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Abstract: Portfolio selection models based on second-order stochastic dominance (SSD) have the
advantage of providing portfolios that reflect the behavior of risk-averse investors without the need
to specify the utility function. Several scholars apply SSD conditions with respect to a reference
distribution, typically that of the market index, to find its dominant SSD portfolio. However, since
the reference distribution could strongly influence asset allocation, in this article, we compare two
SSD-based portfolio selection strategies with a reshaping of the reference distribution in terms of
its skewness and, consequently, its variance. Through an extensive empirical analysis based on
multiasset investment universes, we empirically show that the SSD portfolios dominating the new
skewed benchmark index generally perform better.

Keywords: stochastic dominance; portfolio optimization; reference distribution; skewness; multiasset
investment
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1. Introduction

Stochastic dominance (SD) criteria have acquired significant relevance in portfolio
selection problems thanks to their interesting theoretical properties and connection with
expected utility theory (EUT). SD provides a partial order in the random returns space
and considers the whole information regarding the distribution of the random portfolio
return. Furthermore, portfolio selection strategies based on SD rules can overcome the
issue of specifying a subjective utility function of investors (see, for example, Levy [1]).
In a nutshell, an SD-based choice is able to satisfy all individuals represented by utility
functions belonging to a class of functions with some general characteristics [2].

The concept of SD in financial applications dates back to Quirk and Saposnik [3], who
originally introduced the first-order stochastic dominance (FSD) approach into the EUT
framework based primarily on the monotony of investor preferences (i.e., the nonsatiety
axiom). However, since FSD conditions do not express any investor’s attitude to risk, they
are very restrictive, namely, they have a poor ability to order random variables. Later on,
Hadar and Russell [4], Hanoch and Levy [5], and Rothschild and Stiglitz [6] introduced
the second-order stochastic dominance (SSD) criterion. SSD offers the investor a selection
criterion also based on risk (e.g., volatility). Therefore, agents try to find the balance
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between reward and risk and, in this sense, since their utility functions share certain
properties, the SD approach could ensure rules of unanimity [2].

Among those who contributed to SSD with relevant results, we can also mention the
studies of Ogryczak and Ruszczynski [7,8]. First, they compare stochastic dominance versus
mean-risk approaches where the “former is based on an axiomatic model of risk-averse
preferences but does not provide a convenient computational recipe” [7]. Nevertheless, the
SD approach considers the whole returns distributions, whereas a gain-risk model only
uses a few statistics and, therefore, typically ignores many aspects of the return distribution.
On the other hand, a gain-risk model is easy to use and simple to explain, and has the
merit to describe the problem via a trade-off analysis. However, using variance as a risk
measure, “the resulting mean-variance (Markowitz) model is, in general, not consistent
with stochastic dominance rules” [7]. In [8], the authors provide some necessary conditions
for stochastic dominance, which are connected to the location and dispersion parameters
of a random variable. For an overview of SSD, see Fabian et al. [9] and Valle et al. [10].

Regarding portfolio selection, several contributions are provided in the literature about
portfolio efficiency in terms of SSD, with respect to a set of feasible portfolios. For instance,
Kuosmanen [11] developed practical tests for portfolio efficiency based on the SD criteria
with a linear programming structure. Roman et al. [12] presented a portfolio selection
model where the optimal solution dominates an (appropriate) reference distribution with
respect to SSD. Fabian et al. [13] tackled the computational burden issues that typically
affect the SD approach by solving the SSD-based models with cutting plane techniques.
Using these findings, Roman et al. [14] then empirically investigated the effectiveness
and computational improvement of the SSD-based models for addressing the enhanced
indexation problem. More recently, Kopa and Post [15] developed a general test for
SSD portfolio efficiency with a primal–dual representation that accounts for portfolio
inefficiencies, using a linear programming formulation. The authors also provided a
compact, reduced version of that test, which proved to be less computationally demanding.

Since SSD approaches select portfolios that are dominant with respect to a given
benchmark index, the shape of its distribution could be a crucial issue. In this regard,
Valle et al. [10] presented a novel portfolio optimization approach, where the reference
distribution is reshaped, in order to select SSD-efficient portfolios that provide more
appealing features [16].

This paper aims to compare the SSD models of Roman et al. [14] and Kopa and
Post [15], where the distribution of the benchmark index is reshaped in terms of its skewness
and, consequently, its variance (similarly to [10]). For this, we provide an empirical analysis
based on four real-world datasets, consisting of multiasset investment universes: equity,
bonds, ETFs, and commodities. We test the two SSD strategies with and without the skewed
benchmark, along with the global minimum variance portfolio. Our empirical findings
confirm that improving the benchmark index distribution leads to selecting SSD portfolios
with superior out-of-sample performance results. Furthermore, among the set of reshaped
benchmarks analyzed, we found that the approach of the model of Roman et al. [14] shows
a greater ability to select SSD portfolios than that of Kopa and Post [15].

The rest of the paper is organized as follows. In Section 2, we introduce some pre-
liminary concepts on the most commonly used exact stochastic dominance criteria. In
Section 3, we first report the aforementioned SSD-based portfolio selection models of
Roman et al. [14] and Kopa and Post [15]. Then, we discuss the procedure of reshaping
the benchmark index used in both SSD models. In Section 4, we present and discuss the
computational results of the empirical analysis based on real-world data, comparing the
out-of-sample performance of the “improved” SSD-portfolios with respect to the original
ones. Finally, Section 5 contains some concluding remarks and outlines possible future
research such as third-order SD [17–19].
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2. Theoretical Framework

In this section, we discuss some preliminary concepts on stochastic dominance rules,
which have connections with expected utility theory (EUT). According to EUT, an invest-
ment is preferred over another if its expected utility is greater. This implies that all possible
investments can be ranked and there is no situation where two bets cannot be compared
(axiom of complete ordering). However, the EU criterion requires the specification of the
investor’s utility function u(·), which is a subjective matter. On the other hand, the stochas-
tic dominance criteria do not require knowledge of the exact form of the utility function.
Indeed, these criteria can satisfy all individuals represented by utility functions belonging
to a class of functions with some general features.

For the sake of readability, we recall here the most commonly used exact stochastic
dominance criteria. Let X and Y be two random variables, whose cumulative distribution
functions (CDF) are FX(α) = P(X ≤ α) and FY(α) = P(Y ≤ α), respectively, where α ∈ R.

Definition 1 (First-order stochastic dominance (FSD)). X FSD-dominates Y if and only if

FX(α) ≤ FY(α) ∀α ∈ R, (1)

or, in terms of expected utility,

E[u(X)] ≥ E[u(Y)] ∀u ∈ U1 , (2)

where U1 denotes the class of all nondecreasing utility functions u.
Note that both for relations (1) and (2), at least one inequality must be strict. Furthermore, the

equivalence between (1) and (2) can be found, e.g., in [20].

Definition 2 (Second-order stochastic dominance (SSD)). X FSD-dominates Y if and only if∫ α

−∞
FX(t)dt ≤

∫ α

−∞
FY(t)dt ∀α ∈ R, (3)

or, in terms of expected utility,

E[u(X)] ≥ E[u(Y)] ∀u ∈ U2 , (4)

where U2 indicates the class of all nondecreasing and concave utility functions u.
Again, for relations (3) and (4), it is required that at least one inequality must be strict. Note that
the equivalence of (3) and (4) can be found, for example, in [20].

As shown by [21], the inequalities (3) are equivalent to the following relations:

E[max(α− X, 0)] ≤ E[max(α−Y, 0)] ∀α ∈ R (5)

Furthermore, the inequalities (5) can also be expressed in terms of tails, as discussed
in [22]. More precisely, X SSD-dominates Y if and only if

Tailβ(X) ≥ Tailβ(Y) ∀β ∈ (0, 1]. (6)

where Tailβ(X) represents the unconditional expectation of the worst β · 100% of the
outcomes of X. In the case that X and Y represent random returns, this ensures that the tail
of Y is fatter than the tail of X; therefore, Y is riskier than X.

