= 0.868BC

−0.6(
ps
pa

)(
Ge

Gm
)
0.5

(6)

where ps and pa are the pressure of inlet steam and the pressure of the ambient water. This
correlation was found to be more accurate than others at higher water temperatures, as
other correlations predicted an overestimation of the penetration length, whereas the use of
the steam pressure in the correlation provides a similar effect to restrict this overestimation.

3.1.3. Steam Condensation

It can be seen from Figure 2 that the outer layer of the steam jet interacts with the
subcooled water, and this transforms steam into water due to the occurrence of conden-
sation. Model relationships related to the phase change [15] were used to compute the
steam’s mass rate, which was transformed to the water. The transformation of the phase
change was realized by the model through the application of heat transfer between the
vapor and liquid phases, which is authentic in cases of the condensation or evaporation of
pure substances. Therefore, the sensible heat flux (j/m2) across the vapor–liquid interface
to the individual phases can be expressed as:

q f = h f (Ti − Tf ) (7)

qs = hs(Ti − Ts) (8)
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where hf and hs are the heat transfer coefficients (j/m2K) for water and steam, respectively,
and Ti, Tf, and Ts are the temperatures (K) of the interface, the water, and the steam,
respectively. Moreover, Equation (7) provides an estimation of transfer of heat from the
interface to the water phase, and Equation (8) provides an estimation of the transfer of
heat from the interface to the steam. The heat transfer coefficient between the interface
and the steam phase was estimated by following the complete heat transfer across the
interface. This emphasized the application of a simple heat balance to estimate the heat
flux. However, the heat transfer coefficient between the interface and the water (hf) was
estimated by using Ranz–Marshall equation [16], written as:

Nu = 2 + 0.6Re0.6Pr0.3 (9)

where Nu is the Nusselt number, Re is the Reynolds number, and Pr is the Prandtl number;
these are expressed as:

Nu =
hfde

Kf
; Re =

devs

νf
; Pr =

Cpfµf

Kf
(10)

where de is the nozzle exit diameter, hf is the water’s heat transfer coefficient, Kf is the water
thermal conductivity (W/mK), vs is the steam axial velocity at the nozzle exit, νf is the
kinematic viscosity of the liquid (m2/s), Cpf is the specific heat of the liquid, j/kgK, µf is the
dynamic viscosity of the liquid, and kg/ms, Kf is the thermal conductivity of liquid. The
interfacial temperature, Ti can be evaluated by considering thermodynamic equilibrium,
which was assumed to be the same for both phases (i.e., saturation temperature). Therefore,
the exchange of mass between the vapor and the liquid can be determined from the overall
heat balance, which is expressed as:

Qs = qs−
.

msfHsi (11)

Qf = qf +
.

msfHfi (12)

where
.

msf represents the mass flux being transferred from the vapor phase into the liquid
phase, and Hsi and Hfi symbolize the interfacial heat enthalpy based on the difference
between the inward and outward elements of the vapor and water phases due to the
conversion of the phase. The interphase mass flux can then be expressed as:

.
msf =

qf + qs

Hsi−Hfi
(13)

where Hsi denotes the steam specific enthalpy, and Hfi is the specific enthalpy of water
at interfacial temperature Tsat, which are regarded as the interfacial values of enthalpy
carried in and out of the phases due to phase change. Thus, Equation (11) is re-written
by incorporating the correction to the volumetric steam rate, Q (m3/s), due to the steam’s
condensation rate (

.
msf), which is expressed as:

Q =
.

ms−
.

msf

ρs
(14)

