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1. Introduction

The purpose of this paper is to investigate Liouville properties for semi-linear elliptic
equation with general nonlinearity{

∆Lu + f (u) = 0, in R2n+1,

− ∂u
∂t = g(u), on ∂R2n+1

+ \ {0},
(1)

where ∆L is the generalized Greiner operator, and f , g are nonnegative functions satisfying
some appropriate conditions, which will be given later. The notation ∂R2n+1

+ denotes the
boundary of set R2n+1

+ = {(x, y, t) ∈ R2n+1|t > 0}. It is well known that the role played
by the Liouville theorem is to establish a priori bounds for positive solutions of elliptic
equations in bounded domains via the blow-up method.

Han and Zhao [1] studied a class of semi-linear elliptic equations with the principal
part constructed by generalized Greiner vector fields, introducing the vector field method
in their work. As an application, they studied the Liouville property of the following
semi-linear equation:

∆Lu + h(ξ)up = 0, (2)

on the generalized Greiner vector fields.
There are analogous results in the Euclidean case. In the splendid paper [2], Gidas and

Spruck used the method of integral estimate to prove that, for 1 < p < n+2
n−2 , the following

Equation (3) has no positive entire solution in the Euclidean space Rn:

−∆u = uq. (3)

Similar results first appear in [3] using the main tools of the method of moving planes.
Furthermore, the Liouville-type theorem for integral equation and system was established
in paper [4]. Other results can be found in [5–9].

Recently, some Liouville-type theorems were obtained even for nonlinear elliptic
equations with nonlinear boundary conditions in the Heisenberg group; see Theorem 1.1
in [10].
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In addition to using the method of moving planes, the vector field method was
also used to prove nonexistence results. Xu [11] obtained the nonexistence result on the
Heisenberg group for the following equation:

∆Hu + h(x)up = 0, in Hn, (4)

and, supposing that weight function h(x) satisfies some assumptions, then Equation (4)
possesses no positive solutions providing 1 < p < 1 + 8n+7

(2n+1)2 . We note that the exponent

1 + 8n+7
(2n+1)2 is smaller than Q+2

Q−2 .
Yu [6] studied the following elliptic equation:{

−∆u = f (u), in RN
+ ,

− ∂u
∂ν = g(u), on ∂RN

+ .
(5)

He proved that this problem possess no positive solutions under some assumptions on
nonlinear terms.

In recent years, the comparison principle and Liouville-type theorems for degenerate
elliptic equations have been widely studied; see [12–16]. The Liouville-type theorem for
cylindrical viscosity solutions of fully nonlinear CR invariant equations on the Heisenberg
group were developed in [17]. As a by-product, the comparison principle with finite singu-
larities for viscosity solutions to more general fully nonlinear operators on the Heisenberg
group was obtained in [17].

The Hopf-type lemma and a CR type inversion for the generalized Greiner operator
was first and extensively established in [18] .

In this paper, we study problem (1); it is very well known that both the equation and
the boundary conditions are nonlinear. We are now ready to state the main result.

Theorem 1. Let u ∈ C(R2n+1) be a nonnegative cylindrical solution for problem (1), and f , g :
[0,+∞)→ [0,+∞) are continuous functions satisfying
(i) f (t), g(t) are nondecreasing in (0,+∞),
(ii) h(t) = f (t)

t
Q+2
Q−2

, l(t) = g(t)

t
4k

Q−2
are nonincreasing in (0,+∞),

(iii) either h or l is not a constant,
then u ≡ c with f (c) = g(c) = 0 is the only solution of the problem (1).

The paper is organized as follows. In Section 2, we introduced some notations and
facts that will be followed throughout the work. Theorem 1 is finally proved in Section 3.
The disscussion is given in Section 4.