The SSD rule is less demanding than that of FSD. More precisely, given an SD criterion
of order v, as the order increases, the requirements of v+ 1-SD condition become less restric-
tive. Specifically, as described in [20], a stochastic dominance of the lower orders implies a
stochastic dominance of the higher orders, while the opposite is not necessarily true.
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3. Portfolio Selection via SSD Criteria

In this section, we describe two SSD models applied to portfolio selection that have
received a large amount attention in the literature: the model developed by Roman–Mitra–
Zverovich (RMZ) [14] and that of Kopa–Post (KP) [15].

The first approach aims to address the problem of enhanced indexation (EI). Given a
benchmark index, the said approach consists of selecting a portfolio that is able not only
to replicate it but at the same time also generate an additional return compared to the
benchmark. This investment strategy is often referred to as active, differently from the index
tracking problem that is defined as passive, and aims to replicate a given reference index. A
comprehensive survey of these problems can be found in [23–28] for IT, and in [24,29–34]
for EI. Furthermore, as shown by Agrrawal [35], a multiasset-class diversified portfolio,
based on passive but liquid ETFs, can perform well “in mean–variance space and under
varying market conditions, including the very adverse 2008 market crash”.

The KP approach is originally developed as an LP test aimed at investigating whether
a given portfolio dominates another with respect to SSD. It represents a generalization of
the tests developed by Post in [36]. In [15], the authors also propose a dual formulation
of their portfolio efficiency test, which has an interesting interpretation in terms of tails
(see Section 3.2). As mentioned in the introduction, in this work, we compare the RMZ and
KP models by appropriately reshaping the benchmark (see Section 3.3), and test them, in
terms of performance, on multiasset investment universes.

In the remaining part of the section, we consider the asset returns defined on a discrete
sample space with T states of the nature, where each state has a probability of occurrence
equal to πt with t = 1, . . . , T. Furthermore, we use here a look-back approach, where the
outcomes of the discrete random returns correspond to the historical scenarios, which
are equally likely, i.e., πt = 1

T ∀t, as typically assumed in portfolio optimization (see,
e.g., [37–39] and references therein). Thus, denoting by pit the price of asset i at time t, the
linear return of asset i at time t is rit =

pit−pi(t−1)
pi(t−1)

with i = 1, . . . , n (n is the number of assets

in the investment universe) and with t = 1, . . . , T (T is the length of an in-sample window
of historical realizations). Hence, for a given vector of portfolio weights x = (x1, x2, . . . , xn),
where xi denotes the fraction of capital invested in the i-th asset, adopting linear returns,
we have that Rt(x) = ∑n

i=1 xirit is the portfolio return at time t.
The RMZ and KP models examined in this work are then used to find portfolios x

whose returns R(x) SSD-dominate those of a given benchmark index RI .
Note that if we denote by R(1)(x) ≤ . . . ≤ R(T)(x) the ordered outcomes of the

portfolio return, and by RI
(1) ≤ . . . ≤ RI

(T) the ordered outcomes of the benchmark index
return, then

• R(x) FSD-dominates RI iff

R(j)(x) ≥ RI
(j) ∀ j = 1, . . . , T (7)

• R(x) SSD-dominates RI iff

j

∑
t=1

R(t)(x) ≥
j

∑
t=1

RI
(t) ∀ j = 1, . . . , T (8)

Since in the case of discrete random returns we have that Tail j
T
(R(x)) = 1

T ∑
j
t=1 R(t)(x),

Conditions (8) are equivalent to (6). Recalling that CVaR j
T
(R(x)) = − 1

j ∑
j
t=1 R(t)(x),

then Tail j
T
(R(x)) = − j

T CVaR j
T
(R(x)). As a consequence, requiring that Tail j

T
(R(x)) ≥

Tail j
T
(RI) is equivalent to imposing CVaR j

T
(R(x)) ≤ CVaR j

T
(RI) for all j = 1, . . . , T.
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3.1. The Mitra–Roman–Zverovich Model

In this section, we describe the model proposed by Roman, Mitra, and Zverovich
in [14]. The authors developed a multiobjective approach aimed at finding a portfolio x
which dominates a given benchmark index with respect to SSD. Due to the aforementioned
relationship between CVaR and tail, this approach can be expressed by both quantities.
This then gives rise to two different formulations of the multiobjective problem, leading, in
general, to different solutions (see Remark 1 in [14]). However, since the model with CVaR
seems to show better out-of-sample performance with respect to that with tail (for more
details, see [14]), in this paper, we consider only the most promising formulation, which
we report below for the sake of exposition.

min
x

[
(CVaR 1

T
(R(x))− CVaR 1

T
(RI)), . . . , (CVaR T

T
(R(x))− CVaR T

T
(RI))

]
s.t. x ∈ C

(9)

where C is a polyhedron. Among the infinite Pareto-optimal points of Problem (9) [14],
consider the one obtained through the minimax scalarization as follows:

min
x

max
1≤j≤T

(CVaR j
T
(R(x))− CVaR j

T
(RI))

s.t. x ∈ C .
(10)

As shown in [13], a cutting plane representation of CVaR can be used. Thus, as
proposed by [40], for all j = 1, . . . , T, this approach leads to the following expressions:

CVaR j
T
(R(x)) = max

x

1
j ∑

j∈S
−R(j)(x)

such that S⊂ {1, . . . , T}, |S| = j,
(11)

where |S| represents the cardinality of S. Hence, Problem (10) can be reformulated as
follows:

min
x,θ

θ

s.t.

θ + CVaR j
T
(RI) ≥ 1

j ∑
j∈Sj

−R(j)(x) ∀Sj ⊂ {1, . . . , T}, |Sj| = j j = 1, . . . , T

n

∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

θ ∈ R

(12)

Although a large number of cuts may be required, in practice, this formulation yields
the solution after a few cuts. Note that if the optimal value function θ? of Problem (12) is
nonpositive, then the corresponding optimal portfolio x? is SSD-efficient. On the other
hand, if θ? > 0, then x? is almost SSD-efficient in the sense of [41] with ε = θ?.

3.2. The Kopa–Post Model

As mentioned above, in [15] the authors proposed an LP test to evaluate whether
a fixed portfolio is SSD-efficient with respect to all feasible portfolios represented by a
polytope. On the one hand, their primal LP model shows an interesting interpretation in
terms of utility functions; on the other hand, the dual formulation of this portfolio efficiency
test has an appealing characterization in terms of tails and, as a further result, can select,
if it exists, another portfolio (belonging to a polytope) that SSD-dominates the initially
fixed portfolio. In this study, we then test the dual KP model which we report below
for convenience.
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max
x,d

T

∑
j=1

wjdj

s.t.

Tail j
T
(R(x))− Tail j

T
(RI) ≥ dj j = 1, . . . , T

n

∑
i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

dj ≥ 0 j = 1, . . . , T

(13)

We implement Problem (13) in its LP formulation, namely, Model (10) of [15], where
the positive weights wj, with j = 1, . . . , T, are chosen as in [42]. More precisely, we use the
following weighting scheme of [42] denoted by the acronym KP2011Power3:

wj =


u′(1 + RI

j )− u′(1 + RI
j+1)

u′(1 + RI
j )

for j = 1, . . . , T − 1

u′(1 + RI
j )

u′(1 + RI
1)

for j = T

where u(1 + RI
t ) =

(1 + RI
t )

1−α

1− α
, u′(1 + +RI

t ) = (1 + +RI
t )
−α, and α = 3 is the risk

aversion parameter.