4. Results and Discussion
4.1. Steam Jet Length to Diameter Ratio (Lj/de)

The length of the steam jet or plume is referred to as the axial length region containing
the steam phase only. Visual observations and high-speed photography were used to obtain
the steam jet length. This method is not useful when the temperature of the water is close
the boiling temperature because in such cases, it is difficult to detect the precise interface
between the steam and the surrounding water. However, this technique is appropriate in
the present case, where the maximum temperature of the subcooled water is 50 ◦C.
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The measured values of the steam jet length (Lj), normalized by the inner diameter of
the steam nozzle’s exit, are presented in Figure 3 as a function of the steam mass flux at the
nozzle exit and the subcooled water temperature. The normalized steam jet length is found
to increase with an increase in the steam mass flux and the water temperature. However,
for all steam mass fluxes, the slope of the normalized steam jet length is slightly higher
than the values obtained at lower temperatures of subcooled water. This is due to the fact
that driving mechanism of condensation reduces because of the decrease in the driving
parameter of the temperature difference resulting from the increase in the subcooled water
temperature. The overall range of the values of the dimensionless steam jet length is 1.7–6.2.
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There have been many investigations (i.e., [2,10,13,17–19] and others) which measured
the steam jet length for higher steam mass fluxes, i.e., ≥200 kg/m2s. Figure 4 presents the
correlations between the measured dimensionless steam jet length proposed by [2,13,20,21]
compared with the measured values obtained for the steam mass flux of Ge = 672 kg/m2s.
As seen from the Figure 4, the correlation of [21], associated with the supersonic steam
injection, was not appropriate for the sonic and subsonic steam jet condensation. Moreover,
our measurements were found to follow the correlation proposed by [2], when compared
to the measurements in the other studies.

Maximum Swelling of the Steam Jet

The ratios of the maximum swelling of the steam jet to the inner diameter of the steam
nozzle exit (Djmax/de) under different steam mass flux levels at the nozzle exit (Ge) and
varying subcooled water temperatures are presented in Figure 5. The radial growth of
steam increases with increase in both steam mass flux and the subcooled water temperature.
The maximum radial expansion of the steam in the present work was noted in the range
of 1.075–1.49, as seen in the Table 3. The highest value of the ratio in our case is much
smaller than the ratios determined by [14,22] because they conducted measurements at
much higher steam mass fluxes, and the temperature range of the water in these works
exceeded that of the water used in the present study. However, the trend of the Djmax/de in
the present case has been found to be consistent with that exhibited in these investigations,
within the operating range of steam mass flux and water temperature utilized in the present
work. However, the maximum expansion of the steam jet in the case of [21] is higher than
that in our study, due to the wider range of subcooled water temperatures operated by
the authors.
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Table 3. Maximum swelling ratio.

Investigation Ge (kg/m2s)
Subcooled Water
Temperature (K)

Max Swelling
Ratio (Djmax/de)

Chun et al. (1996) [18] 200–1500 293–343 1.0–2.3

Kim et al. (2005) [27] 250–1188 293–343 1.05–2.3
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Table 3. Cont.

Investigation Ge (kg/m2s)
Subcooled Water
Temperature (K)

Max Swelling
Ratio (Djmax/de)

Wu et al. (2007) [20] 298–723 293–343 1.08–1.95

Our Values 295–883 298–323 1.075–1.49

4.2. Single Phase Thermal Plume
4.2.1. Mean Axial Velocity

The mean of the axial velocity of the single-phase thermal plume in case of Ge = 295 kg/m2s
and Ge = 672 kg/m2s are presented in Figure 6a,b, and their normalized profiles can be
seen in Figure 7a,b. The plume is determined to interact and entrain the surrounding water
due to its having inherent eddying qualities. The mean axial velocity measurements display
obvious profiles with a maximum value at the mid-point of the column, and the profile
decreases to nearly zero value, which is observed at the plume’s outside boundary; this is
the margin between the thermal water plume and the surrounding ambient water.
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4.2.2. Mean velocity Profiles along the Vertical Height

Figure 6a,b reveals the mean axial velocity profiles, which were measured at a steam
mass flux of 295 kg/m2s and 672 kg/m2s, respectively. These figures indicate a visible
difference between the crosswise layer as the steam mass flux varies. In the case of a higher
steam mass flux, the condensed steam plume requires more time to transverse the distance
leading to stabilization. Moreover, the height developed by increasing the steam mass flux
is higher than the height development with a lower steam mass flux. The dimensionless
mean velocity profiles vs. the dimensionless radial distances indicate a shifting of the mean
velocity profile towards the right as the plume’s layer spreads in a vertical distance. This
shows that the stabilizing influence of the plume decreases with the downstream distance
due to the weakening of the shear across the interface of the plume.