2. Preliminary Facts

The aim of this section is to introduce some notation and definitions about the general-
ized Greiner vector fields. We consider the Liouville property associated with generalized
Greiner operators

∆L =
n

∑
j=1

(X2
j + Y2

j ),

where

Xj =
∂

∂xj
+ 2kyj|z|2k−2 ∂

∂t
, (6)

Yj =
∂

∂yj
− 2kxj|z|2k−2 ∂

∂t
, (7)

j = 1, · · · , n, x, y ∈ Rn, t ∈ R, z = x +
√
−1y, |z| =

[
∑n

j=1(x2
j + y2

j )
] 1

2 , k ≥ 1.
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A function u is said to be cylindrical in R2n+1 with respect to the operator ∆L if for any
(x, y, t) ∈ Rn ×Rn ×R, it has u(x, y, t) = u(r, t), r =

√
x2 + y2.

If we denote by A = (aij) the (2n + 1)× (2n + 1) symmetric matrix given by aij = δij

if i, j = 1, · · · , 2n, a2n+1,j = 2kyj|z|2k−2 if j = 1, · · · , n, a2n+1,n+j = −2kxj|z|2k−2 if j =

1, · · · , n, and a2n+1,2n+1 = 4k2|z|4k−2. We note that the matrix A is related to ∆L by the
formula

∆L = div(A∇),

where∇ and div denote the Euclidian gradient and Euclidian divergence operator of R2n+1,
respectively.

Moreover, if we consider a (2n)× (2n + 1) matrix whose rows are the coordinates of
the vector field Xj, Yj, that is

σ :=
(

In 0 2ky|z|2k−2

0 In −2kx|z|2k−2

)
,

where In is the identity n × n matrix, then the generalized gradient ∇L of a function
ψ : R2n+1 → R is expressed by ∇Lψ = (X1ψ, · · · , Xnψ, Y1ψ, · · · , Ynψ) = σ∇ψ, and

∆L = div(σTσ∇).

The dilation is defined as

δλ(ξ) = (λx, λy, λ2kt), λ > 0, (8)

and the integer Q = 2n + 2k is called the homogeneous dimension with respect to dilation.
Then, it is useful to consider the following homogeneous norm with respect to (8):

ρ(ξ) =
[
|z|4k + t2

] 1
4k , (9)

and the associated quasi distance between two point ξ, η in R2n+1 by setting

d(ξ, η) =
[
|z|4k + |z′|4k + (t− t′)2

] 1
4k , (10)

for ξ = (z, t) ∈ R2n+1, η = (z′, t′) ∈ R2n+1. We denote by BL(ξ, R) the quasi ball with
center at ξ and radius R associated with the distance (10), that is

BL(ξ, R) = {η ∈ R2n+1|d(ξ, η) < R}. (11)

Note that for R > 0 sufficiently large, if B(0, R) is the Euclidian ball of radius R centered at
the origin, then

B(0, R) ⊂ BL(0, R) ⊂ B(0, R2).

Denote by
∇Lu = (X1u, · · · , Xnu, Y1u, · · · , Ynu),

and

∆Lu :=
n

∑
j=1

X2
j u + Y2

j u

=
n

∑
j=1

∂2u
∂x2

j
+

∂2u
∂y2

j
+ 4kyj|z|2k−2 ∂2u

∂xj∂t
− 4kxj|z|2k−2 ∂2u

∂yj∂t

+ 4k2|z|4k−2 ∂2u
∂t2 , (12)

the generalized gradient and the generalized Greiner operator, respectively.
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Note that, when k = 1, the operator ∆L becomes the well know sub-Laplacian ∆Hn

on the Heisenberg group Hn (see Folland [19]). If k = 2, 3, · · · , ∆L is the Greiner operator
(see [20]). As is well known, the vector fields X1, X2, · · · , Xn, Y1, Y2, · · · , Yn in (6) do not
possess left translation invariance for k > 1 and, if k = 1, 2, 3, · · · , they do not meet the
Hörmander condition [21].

As in [18], we introduce the CR inversion of a function u(x, y, t) in R2n+1 as

v(x, y, t) =
1

ρQ−2 u(x̃, ỹ, t̃), (13)

with x̃ = (x̃1, · · · , x̃n) and ỹ = (ỹ1, · · · , ỹn), where

x̃i =
xit + |z|2kyi

ρ2k+2 , ỹi =
yit− |z|2kxi

ρ2k+2 , t̃ =
1

ρ4k .