3.3. Reshaping the Reference Distribution

In this section, we briefly provide some details on the reshaping procedure of the
reference distribution applied for both the RMZ and KP approaches. As mentioned above,
the RMZ and KP models examined in this work are used to find a portfolio x whose
return R(x) SSD-dominates that of a given benchmark index RI . Note that the shape of the
benchmark distribution could be a crucial issue for both models. In this regard, the aim is
to reshape the original benchmark distribution, thus yielding a new (synthetic) distribution
that should generate in the two models portfolios with better-performing returns [16,43],
such as a higher expected return and skewness. Clearly, the reshaping of the original index
has to be made so that the SSD-based optimization problems, in the case that (12) and (13),
remain feasible.

Let µI , σI , and γI , respectively, denote the mean, standard deviation, and skewness of
a fixed benchmark index RI . The goal is to obtain a new improved benchmark index, R̃I ,
with the parameters µ̃I , σ̃I , and γ̃I , which coincide with target values µI , σI and γI , that
are specified a priori. For this purpose, we follow the reshaping method provided by Valle
et al. [10], who introduce an algorithmic procedure to construct a synthetic distribution
with specified target values for its first three moments. This procedure is based on the
quadratic curve equating method introduced by Wang and Kolen [44], which guarantees to
preserve the first three moments of a distribution (see also [45]).

As suggested by Valle et al. [10], the target values µI , σI , and γI have to be consistent
or, at least, not independent, from the original parameters µI , σI , and γI , since it may
make it more challenging to obtain efficient portfolios that SSD-dominate the improved
benchmark index. Therefore, we consider two multiplicative parameters, ∆γ and ∆σ, by
which we compute the deviation of the target skewness γI and standard deviation σI from
the original values γI and σI , respectively. More precisely, we consider

σI = σI + σI∆σ

γI = γI + |γI |∆γ ,

where ∆σ ≥ −1 and ∆γ ≥ 0.
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In the empirical analysis, we follow the same empirical setup of [10]. More precisely,
we set the mean of the reshaped distribution µI = µI , since the out-of-sample performance
results seem to be poorly affected by large variations in the mean target value µI . Further-
more, we test several values of the two multiplicative parameters ∆σ and ∆γ, spanning
the intervals [−0.1, 0.5] and [0, 5], respectively, with step size equal to 0.1. Clearly, when
∆σ = 0 and ∆γ = 0, σI = σI and γI = γI , namely, we obtain the original benchmark
distribution. Note that, for the sake of space, in the empirical analysis we provide only
those results that are significant for discussion and for which the RMZ model and the KP
model, with the new improved benchmark index R̃I , guarantee SSD portfolios (i.e., admit
optimal solutions). Indeed, we observe that in the KP model, the corresponding optimal
portfolio, if it exists, exactly satisfies conditions (6), namely, Problem (13) always provides
an SSD-efficient portfolio. On the other hand, as discussed in Section 3.1, for the RMZ
model (12), the corresponding optimal portfolio can be SSD-efficient or almost SSD-efficient.
Therefore, it follows that the RMZ model is less demanding than the KP model, namely,
the RMZ approach shows a greater ability to select SSD portfolios than the KP one. Thus,
in the empirical analysis, we expect that when reshaping the reference index by varying ∆σ

and ∆γ, more infeasible situations occur with the KP model than with the RMZ model.

4. Empirical Analysis and Discussion

This section reports the empirical analysis based on four real-world datasets, consist-
ing of multiasset investment universes, in which we test and compare the RMZ model [14]
and the KP model [15] with the new improved benchmark index R̃I described in Section 3.3.
More precisely, in Section 4.1 we describe the datasets considered and the experimental
setup of the empirical analysis. Section 4.2 introduces a broad description of the perfor-
mance measures used to evaluate the out-of-sample performances of the SSD-efficient
portfolios. Then, in Section 4.3, we compare the out-of-sample performance of the “im-
proved” SSD-portfolios with respect to the original ones.

All experiments were executed on a workstation with Intel(R) Xeon(R) CPU E5-2623
v4 (2.6 GHz, 64 gigabyte RAM) under Windows 10 Pro, using Matlab R2022a.

4.1. Datasets and Experimental Setup

The experiments were conducted on the following real-world datasets, which take into
account both corporate actions and income generating events, as obtained from Refinitiv
(Datastream). Regarding returns, we refer the reader to the paper of Agrrawal et al. [46]
highlighting the fact that, at the time of the investigation, “most prominent finance web-
sites excluded income-generating events such as dividends and interest” in comparative
return graphics.

• Euro Stoxx 50 (ES50) is a stock index of the Eurozone, which includes the 50 largest-cap
companies. It consists of the prices (in EUR) adjusted for dividends and stock splits,
of 46 assets, with weekly frequency (from 2 January 2006 to 2 May 2022).

• Euro Bonds (EuroBonds) is a bond index of the Eurozone sovereign bonds of 11
countries. It contains the weekly total return indices of 72 assets, with maturities
ranging from 1 to 30 years (from 1 January 2008 to 25 October 2022).

• ETF Emerging countries (ETF) is an ETF index of 22 emerging countries, and it consists
of the total return indices (in USD) of 22 assets, with weekly frequency (from 1 January
2008 to 25 October 2022).

• Commodities and Italian Bonds (CIB) is a mixed index of commodities (agriculture,
gold, energy, industrial metals) and Italian sovereign bonds, with maturities ranging
from 1 to 30 years. It contains the weekly total return indices of 12 assets, with weekly
frequency (from 1 January 2008 to 25 October 2022).

As described above, we aim to compare the RMZ and KP models, where the distribu-
tion of the benchmark index is reshaped in terms of its skewness and its variance. In our
empirical analysis, the benchmark is represented by the ES50 market index for the equity
universe, while we define an equally-weighted benchmark portfolio for the other datasets
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(for a similar approach, see [35]). We adopt a rolling time window scheme of evaluation,
namely, we allow for the possibility of rebalancing the portfolio composition during the
holding period, at fixed intervals. The length of the in-sample windows is set to 2 years
(i.e., 104 weekly observations), while we consider one financial month (i.e., 4 weekly obser-
vations) for both the rebalancing and holding period (namely, the out-of-sample window).
Then, we shift the in-sample window by 1 month, we again compute the optimal portfolio
with respect to the new in-sample window, and therefore we evaluate the out-of-sample
portfolio performance for the subsequent 1 month. This procedure is repeated up to the end
of the time series of available returns. Finally, we collect all the computed out-of-sample
portfolio returns, which are evaluated using several performance measures, described in
the next section.

We point out that we choose to adopt a 2-year period for the in-sample window based
on the empirical setup of [32,47], and of some preliminary tests. Furthermore, this choice
also addresses the problem of the stability of the solutions for estimation errors of the
covariance matrix, used in the GMinV model. Indeed, in the empirical setup we took into
account some insights from the literature (see, e.g., [48,49]). Since the estimation error
strongly depends on n and T, we set the length of the in-sample windows so that n < T,
where n represents the number of assets available in the market and T is the number of
observations considered. As a consequence, the perturbation of the input data becomes
less significant, and we do not have any instability problems due to the singularity of the
covariance matrix.

We then perform the following steps:

Step 1: Increase the skewness of the benchmark index RI by increasing the multiplica-
tive parameter ∆γ, until Models (12) and (13) admit optimal solutions (see
Section 3.3), and collect the resulting performances.

Step 2: For each performance measure, rank the computational result by assigning the
value 1 to the most performing outcome. Score the iterations, by computing the
median value of the overall performance rankings, and choose the iteration of
∆γ that provides the lowest score.

Step 3: Given the best value of ∆γ from Step 2, modify the volatility of the benchmark
distribution by varying ∆σ.

Step 4: Apply the scoring method as in Step 2, to choose the iteration of ∆σ that provides
the lowest score.