4.2.3. Self-Similarity

The significance behind self-similarity is used to demonstrate that the flow attains
a dynamic equilibrium due to the matching of the mean values with the higher-order
moments [32]. Typically, self-similar variables depend on the conditional scale, and they
subsequently validate a generalized characteristic in a region, which indicates a fully
established flow. Thus, the mean value of the condensed steam velocity in the middle of
the plume {i.e., vc(z) = v(z, 0), } and the plume’s width (i.e., r) may be outlined as two
characteristic scales, and η{= r

z−z0
, z0 is the virtual origin} is an alternative dimensionless

scale for determining the cross-stream magnitude. Measurements of the single-phase
turbulent jets show that at far fields, vc is inversely proportional to the axial distance and is
expressed as:

vc =
C

z−z0
(15)

where C is a coefficient associated to the mean center line velocity [33]. Both C and z0
can be determined from the measured values of the central velocity of the single-phase
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turbulent jet, Figure 8, and they are strongly dependent on steam mass flux, G. Values of z0
and C as a function of G and pool temperature can be seen in Table 4.
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Table 4. Turbulent flow self-similarity parameters.

Exp. Case C (m2/s) z0 (m) S

G295T25 0.653–0.672 −0.042 to −0.0453 0.0887

G295T50 0.691–0.707 −0.037 to −0.042 0.0893

G423T25 0.863–0.893 −0.0343 to −0.0392 0.0907

G423T50 0.897–0.924 −0.0303 to −0.0327 0.0917

G672T25 1.223–1.38 −0.0281 to −0.0305 0.0936

G672T50 1.254–1.423 −0.023 to −0.024 0.0957

G883T25 1.412–1.632 −0.0235 to −0.0253 0.0953

G883T50 1.453–1.493 −0.0197 to −0.0213 0.0973

An analogous feature of a turbulent jet was highlighted by Hussain et al. (1994) [7],
who exhibited that nearly all values of the mean vertical velocity of a single-phase jet are
represented by a Gaussian profile expressed as:

v
vc

= e−Sη2
(16)

where S is a coefficient to signify the curvature of a mean velocity profile, which can be
obtained from the single-phase jet velocity measurements and the vz/vc profile, in the case
of G = 672 kg/m2s and a subcooled water temperature of 50 ◦C, as seen in Figure 9. The
spreading rate of the jet, S, is expressed as:

S =
r 1

2
(z)

z−z0
(17)
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where r 1
2
(z) represents radial distance, where the mean vertical velocity reduces to half

of the jet’s centerline velocity, and UC (z) is at a corresponding vertical distance z from
the condensation region. The jet plume’s spread is estimated from the measured axial
velocity profiles (Figure 9). Thus, S, with its dependence on the steam mass flux (GS), can
be seen in Table 4. The value of virtual origin is negative, in the present case, whereas
the value of z0, in case of non-condensing single-phase jets, is positive [33]. In fact, the
value of z0 depends on the origin of the jet, and in the present case, water is formed by the
conversion of steam’s jet at the nozzle’s exit, whose shape and dimensions depend on the
steam’s mass flux and the temperature of the pool water. The spreading rate constant S, in
the present case, lies between 0.0887–0.0973 against the steam mass flux that ranges from
295 kg/m2s to 883 kg/m2s, respectively, against the pool water temperature of 25 ◦C and
50 ◦C. These results have been found to be in agreement with those for the condensing jets,
as determined by and, where S ranged from 0.09–0.098. Our values for S agree with the
measurements in, wherein the research obtained 0.094 for S in air axisymmetric jets. Our
values are also in agreement with the measurements obtained for a water jet by [30].
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4.3. Vertical Steam Submerged Injection in Pool of Water