Lemma 2. Suppose that u ∈ C2(R2n+1
+ ) ∩ C(R2n+1

+ ) is a solution of (1), then v defined in (13)
satisfies  ∆Lv = 1

ρQ+2 f (u), in R2n+1,

− ∂v
∂t = 1

ρQ+4k−2 g(u), on ∂R2n+1
+ \ {0}.

(14)

Proof. The first equation of this lemma has been proved in [18]. It remains to prove the
second equation. In fact,

− lim
t→0

∂v
∂t

= − lim
t̃→0

1
ρQ−2 ρ−4k ∂u(x̃, ỹ, t̃)

∂t̃

=
1

ρQ+4k−2 g(u). (15)

3. Proof of Theorem 1

The proof of Theorem 1 uses the moving plane argument. Note that the function v
might be singular at the origin and that

lim
ρ→0

ρQ−2v(r, t) = u(0). (16)

We have previously seen that v satisfies the equation −∆Lv(x, y, t) = 1
ρQ+2 f (ρQ−2v(x, y, t)), in R2n+1 \ {0},

− ∂v(x,y,t)
∂t = 1

ρQ+4k−2 g(ρQ−2v(x, y, t)) on ∂R2n+1 \ {0}.
(17)

We define h(t) = f (t)

t
Q+2
Q−2

, l(t) = g(t)

t
Q+4k−2

Q−2
, and we obtain

f (ρQ−2v) = h(ρQ−2v)ρQ+2v
Q+2
Q−2 ,

and
g(ρQ−2v) = l(ρQ−2v)ρQ+4k−2v

Q+4k−2
Q−2 ,

then, the above equation can also be written as
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 −∆Lv(x, y, t) = h(ρQ−2v(x, y, t))v(x, y, t)
Q+2
Q−2 , in R2n+1 \ {0},

− ∂v(x,y,t)
∂t = l(ρQ−2v(x, y, t))v(x, y, t)

Q+4k−2
Q−2 , on ∂R2n+1 \ {0}.

(18)

Let Σµ = {(x, y, t) ∈ R2n+1|t ≥ µ}, Tµ = ∂Σµ = {(x, y, t) ∈ R2n+1|t = µ}, and
pµ = (0, 0, 2µ). We compare the values of the solution v on Σµ with those on its reflection.
Let

vµ(x, y, t) = vµ(r0, t) = v(r0, 2µ− t) = v(y, x, 2µ− t),

for any (x, y) such that (x2 + y2)
1
2 = r0. It is easy to see that vµ satisfies the same equation

as v does, that is −∆Lvµ(x, y, t) = h(ρQ−2
µ vµ(x, y, t))vµ(x, y, t)

Q+2
Q−2 , in R2n+1 \ {0},

− ∂vµ(x,y,t)
∂t = l(ρQ−2

µ vµ(x, y, t))vµ(x, y, t)
Q+4k−2

Q−2 , on ∂R2n+1 \ {0}.
(19)

If we define wµ(ξ) = vµ(ξ)− v(ξ), then we can get the following key lemma.

Lemma 3. For any fixed µ > 0, the function vµ, v ∈ L2](Σµ) ∪ L∞(Σµ) with 2] = 2Q
Q−2 .

Furthermore, there exists Cµ > 0, which is nonincreasing in µ, such that∫
Σµ

|∇L(v− vµ)
+|2dξ

≤ Cµ

[(∫
Aµ

1
ρ2Q dξ

) 2
Q
+

(∫
Bµ

1
ρ2kQ dξ

) 2
Q
](∫

Σµ

|∇L(v− vµ)
+|2dξ

)
,

(20)

where Aµ = {(x, y, t) ∈ Σµ|v > vµ}, Bµ = {(x, y, t) ∈ ∂Σµ|v > vµ, t = 0}.

Proof. If µ > 0, then there exists r > 0, such that Σµ ⊂ R2n+1 \ Br(0); moreover, v is
continuous and strictly positive in R2n+1 \ {0}, with a possible singularity at the origin, and
decays at infinity as u(0)ρ2−Q, so that v ∈ L2] ∩ L∞(Σµ). Now, we give a cylinder cut-off
function 0 ≤ ηε ≤ 1, such that

ηε =

{
1, if 2ε ≤ |ξ − pµ| ≤ 1

ε ,

0 if |ξ − pµ| ≤ ε or |ξ − pµ| ≥ 2
ε ,

(21)

|∇Lηε| ≤ C
ε for ε < |ξ − pµ| ≤ 2ε and |∇Lηε| ≤ Cε for 1

ε ≤ |ξ − pµ| ≤ 2
ε .