To evaluate the goodness of the reshaping procedure, we compare the performances of
the portfolios that SSD-dominate the reshaped benchmark with those obtained by the
portfolios that SSD-dominate the original benchmark. For comparison purposes, we also
consider the global minimum variance portfolio (GMinV).

4.2. Performance Measures

As pointed out by Hodder et al. [42], while “Constructing portfolios based on second-
order stochastic dominance (SSD) is theoretically attractive since all risk-averse investors
would prefer a dominating portfolio. However, choosing among SSD efficient portfolios is a
challenge without an obvious ranking metric”. Thus, to evaluate the out-of-sample portfolio
results, various performance measures widely used in the literature (e.g., [43,47,50–53]) are
proposed. In the following, they are summarized for the reader’s convenience.

• µout is the average portfolio return, namelym µout = E[Rout], where Rout represents the
out-of-sample portfolio return. Clearly, the higher its value, the better the performance.

• σout is the standard deviation, i.e., σout =
√
E[(Rout − µ)2]. As one may expect, lower

values are associated with higher performances.
• The Sharpe ratio [54,55] is a measure of gain per unit of risk and is defined as

Sharpe =
µout − r f

σout
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where r f = 0, µout is the sample mean of the out-of-sample portfolio return Rout, and
σout is its standard deviation. The higher the Sharpe ratio, the better the portfolio
performance.

• The Sortino ratio [56] is defined as

Sortino =
µout − r f√

E[((Rout − r f )−)2]

where r f = 0 and (Rout − r f )
− = −min{Rout − r f , 0}. A higher value of Sortino ratio

is associated with better portfolio performance.
• The information ratio (InfoR) is defined as the expected value of the difference between

the out-of-sample portfolio return and that of the benchmark index, divided by the
standard deviation of such difference, namely,

In f oR =
E[Rout − Rout

I ]

σ[Rout − Rout
I ]

.

The larger its value, the better the portfolio performance.
• The turnover (see, e.g., DeMiguel et al. [57]) evaluates the amount of trading required

to put into practice the portfolio strategy and is defined as

Turnover =
1

Nreb

Nreb

∑
t=1

n

∑
k=1
| xt,k − xt−1,k |

where Nreb indicates the number of rebalances, xt,k represents the portfolio weight
of asset k after rebalancing, and xt−1,k is the portfolio weight before rebalancing
at time t. This definition of portfolio turnover is a proxy of the effective one and
evaluates the amount of trade generated by the models at each rebalancing time. Low
portfolio turnover indicates better portfolio performance (thus confirming that trading
is hazardous to wealth [58]).

• The Rachev ratio [59] is a measure of the relative gap between the mean of the best α%
values of Rout − r f and that of the worst β% ones. It is computed as

Rachev =
CVaRα(r f − Rout)

CVaRβ(Rout − r f )
,

with r f = 0 and α = β = 5%. A high Rachev ratio is preferred.
• The return on investment (ROI) is a performance measure used to analyze the prof-

itability of investments and is defined as the time-by-time return generated by a given
portfolio strategy [60], over a specified time horizon ∆τ. More formally, it is defined as

ROIP,τ =
WP,τ −WP,τ−∆τ

WP,τ−∆τ
τ = ∆τ + 1, . . . , T .

WP,τ−∆τ represents the amount of capital invested at the beginning of the time horizon,
while the portfolio wealth is given by WP,τ = WP,τ−∆τ ∏τ

t=τ−∆τ+1(1 + Rout
P,t ) with T

representing the number of historical observations. In our experiments, we fix ∆τ
equal to 3 years.

• The Jensen’s alpha is defined as the intercept of the line given by the linear regression
of Rout on Rout

I , namely,

α = E[Rout]− r f − β(E[Rout
I ]− r f )

where β = Cov(Rout, Rout
I )/σ2(Rout

I ).
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• The Omega ratio [61] is defined as

Ωη(x) =

∫ +∞
η (1− FRP(r))dr∫ η
−∞(FRP(r))dr

=
E[max(0, RP(x)− η)]

E[min(0, RP(x)− η)]
,

where FRout
P

is the cumulative distribution function of the out-of-sample portfolio
return and η = 0. In a nutshell, Omega is the ratio between the sum of positive
deviations of Rout

P from η and the sum of its negative deviations. Higher values of the
Omega ratio are always preferred.

4.3. Out-of-Sample Results

In this section, we report the out-of-sample performance results of the portfolios
obtained by the RMZ and KP models, and by the GMinV portfolio, on the datasets described
in Section 4.1. For reasons of clarity, we denote by RMZR and KPR the efficient portfolios
obtained by Models (12) and (13), respectively, with the reshaped benchmark index. We
also report the performances of the (original) benchmark market’s index, named INDEX.

4.3.1. ES50

In Tables 1–4, we report the results obtained by applying the reshaping procedure of
the benchmark index on the ES50 dataset. As mentioned in Section 3.3, we provide only
the results for which Problems (12) and (13), with the new improved benchmark index
R̃I , are feasible. In this regard, note that the highest increment of the skewness parameter
∆γ is equal to 2 for the RMZR model (Table 1), and it is 0.8 for the KPR model (Table 3),
since higher values of ∆γ do not provide feasible solutions. As highlighted in Table 1, for
the RMZR model, the best computational results are obtained when ∆γ = 1.7, in terms of
almost all performance measures. Furthermore, note that the volatility of the out-of-sample
returns (i.e., σout) tends to decrease as the target skewness of the improved benchmark
increases [62], which is a desirable feature to risk-averse investors. For ∆γ = 1.7, Table 2
shows that the overall most desirable performance results are obtained with ∆σ = 0.2,
which corresponds to a small increase in the reshaped benchmark volatility.

On the other hand, as reported in Table 3, for the KPR model, the best performance
(median) score is obtained when ∆γ = 0.6. Therefore, for ∆γ = 0.6, the best computational
results are obtained with ∆σ = −0.1, namely, when decreasing the standard deviation of
the benchmark distribution. In this case, the ensuing optimal portfolio’s return distribution
displays better risk characteristics in terms of lower standard deviation and higher tail
values [10] (see Table 4). Indeed, we observe that the portfolio performance generally tends
to worsen as ∆σ increases.

Finally, in Table 5, we summarize the out-of-sample performance results obtained by
the best RMZR and KPR portfolios, by the RMZ and KP models with the original benchmark
distribution, by the GMinV portfolio, and by the benchmark market’s index. Note that
the reshaping procedure generally enhances the performance of the SSD-based portfolio
strategies. Indeed, the RMZR and KPR portfolios show an improvement in terms of Sharpe,
Sortino, information, and Omega ratios. Among these, the RMZR approach achieves the
best overall performance score.
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Table 1. ES50: out-of-sample performance results for the RMZR strategy by varying ∆γ, where ∆γ is
the skewness parameter and score is the median value of the overall performance rankings. The best
results are marked in bold.