The steam injection into a pool of subcooled water shows a buoyant jetting regime [20,34].
Generally, a region within a pool can be classified into the following: a pure buoyant
plume, a pure momentum jet, and a combination of the two extreme cases. A pure jet is
something that possesses a dominant contribution from the momentum to sustain it, while
there is no contribution from buoyancy. However, the tangential shear acting across the
interface between the steam and the subcooled water of the jet tends toward the occurrence
of the Kelvin–Helmholtz (KH) instabilities [30,31,35,36]. The KH instability gives rise to
the formation and evolution of vortices, which results in a turbulent mixing layer between
the steam–water interface and the surrounding water. The KH instabilities can contribute
towards increasing the surface area available for heat transfer between the jet and the
surrounding water.

A forced plume is liable to become condensed as it comes into contact with the
surrounding subcooled water. This presents a case where the transition between the two
extremes occurs. Here, buoyancy tends to stratify the pool, whereas momentum acts to
unify the pool. Thus, under the competing influence between the momentum and the
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buoyancy fluxes, it is possible to move from a stratified to a mixed case. Increased mixing
between the vapor and the liquid phases causes an enhanced heat transfer between the
two phases.

In the case of high flow steam injection (e.g., supersonic) through a nozzle at sub-
merged depths, condensation can occur over a short distance [37,38], if the pool is suf-
ficiently subcooled (e.g., <50 ◦C). This can lead to a variable balance between buoyancy
and inertia along the jet plume trajectory, where it can be defined by variable transition
properties consisting of a buoyant condensing vapor upstream, followed by a hot liquid
turbulent jet downstream.

Radial Growth of a Liquid Thermal Jet

Measurements were made along the vertical axis ranging from 50 to 400 mm above
the source against the steam mass flux of 295 kg/m2s and 672 kg/m2s at a pool water
temperature of 50 ◦C. Figure 10 shows the evolution of the normalized radius (Rv/Ro) of
the single-phase jet against the normalized vertical height (z/Do) from the condensation
region. It can be observed that the thermal liquid jet tends to spread linearly with the
height in the development of the far field region of the jet; however, the trend becomes
vertical after crossing z/Ro ≈ 50. The values of radial growth for the two conditions are
clearly different as the jets spread, as seen in the case where Ge = 295 kg/m2s is larger than
in the case of Ge = 672 kg/m2s (see Figure 10), which induces the slope of the trend for
Ge = 295 kg/m2s, which is is slightly higher than that of the Ge = 672 kg/m2s. The trend of
the radial growth profiles in the present case agrees with that of the heated air jet exerted
into ambient air [39]. However, the slope of their data is considerably higher, owing to the
considerably weaker turbulent dissipation in their case than in ours.
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condensation, a developing jet region, and a self-sustained single-phase plume having a
virtual origin (z0) within a range of 2–4 de from the real injection point. The significant
outcomes of the work are listed as follows:

a. The condensation of the steam jet submerged in the subcooled water supports the
measurements, which show that with increase in steam mass flux and water temper-
atures ranging from 295–883 kg/m2s and 25–50 ◦C, respectively, the normalized the
steam jet length, as well as the maximum swelling ratio, which were in the range
1.7–6.2 and 1.075–1.49, respectively. The normalized steam jet length compared to
the steam mass flux of 672 kg/m2s and 50 ◦C was found to be in agreement with the
correlation suggested by Kerney et al. (1972) [28].

b. The PIV measurements of the axial mean velocity at a steam mass flux of 295 kg/m2s
and 672 kg/m2s were obtained at different downstream locations of the single-phase
turbulent plume, which exhibits consolidated self-similar features of the plume in an
axisymmetric shape, including the constants used to determine the plume’s shape.

c. The mean axial velocity profiles of the thermal water plume support self-similarity,
with the spreading of the velocity profiles being similar to the non-condensed single-
phase jets occurring at the similar Reynolds numbers.
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