Next, ψ = ηε(v− vµ)+ can be used as a test function, and we denote φ = η2
ε(v− vµ)+;

then we have ∫
Σµ∩{2ε≤|ξ−pµ |≤ 1

ε }
|∇L(v− vµ)

+|2dξ ≤
∫

Σµ

|∇Lψ|2dξ

=
∫

Σµ

∇L(v− vµ)
+∇Lφdξ +

∫
Σµ

[(v− vµ)
+]2|∇Lηε|2dξ

=
∫

Aµ

−∆L(v− vµ)φdξ +
∫

Bµ

∂(v− vµ)

∂ν
φdξ ′ + Iε

=
∫

Aµ

[
h(ρQ−2v)v

Q+2
Q−2 − h(ρQ−2

µ vµ)v
Q+2
Q−2
µ

]
φdξ

+
∫

Bµ

[
l(ρQ−2v)v

Q+4k−2
Q−2 − l(ρQ−2

µ vµ)v
Q+4k−2

Q−2
µ

]
φdξ ′ + Iε, (22)
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where Iε =
∫

Σµ
[(v− vµ)+]2|∇Lηε|2dξ.

Due to the monotonicity of h, l, ρ > ρµ and v(ξ) > vµ(ξ) in Aµ and Bµ, we have

h(ρQ−2v) ≤ h(ρQ−2
µ vµ), (23)

and
l(ρQ−2v) ≤ l(ρQ−2

µ vµ), (24)

in Aµ and Bµ, respectively. Hence, we get∫
Σµ∩{2ε≤|ξ−pµ |≤ 1

ε }
|∇L(v− vµ)

+|2dξ

≤
∫

Aµ

h(ρQ−2v)[v
Q+2
Q−2 − v

Q+2
Q−2
µ ]φdξ

+
∫

Bµ

l(ρQ−2v)[v
Q+4k−2

Q−2 − v
Q+4k−2

Q−2
µ ]φdξ ′ + Iε. (25)

Moreover, since u is positive and bounded, there exists 0 < a = aµ < b = bµ < +∞
such that a < ρQ−2v(ξ) = u(ξ̃) < b, ∀ξ, ξ̃ ∈ Σµ \ Br(0), so that h(ρQ−2v(ξ)) ≤ h(aµ) =: C1

µ.
Finally, if 0 ≤ vµ ≤ v, we conclude that

∫
Aµ

h(ρQ−2v)[v
Q+2
Q−2 − v

Q+2
Q−2
µ ]φdξ ≤ C1

µ

∫
Aµ

v
4

Q−2 (v− vµ)φdξ

≤ C1
µ

∫
Aµ

1
ρ4 [(v− vµ)

+]2η2
ε dξ

≤ C1
µ(
∫

Aµ

1
ρ2Q dξ)

2
Q (
∫

Σµ

[(v− vµ)
+]

2Q
Q−2 dξ)

Q−2
Q , (26)

in the last inequality, we have used the Hölder’s inequality.
Similarly, by the decay estimate of v, there exists C2

µ > 0, which is nonincreasing in µ,
so that ∫

Bµ

l(ρQ−2v)[v
Q+4k−2

Q−2 − v
Q+4k−2

Q−2
µ ]φdξ ′ ≤ C2

µ

∫
Bµ

v
4k

Q−2 (v− vµ)φdξ ′

≤ C2
µ

∫
Bµ

1
ρ4k [(v− vµ)

+]2η2
ε dξ ′

≤ C2
µ(
∫

Bµ

1
ρ2kQ dξ ′)

2
Q (
∫

Σµ

[(v− vµ)
+]

2Q
Q−2 dξ ′)

Q−2
Q . (27)

Therefore, it follows from the above inequalities that∫
Σµ∩{2ε≤|ξ−pµ |≤ 1

ε }
|∇L(v− vµ)