∆γ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

0.0 0.001196 0.02934 0.0407 0.0554 0.5611 0.8303 0.04137 1.1190 0.0010032 0.33414 21.0
0.1 0.001254 0.02927 0.0428 0.0583 0.5614 0.8321 0.04389 1.1252 0.0010620 0.34010 20.0
0.2 0.001334 0.02928 0.0455 0.0622 0.5650 0.8373 0.04721 1.1333 0.0011431 0.35133 19.0
0.3 0.001358 0.02930 0.0463 0.0634 0.5622 0.8389 0.04800 1.1355 0.0011671 0.35104 18.0
0.4 0.001412 0.02924 0.0483 0.0662 0.5580 0.8416 0.05021 1.1416 0.0012223 0.35971 17.0
0.5 0.001469 0.02921 0.0503 0.0691 0.5581 0.8465 0.05257 1.1485 0.0012799 0.36956 16.0
0.6 0.001490 0.02952 0.0504 0.0690 0.5610 0.8409 0.05331 1.1507 0.0012992 0.36958 15.0
0.7 0.001559 0.02990 0.0521 0.0710 0.5520 0.8425 0.05610 1.1575 0.0013654 0.37597 14.0
0.8 0.001640 0.03007 0.0545 0.0746 0.5450 0.8519 0.05967 1.1657 0.0014446 0.38835 11.5
0.9 0.001656 0.03026 0.0547 0.0750 0.5456 0.8628 0.06023 1.1680 0.0014596 0.39784 10.5
1.0 0.001711 0.03033 0.0564 0.0777 0.5458 0.8739 0.06263 1.1743 0.0015144 0.40233 8.0
1.1 0.001737 0.02926 0.0593 0.0813 0.5430 0.8495 0.06466 1.1802 0.0015471 0.42404 7.0
1.2 0.001743 0.02889 0.0603 0.0830 0.5409 0.8405 0.06593 1.1820 0.0015536 0.42068 6.0
1.3 0.001783 0.02829 0.0630 0.0880 0.5425 0.8624 0.06861 1.1881 0.0015968 0.41258 4.0
1.4 0.001737 0.02824 0.0615 0.0861 0.5347 0.8667 0.06643 1.1830 0.0015520 0.40784 5.5
1.5 0.001808 0.02815 0.0642 0.0898 0.5228 0.8648 0.06964 1.1922 0.0016240 0.42698 3.0
1.6 0.001829 0.02826 0.0647 0.0909 0.5137 0.8672 0.06998 1.1941 0.0016445 0.43178 2.0
1.7 0.001844 0.02806 0.0657 0.0923 0.5164 0.8484 0.07121 1.1979 0.0016603 0.43624 1.0
1.8 0.001621 0.02776 0.0583 0.0818 0.4994 0.8428 0.06134 1.1734 0.0014389 0.38325 9.0
1.9 0.001579 0.02754 0.0573 0.0804 0.4855 0.8551 0.05969 1.1700 0.0013979 0.37681 9.5
2.0 0.001534 0.02744 0.0559 0.0783 0.4892 0.8525 0.05783 1.1652 0.0013540 0.36896 12.0

Table 2. ES50: out-of-sample performance results for the RMZR strategy by varying ∆σ (with
∆γ = 1.7).

∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

−0.1 0.00150 0.0263 0.0570 0.0801 0.4659 0.8567 0.0582 1.1699 0.00133 0.35998 5.0
0.0 0.00184 0.0281 0.0657 0.0923 0.5164 0.8484 0.0712 1.1979 0.00166 0.43624 2.5
0.1 0.00187 0.0298 0.0627 0.0881 0.5687 0.8761 0.0687 1.1879 0.00168 0.44082 4.0
0.2 0.00217 0.0311 0.0696 0.0988 0.5705 0.8963 0.0776 1.2097 0.00197 0.48511 1.0
0.3 0.00217 0.0331 0.0653 0.0919 0.5508 0.8763 0.0724 1.1952 0.00197 0.46788 2.5
0.4 0.00193 0.0358 0.0539 0.0745 0.5807 0.8453 0.0593 1.1611 0.00172 0.41589 6.0
0.5 0.00187 0.0382 0.0489 0.0673 0.6016 0.8581 0.0538 1.1481 0.00165 0.39221 7.0

Table 3. ES50: out-of-sample performance results for the KPR strategy by varying ∆γ.

∆γ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

0.0 0.00198 0.0354 0.0559 0.0761 0.53829 0.8349 0.0606 1.1730 0.001772 0.47745 6.0
0.1 0.00195 0.0351 0.0557 0.0758 0.54028 0.8316 0.0603 1.1720 0.001748 0.46986 7.0
0.2 0.00196 0.0347 0.0563 0.0768 0.54167 0.8302 0.0610 1.1735 0.001751 0.46820 6.0
0.3 0.00194 0.0344 0.0563 0.0769 0.54090 0.8290 0.0610 1.1731 0.001732 0.46103 6.0
0.4 0.00194 0.0340 0.0570 0.0779 0.54136 0.8306 0.0618 1.1750 0.001738 0.45808 5.0
0.5 0.00194 0.0338 0.0572 0.0783 0.54031 0.8320 0.0622 1.1760 0.001734 0.45169 3.5
0.6 0.00194 0.0336 0.0578 0.0791 0.54413 0.8362 0.0632 1.1782 0.001740 0.44870 3.0
0.7 0.00189 0.0333 0.0566 0.0776 0.54987 0.8382 0.0622 1.1745 0.001685 0.44557 4.0
0.8 0.00186 0.0329 0.0564 0.0773 0.55723 0.8383 0.0621 1.1731 0.001653 0.44314 6.0

Table 4. ES50: out-of-sample performance results for the KPR strategy by varying ∆σ (with ∆γ = 0.6).

∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

−0.1 0.00184 0.0312 0.0589 0.0809 0.5334 0.8346 0.0656 1.1800 0.00164 0.45048 1.5
0.0 0.00194 0.0336 0.0578 0.0791 0.5441 0.8362 0.0632 1.1782 0.00174 0.44870 2.0
0.1 0.00195 0.0356 0.0546 0.0739 0.5333 0.8252 0.0590 1.1695 0.00174 0.45202 3.0
0.2 0.00197 0.0372 0.0529 0.0711 0.5155 0.8302 0.0571 1.1657 0.00175 0.43897 4.0
0.3 0.00196 0.0378 0.0519 0.0701 0.4926 0.8309 0.0563 1.1621 0.00174 0.41810 5.0
0.4 0.00177 0.0382 0.0463 0.0623 0.4878 0.8210 0.0498 1.1438 0.00155 0.36585 6.0
0.5 0.00168 0.0382 0.0440 0.0592 0.4908 0.8210 0.0469 1.1355 0.00146 0.34692 7.0
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Table 5. Summary of results for ES50.

Approach ∆γ ∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

RMZ – – 0.00120 0.0293 0.0407 0.0554 0.5611 0.8303 0.0414 1.1190 0.00100 0.33414 5.0
KP – – 0.00198 0.0354 0.0559 0.0761 0.5383 0.8349 0.0606 1.1730 0.00177 0.47745 4.0

RMZR 1.7 0.2 0.00217 0.0311 0.0696 0.0988 0.5705 0.8963 0.0776 1.2097 0.00197 0.48511 2.0
KPR 0.6 −0.1 0.00184 0.0312 0.0589 0.0809 0.5334 0.8346 0.0656 1.1800 0.00164 0.45048 3.0

GMinV – – 0.00173 0.0225 0.0766 0.1084 0.2088 0.8987 0.0797 1.2362 0.00156 0.37753 1.0
INDEX – – 0.00028 0.0311 0.0090 0.0122 – 0.8918 – 1.0256 – 0.07734 6.0

4.3.2. EuroBonds

In Tables 6–9, we report the computational results obtained by applying the reshaping
procedure of the benchmark index on the EuroBonds dataset. Similarly to the equity case,
∆γ = 1.4 and ∆γ = 0.8 are the highest values of the skewness parameter, which ensure
the feasibility of Models (12) and (13), respectively. For the RMZR model, the overall best
performance is obtained with ∆γ = 1.4. Indeed, Table 6 shows that the lowest out-of-
sample standard deviation (i.e., σout) and the highest Rachev ratio are obtained with this
target skewness parameter. For ∆γ = 1.4, the most favorable statistics are obtained with the
volatility parameter ∆σ = −0.1. Indeed, as shown in Table 7, note that the out-of-sample
turnover, Sharpe, Sortino, Rachev, and Omega ratios tend to worsen as ∆σ increases.

On the other hand, as reported in Table 8, for the KPR model, the overall most desirable
performance results are obtained with ∆γ = 0.3. Then, for ∆γ = 0.3, Table 9 shows that
the best performance (median) score is obtained for two values of the volatility parameter,
namely, ∆σ = −0.1, 0.1. Among these, we choose the one with the highest number of best
performances out of 10, namely, ∆σ = 0.1. Finally, in Table 10, we report the summary
results obtained by all the approaches considered. The reshaping procedure turns out to
be a suitable choice, particularly for the KPR approach, in terms of almost all performance
measures. The RMZR portfolio also improved its statistics, obtaining the highest Sharpe,
Sortino, and Omega ratios, and lower standard deviation and turnover.

Table 6. EuroBonds: out-of-sample performance results for the RMZR strategy by varying ∆γ, where
∆γ is the skewness parameter and score is the median value of the overall performance rankings. The
best results are marked in bold.

∆γ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

0.0 0.000748 0.00587 0.1273 0.1785 0.8366 0.8732 0.03218 1.4525 0.0004206 0.15521 10.0
0.1 0.000736 0.00589 0.1248 0.1748 0.8149 0.8698 0.02983 1.4425 0.0004060 0.15398 13.5
0.2 0.000745 0.00585 0.1273 0.1795 0.8240 0.8843 0.03161 1.4528 0.0004193 0.15490 8.5
0.3 0.000752 0.00582 0.1292 0.1823 0.8020 0.8886 0.03286 1.4607 0.0004294 0.15545 7.0
0.4 0.000740 0.00583 0.1268 0.1785 0.7883 0.8861 0.03044 1.4518 0.0004173 0.15283 11.5
0.5 0.000739 0.00582 0.1269 0.1789 0.7861 0.8933 0.03022 1.4542 0.0004181 0.15176 9.0
0.6 0.000712 0.00579 0.1229 0.1725 0.8062 0.8891 0.02512 1.4391 0.0003938 0.14613 12.5
0.7 0.000733 0.00575 0.1273 0.1791 0.7980 0.8995 0.02883 1.4583 0.0004181 0.14939 9.0
0.8 0.000711 0.00569 0.1250 0.1759 0.7919 0.9059 0.02475 1.4498 0.0004027 0.14455 13.0
0.9 0.000728 0.00561 0.1297 0.1829 0.7831 0.9108 0.02770 1.4713 0.0004254 0.14783 6.0
1.0 0.000747 0.00558 0.1337 0.1904 0.7373 0.9388 0.03124 1.4893 0.0004459 0.15110 4.0
1.1 0.000723 0.00539 0.1340 0.1900 0.7630 0.9202 0.02672 1.4986 0.0004369 0.14449 5.0
1.2 0.000738 0.00529 0.1394 0.1989 0.7645 0.9476 0.02910 1.5301 0.0004619 0.14549 3.0
1.3 0.000713 0.00524 0.1360 0.1935 0.7576 0.9535 0.02444 1.5211 0.0004425 0.14007 3.0
1.4 0.000705 0.00516 0.1364 0.1944 0.7427 0.9788 0.02268 1.5285 0.0004417 0.13710 2.0

Table 7. EuroBonds: out-of-sample performance results for the RMZR strategy by varying ∆σ (with
∆γ = 1.4).

∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

−0.1 0.000643 0.00468 0.1371 0.1941 0.7277 0.9818 0.01179 1.5351 0.0004031 0.12339 1.5
0.0 0.000705 0.00516 0.1364 0.1944 0.7427 0.9788 0.02268 1.5285 0.0004417 0.13710 2.5
0.1 0.000758 0.00574 0.1320 0.1870 0.7505 0.9589 0.03160 1.5101 0.0004661 0.15042 4.5
0.2 0.000810 0.00622 0.1302 0.1856 0.7435 0.9790 0.03973 1.5016 0.0004941 0.16314 4.0
0.3 0.000830 0.00672 0.1234 0.1737 0.7670 0.9534 0.04173 1.4716 0.0004891 0.16798 5.0
0.4 0.000904 0.00726 0.1244 0.1740 0.7848 0.9548 0.05180 1.4860 0.0005367 0.18342 6.0
0.5 0.000965 0.00770 0.1252 0.1761 0.7765 0.9679 0.05923 1.4900 0.0005768 0.19630 4.5
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Table 8. EuroBonds: out-of-sample performance results for the KPR strategy by varying ∆γ.

∆γ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

0.0 0.000618 0.006490 0.0951 0.1286 0.7561 0.8274 0.00690 1.3293 0.0002767 0.13722 6.0
0.1 0.000613 0.006433 0.0952 0.1288 0.7508 0.8321 0.00604 1.3293 0.0002737 0.13576 5.0
0.2 0.000604 0.006387 0.0945 0.1279 0.7598 0.8345 0.00450 1.3261 0.0002663 0.13387 6.0
0.3 0.000608 0.006125 0.0992 0.1351 0.7249 0.8465 0.00533 1.3479 0.0002819 0.12859 2.0
0.4 0.000573 0.006133 0.0933 0.1265 0.7311 0.8328 −0.00093 1.3241 0.0002449 0.12468 8.5
0.5 0.000587 0.006088 0.0964 0.1313 0.7195 0.8408 0.00172 1.3358 0.0002554 0.12727 3.5
0.6 0.000583 0.006091 0.0956 0.1298 0.7188 0.8340 0.00089 1.3324 0.0002507 0.12910 5.0
0.7 0.000587 0.006062 0.0968 0.1324 0.7195 0.8445 0.00170 1.3330 0.0002550 0.13066 3.5
0.8 0.000576 0.006061 0.0949 0.1299 0.7057 0.8447 −0.00044 1.3240 0.0002430 0.12742 7.0

Table 9. EuroBonds: out-of-sample performance results for the KPR strategy by varying ∆σ (with
∆γ = 0.3).

∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

−0.1 0.000563 0.005563 0.1011 0.1373 0.7396 0.8221 −0.00280 1.3590 0.0002622 0.12132 2.5
0.0 0.000608 0.006125 0.0992 0.1351 0.7249 0.8465 0.00533 1.3479 0.0002819 0.12859 3.0
0.1 0.000683 0.006744 0.1012 0.1372 0.7857 0.8311 0.01808 1.3646 0.0003238 0.14800 2.5
0.2 0.000688 0.007298 0.0942 0.1266 0.7988 0.8091 0.01816 1.3343 0.0003012 0.15598 4.0
0.3 0.000726 0.007646 0.0949 0.1264 0.8111 0.8002 0.02384 1.3392 0.0003204 0.17005 4.0
0.4 0.000722 0.008303 0.0869 0.1141 0.8256 0.7613 0.02153 1.3077 0.0002891 0.17395 6.5
0.5 0.000824 0.008827 0.0933 0.1232 0.7868 0.7848 0.03496 1.3365 0.0003670 0.19012 4.5

Table 10. Summary of results for EuroBonds.

Approach ∆γ ∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

RMZ – – 0.00075 0.0059 0.1273 0.1785 0.8366 0.8732 0.0322 1.4525 0.00042 0.15521 2.0
KP – – 0.00062 0.0065 0.0951 0.1286 0.7561 0.8274 0.0069 1.3293 0.00028 0.13722 4.0

RMZR 1.4 −0.1 0.00064 0.0047 0.1371 0.1941 0.7277 0.9818 0.0118 1.5351 0.00040 0.12339 2.0
KPR 0.3 0.1 0.00068 0.0067 0.1012 0.1372 0.7857 0.8311 0.0181 1.3646 0.00032 0.14800 3.0

GMinV – – 0.00008 0.0011 0.0756 0.1140 0.1546 1.0851 −0.0782 1.2870 0.00002 0.01125 5.0
INDEX – – 0.00058 0.0070 0.0827 0.1162 – 0.8812 – 1.2667 – 0.16166 5.0

4.3.3. ETF

In Tables 11–14, we report the results obtained by applying the reshaping procedure
of the benchmark index on the ETF dataset (see Section 4.1). In this case, ∆γ = 2 and
∆γ = 0.8 are the highest values of the skewness parameter, which ensure the feasibility
of Models (12) and (13), respectively. As demonstrated in Table 11, for the RMZR model,
the best performance is achieved with ∆γ = 0.3, which obtained the highest out-of-sample
returns (i.e., µout), Jensen’s alpha, Sharpe, Sortino, Omega, and information ratios. For ∆γ =
0.3, the overall most promising results are obtained with ∆σ = 0, namely, when the target
volatility is equal to the volatility of the original benchmark index (see Table 12). Indeed,
we observe that the portfolio performance generally tends to worsen as ∆σ increases.