+|2dξ

≤ C1
µ(
∫

Aµ

1
ρ2Q dξ)

2
Q (
∫

Σµ

[(v− vµ)
+]

2Q
Q−2 dξ)

Q−2
Q

+ C2
µ(
∫

Bµ

1
ρ2kQ dξ)

2
Q (
∫

∂Σµ

[(v− vµ)
+]

2Q
Q−2 dξ ′)

Q−2
Q + Iε. (28)

We claim now that Iε → 0 as ε→ 0. If we denote

Bε = {ξ ∈ Σµ|ε < |ξ − pu| < 2ε or
1
ε
< |ξ − pu| < 2

ε
},



Mathematics 2023, 11, 61 7 of 10

then we get ∫
Bε

|∇Lηε|dξ ≤ C.

Hence, we infer from Hölder’s inequality that

Iε ≤
(∫

Bε

[(v− vµ)
+]2

]
dξ

) 2
2]
(∫

Bε

|∇Lηε|Qdξ

) 2
Q
≤ C

(∫
Bε

[(v− vµ)
+]2

]
dξ

) 2
2] → 0,

as ε→ 0 because (v− vµ)+ ∈ L2](Σµ).
Finally, suppose for some ε → 0 in Equation (28), and set Cµ = C1

µS + C2
µST with S

being the Sobolev constant and ST being the Sobolev trace inequality constant, then we
obtain ∫

Σµ

|∇L(v− vµ)
+|2dξ

≤ Cµ

[
(
∫

Aµ

1
ρ2Q dξ)

2
Q + (

∫
Bµ

1
ρ2kQ dξ ′)

2
Q

](∫
Σµ

|∇L(v− vµ)
+|2dξ

)
. (29)

We note that inequality (29) plays the same role as the maximum principle. If we
can prove

Cµ

[
(
∫

Aµ

1
ρ2Q dξ)

2
Q + (

∫
Bµ

1
ρ2kQ dξ ′)

2
Q

]
< 1,

then we get v ≤ vµ in Σµ, the same conclusion as the maximum principle implies.
The next lemma shows that

wµ(ξ) = vµ(ξ)− v(ξ) ≥ 0, ∀ξ ∈ Σµ. (30)

Lemma 4. Under the assumptions of Theorem 1, there exists some µ0 > 0, such that v ≤ vµ in
Σµ for all µ > µ0.

Proof. By the decay behavior of v, see Equation (16), we can choose µ0 large enough such
that

Cµ

[
(
∫

Aµ

1
ρ2Q dξ)

2
Q + (

∫
Bµ

1
ρ2kQ dξ)

2
Q

]
≤ 1

2
,

then Equation (29) implies that ∫
Σµ

|∇L(v− vµ)
+|2dξ = 0,

the assertion follows.

We now decrease the value of µ continuously, that is, we move the plane Σµ to the left
as long as inequality (30) holds. We show that by moving in this way, the plane will not
stop before hitting the origin. More precisely, let

µ1 = inf{µ|wµ(ξ) ≥ 0, ∀ξ ∈ Σµ̄, µ̄ ≥ µ}.

Lemma 5. If µ1 > 0, then wµ1(ξ) ≡ 0 for all ξ ∈ Σµ1 .

Proof. Arguing by contradiction, we claim that the plane Σµ1 can still be moved a small
distance to the left. More precisely, there exists a δ0 > 0, such that, for all 0 < δ < δ0, we
have

wµ1−δ(ξ) ≥ 0, ∀ξ ∈ Σµ1−δ. (31)
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This would contradict with the definition of µ1, and hence (30) holds. Now, we prove our
claim. Suppose that wµ1(ξ) 6≡ 0, then we infer from the continuity that wµ1 ≥ 0. At the
same time, from f being nondecreasing and (ii) in Theorem 1, we have

h(ρQ−2v)v
Q+2
Q−2 =

f (ρQ−2v)
ρQ+2 ≤

f (ρQ−2vµ1)

ρQ+2 =
f (ρQ−2vµ1)

[ρQ−2vµ1 ]
Q+2
Q−2

v
Q+2
Q−2
µ1

≤
f (ρQ−2

µ1 vµ1)

[ρQ−2vµ1 ]
Q+2
Q−2

v
Q+2
Q−2
µ1 = h(ρQ−2

µ1 vµ1)v
Q+2
Q−2
µ1 . (32)

The above inequality implies

−∆Lv ≤ −∆Lvµ1 ,

and, from the strong maximum principle in [18]

wµ1 > 0 in the interior of Σµ1 . (33)

Moreover, since 1
ρ2Q χAµ

→ 0, 1
ρ2Q χBµ → 0, almost everywhere as µ → µ1, and

1
ρ2Q χAµ

≤ 1
ρ2Q χΣµ1−δ

, 1
ρ2Q χBµ ≤ 1

ρ2Q χΣµ1−δ
for µ ∈ [µ1 − δ, µ1] for some δ > 0, then from the

dominated convergence theorem, there holds∫
Aµ

1
ρ2Q dξ → 0,

and ∫
Bµ

1
ρ2kQ dξ ′ → 0,

as µ→ µ1. In particular, there exists δ > 0, such that

Cµ

[(∫
Aµ

1
ρ2Q dξ

) 2
Q
+

(∫
Bµ

1
ρ2kQ dξ ′

) 2
Q
]
≤ 1

2
,

for all µ ∈ [µ1 − δ, µ1], it follows from Lemma 4 that v ≤ vµ for all µ ∈ [µ1 − δ, µ1]; this
contradicts the definition of µ1.

Lemma 6. Let f , g be as in Theorem 1 and assume also that u is positive. Let v be the CR inversion
of u centered at a point p = (0, 0, t0); then v is symmetric with respect to Tt0 .

Proof. We use the method of moving planes to prove this lemma. If µ1 > t0, then we know
from Lemma 5 that v is symmetric with respect to Tµ1 . On the other hand, the symmetry
together with Equations (18) and (19) imply that |ξµ| = |ξ|. By the assumption, either h or l
is not a constant, which is impossible, hence we get µ1 ≤ t0. Similarly, we can also move the
plane from the left and find a corresponding µ′1 ≥ t0. Finally, we infer from vµ1(ξ) ≥ v(ξ)
and vµ′1

≤ v(ξ) that µ1 = µ′1 = t0, that is, v hence u is symmetric with respect to Tt0 .

The following result from [6] plays a role in our proof.

Theorem 7. Let u ∈ C0(RN
+) be a nonnegative solution of problem (5), where f , g : [0,+∞)→

[0,+∞) are continuous functions with the properties
(i) f (t), g(t) are nondecreasing in (0, ∞).
(ii) h(t) = f (t)

t
N+2
N−2

, k(t) = g(t)

t
N

N−2
are nonincreasing in (0, ∞).

Then u ≡ c with f (c) = g(c) = 0.



Mathematics 2023, 11, 61 9 of 10

Proof of Theorem 1. By Lemma 6, we have that, for any t0 ∈ R, the CR inversion function
v of u at p = (0, 0, t0) is symmetric with respect to Tt0 . Since t0 is arbitrary, then we have
that u is independent of t, that is, u is a solution of{

−∆u = f (u), in R2n
+ ,

− ∂u
∂t = g(u) on ∂R2n

+ .
(34)

Since f , g is nondecreasing in (0, ∞), and

f (t)

t
2n+2
2n−2

=
f (t)

t
Q+2
Q−2

t
Q+2
Q−2−

2n+2
2n−2 , (35)

and

g(t)

t
2n

2n−2
=

g(t)

t
4k

Q−2
t

4k
Q−2−

2n
2n−2 , (36)

is decreasing in t, then Theorem 7 implies that u ≡ c with f (c) = g(c) = 0.

4. Discussion

A useful tool for the study of symmetry for semi-linear equations with critical growth
in Rn or in a ball is the moving planes method. This paper studied Liouville properties for
semi-linear elliptic equations with general nonlinearity; the moving planes method based
on integral inequalities was used to prove the Liouville theorem. As is known, when k = 1,
∆L becomes the sub-Laplacian ∆Hn on the Heisenberg group Hn, the nonexistence results
for any positive of semi-linear or fully nonlinear equations in the Heisenberg group need
further study.
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