Regarding the KPR model, Table 13 shows that ∆γ = 0.3 obtains the highest (median)
score in terms of almost all performance measures. Therefore, for ∆γ = 0.3, the overall most
desirable results are obtained when decreasing the standard deviation of the benchmark
distribution, namely, when ∆σ = −0.1 (see Table 14). Indeed, further increments in the
target standard deviation generally do not improve the statistics. Then, in Table 15, we
summarize the computational results obtained by all the approaches considered. Clearly,
the reshaping procedure improved both SSD-based models. Among these, the RMZR

portfolio achieved the highest scores on eight out of 10 performance measures. The KPR

portfolio also enhanced its statistics, showing better out-of-sample standard deviation,
turnover, Jensen’s alpha, Sharpe, Sortino, information, and Omega ratios, with respect to
the (original) KP portfolio.
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Table 11. ETF: out-of-sample performance results for the RMZR strategy by varying ∆γ, where ∆γ is
the skewness parameter and score is the median value of the overall performance rankings. The best
results are marked in bold.

∆γ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

0.0 0.002749 0.022780 0.1206 0.1714 0.4071 0.8387 0.10454 1.3824 0.0017476 0.40711 7.0
0.1 0.002811 0.022865 0.1229 0.1752 0.4068 0.8453 0.10741 1.3895 0.0018127 0.42281 5.0
0.2 0.002821 0.022879 0.1232 0.1758 0.4086 0.8457 0.10747 1.3902 0.0018242 0.42933 4.0
0.3 0.002865 0.022973 0.1246 0.1774 0.4057 0.8437 0.10967 1.3959 0.0018673 0.44226 1.0
0.4 0.002856 0.023021 0.1240 0.1765 0.4030 0.8424 0.10846 1.3927 0.0018582 0.44414 2.0
0.5 0.002846 0.023038 0.1234 0.1760 0.4032 0.8504 0.10768 1.3899 0.0018480 0.44035 3.0
0.6 0.002781 0.022926 0.1212 0.1728 0.4136 0.8591 0.10372 1.3826 0.0017881 0.42314 6.0
0.7 0.002653 0.022758 0.1165 0.1649 0.4250 0.8450 0.09528 1.3670 0.0016682 0.38775 8.0
0.8 0.002562 0.022420 0.1142 0.1617 0.4377 0.8465 0.08890 1.3602 0.0015983 0.36324 9.0
0.9 0.002464 0.022418 0.1098 0.1549 0.4307 0.8408 0.08174 1.3419 0.0015049 0.34031 10.0
1.0 0.001817 0.022669 0.0801 0.1099 0.3984 0.7945 0.03922 1.2385 0.0008404 0.21234 11.0
1.1 0.001552 0.022828 0.0679 0.0921 0.3884 0.7732 0.02172 1.1997 0.0005636 0.17491 12.0
1.2 0.001313 0.023282 0.0563 0.0758 0.3956 0.7740 0.00561 1.1642 0.0003120 0.14099 13.0
1.3 0.001113 0.023674 0.0470 0.0625 0.3720 0.7583 −0.00722 1.1358 0.0001055 0.12021 14.0
1.4 0.001068 0.023750 0.0449 0.0594 0.3781 0.7439 −0.01009 1.1299 0.0000557 0.11245 15.0
1.5 0.000972 0.023821 0.0408 0.0535 0.3861 0.7284 −0.01620 1.1178 −0.0000450 0.09374 16.0
1.6 0.000889 0.023923 0.0371 0.0487 0.3786 0.7277 −0.02122 1.1069 −0.0001273 0.07658 17.0
1.7 0.000848 0.024030 0.0353 0.0462 0.3767 0.7318 −0.02357 1.1012 −0.0001681 0.06730 18.0
1.8 0.000839 0.024116 0.0348 0.0456 0.3634 0.7333 −0.02392 1.1001 −0.0001771 0.06564 19.0
1.9 0.000820 0.024092 0.0340 0.0446 0.3636 0.7380 −0.02491 1.0978 −0.0001894 0.06211 20.0
2.0 0.000794 0.024113 0.0329 0.0432 0.3647 0.7375 −0.02629 1.0948 −0.0002117 0.05751 21.0

Table 12. ETF: out-of-sample performance results for the RMZR strategy by varying ∆σ (with
∆γ = 0.3).

∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

−0.1 0.00263 0.0211 0.12466 0.1760 0.3759 0.8451 0.1053 1.4027 0.00168 0.38138 3.0
0.0 0.00287 0.0230 0.12463 0.1774 0.4057 0.8437 0.1097 1.3959 0.00187 0.44226 2.0
0.1 0.00293 0.0243 0.12048 0.1738 0.4293 0.8620 0.1062 1.3738 0.00189 0.45709 3.0
0.2 0.00309 0.0256 0.12086 0.1751 0.4302 0.8763 0.1085 1.3732 0.00203 0.50000 3.0
0.3 0.00303 0.0271 0.11160 0.1601 0.4412 0.8530 0.0974 1.3403 0.00192 0.51049 5.0
0.4 0.00299 0.0285 0.10493 0.1498 0.4709 0.8470 0.0890 1.3178 0.00185 0.51563 6.0
0.5 0.00280 0.0296 0.09455 0.1341 0.4669 0.8521 0.0754 1.2830 0.00163 0.47891 7.0

Table 13. ETF: out-of-sample performance results for the KPR strategy by varying ∆γ.

∆γ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

0.0 0.002264 0.025354 0.0892 0.12480 0.4257 0.8207 0.06075 1.2661 0.001206 0.31986 6.0
0.1 0.002273 0.025251 0.0899 0.12592 0.4228 0.8212 0.06148 1.2687 0.001220 0.32082 4.0
0.2 0.002282 0.025136 0.0907 0.12710 0.4169 0.8214 0.06216 1.2716 0.001235 0.32128 3.0
0.3 0.002286 0.025033 0.0912 0.12789 0.4117 0.8230 0.06258 1.2738 0.001242 0.32215 1.0
0.4 0.002271 0.024901 0.0911 0.12779 0.4092 0.8248 0.06200 1.2739 0.001233 0.31871 2.5
0.5 0.002207 0.024698 0.0893 0.12496 0.4149 0.8227 0.05881 1.2680 0.001174 0.30244 5.0
0.6 0.002101 0.024450 0.0858 0.1198 0.4223 0.8164 0.05297 1.2565 0.001076 0.27831 7.0
0.7 0.001977 0.024158 0.0818 0.1137 0.4343 0.8059 0.04573 1.2428 0.000966 0.24934 8.0
0.8 0.001858 0.023563 0.0788 0.1090 0.4793 0.8062 0.03990 1.2350 0.000860 0.22631 9.0

Table 14. ETF: out-of-sample performance results for the KPR strategy by varying ∆σ (with ∆γ = 0.3).

∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

−0.1 0.00222 0.0234 0.09480 0.1328 0.4082 0.8180 0.0634 1.2867 0.00123 0.29862 1.0
0.0 0.00229 0.0250 0.09124 0.1279 0.4117 0.8230 0.0626 1.2738 0.00124 0.32215 2.0
0.1 0.00226 0.0261 0.08662 0.1217 0.4355 0.8382 0.0584 1.2578 0.00118 0.33112 3.0
0.2 0.00216 0.0270 0.07999 0.1115 0.4332 0.8242 0.0512 1.2371 0.00105 0.32119 4.0
0.3 0.00208 0.0276 0.07524 0.1043 0.4426 0.8192 0.0455 1.2222 0.00095 0.30526 5.0
0.4 0.00196 0.0279 0.07010 0.0967 0.4469 0.8150 0.0383 1.2063 0.00082 0.27488 6.0
0.5 0.00191 0.0280 0.06826 0.0941 0.4581 0.8123 0.0355 1.2007 0.00078 0.26149 7.0

Table 15. Summary of results for ETF.

Approach ∆γ ∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

RMZ – – 0.002749 0.0228 0.1206 0.1714 0.4071 0.8387 0.1045 1.3824 0.001748 0.40711 2.0
KP – – 0.002264 0.0254 0.0892 0.1248 0.4257 0.8207 0.0607 1.2661 0.001206 0.31986 4.0

RMZR 0.3 0.0 0.002865 0.0230 0.1246 0.1774 0.4057 0.8437 0.1097 1.3959 0.001867 0.44226 1.0
KPR 0.3 −0.1 0.002224 0.0234 0.0948 0.1328 0.4082 0.8180 0.0634 1.2867 0.001228 0.29862 3.5

GMinV – – 0.000893 0.0185 0.0484 0.0641 0.1467 0.7859 −0.0287 1.1453 0.000021 0.09889 5.5
INDEX – – 0.001227 0.0220 0.0556 0.0742 – 0.7685 – 1.1688 – 0.12658 5.0
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4.3.4. CIB (Commodities and Italian Bonds)

In Tables 16–19, we report the results obtained by applying the reshaping procedure of
the benchmark index on the CIB dataset. Note that the highest increment of the skewness
parameter ∆γ is equal to 2 for the RMZR model (Table 16), and it is 0.8 for the KPR model
(Table 18), since higher values of ∆γ do not ensure the feasibility of Models (12) and (13).
As highlighted in Table 16 for the RMZR model, the best computational results are achieved
with ∆γ = 1.2 in terms of almost all performance measures. For ∆γ = 1.2, Table 17
shows that the overall highest score is obtained with ∆σ = −0.1, namely, when decreasing
the standard deviation of the benchmark distribution. In this regard, we found that the
portfolio performances generally tend to worsen as ∆σ increases.

On the other hand, for the KPR model, Table 18 indicates that the most promising
statistics are achieved with ∆γ = 0.8, which is the highest increment of the skewness
parameter. Then, for ∆γ = 0.8, Table 19 shows that the best performance (median) score is
obtained for two values of the volatility parameter, namely, ∆σ = 0, 0.2. Among these, we
choose the one with the highest number of best performances out of 10, namely, ∆σ = 0.2.

Finally, Table 20 summarizes the out-of-sample results obtained by all the strategies
considered. The reshaping procedure generally improved the statistics of the SSD-based
approaches. In particular, the RMZR portfolio exhibits the most favorable results in terms
of almost all performance measures.

Table 16. CIB: out-of-sample performance results for the RMZR strategy by varying ∆γ, where ∆γ is
the skewness parameter and score is the median value of the overall performance rankings. The best
results are marked in bold.

∆γ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

0.0 0.001059 0.01046 0.1012 0.1513 0.5196 1.0449 0.03238 1.3318 0.0004956 0.15278 19.0
0.1 0.001055 0.01049 0.1005 0.1505 0.5468 1.0453 0.03177 1.3292 0.0004904 0.15163 19.5
0.2 0.001049 0.01042 0.1005 0.1501 0.5171 1.0403 0.03109 1.3278 0.0004872 0.15045 19.0
0.3 0.001074 0.01046 0.1026 0.1541 0.5105 1.0488 0.03398 1.3363 0.0005123 0.15496 17.0
0.4 0.001099 0.01045 0.1051 0.1588 0.4957 1.0610 0.03717 1.3462 0.0005380 0.15877 14.0
0.5 0.001090 0.01041 0.1047 0.1583 0.4950 1.0642 0.03614 1.3449 0.0005318 0.15729 14.0
0.6 0.001103 0.01037 0.1062 0.1607 0.4917 1.0717 0.03786 1.3508 0.0005446 0.15963 11.5
0.7 0.001096 0.01033 0.1060 0.1607 0.5027 1.0793 0.03715 1.3507 0.0005390 0.15815 12.5
0.8 0.001118 0.01030 0.1085 0.1647 0.5182 1.0929 0.04000 1.3606 0.0005635 0.15977 11.0
0.9 0.001133 0.01024 0.1106 0.1683 0.5131 1.0936 0.04195 1.3686 0.0005815 0.16253 9.0
1.0 0.001161 0.01020 0.1137 0.1738 0.5044 1.0982 0.04515 1.3809 0.0006145 0.16652 7.0
1.1 0.001173 0.01016 0.1153 0.1768 0.5014 1.1123 0.04651 1.3884 0.0006311 0.16713 4.5
1.2 0.001208 0.01015 0.1190 0.1831 0.5054 1.1316 0.05053 1.4053 0.0006712 0.17103 1.0
1.3 0.001193 0.01007 0.1184 0.1823 0.4978 1.1315 0.04891 1.4044 0.0006589 0.16765 2.0
1.4 0.001141 0.00986 0.1157 0.1771 0.4951 1.1084 0.04341 1.3945 0.0006132 0.16016 5.0
1.5 0.001121 0.00966 0.1160 0.1778 0.4843 1.1029 0.04123 1.3966 0.0006038 0.15686 6.0
1.6 0.001110 0.00948 0.1170 0.1791 0.4637 1.0871 0.04012 1.3999 0.0006007 0.15576 6.0
1.7 0.001061 0.00922 0.1150 0.1758 0.4465 1.0833 0.03396 1.3928 0.0005679 0.14912 8.0
1.8 0.001008 0.00904 0.1115 0.1702 0.4133 1.0711 0.02731 1.3807 0.0005263 0.14319 11.0
1.9 0.000960 0.00874 0.1097 0.1669 0.4145 1.0565 0.02075 1.3767 0.0005019 0.13728 14.0
2.0 0.000888 0.00846 0.1049 0.1596 0.4032 1.0568 0.01165 1.3671 0.0004408 0.12828 16.0

Table 17. CIB: out-of-sample performance results for the RMZR strategy by varying ∆σ (with
∆γ = 1.2).

∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

−0.1 0.001135 0.00920 0.1232 0.1908 0.4451 1.1482 0.04390 1.4241 0.0006392 0.16165 1.0
0.0 0.001208 0.01015 0.1190 0.1831 0.5054 1.1316 0.05053 1.4053 0.0006712 0.17103 3.5
0.1 0.001297 0.01114 0.1163 0.1791 0.5387 1.1288 0.05759 1.3931 0.0007163 0.18288 4.0
0.2 0.001396 0.01209 0.1154 0.1789 0.5743 1.1354 0.06405 1.3881 0.0007782 0.19601 4.0
0.3 0.001489 0.01296 0.1148 0.1786 0.5683 1.1309 0.06931 1.3840 0.0008362 0.20975 5.0
0.4 0.001564 0.01374 0.1137 0.1780 0.5557 1.1465 0.07175 1.3791 0.0008867 0.21710 3.0
0.5 0.001579 0.01463 0.1079 0.1688 0.5575 1.1455 0.06828 1.3567 0.0008723 0.21418 4.0
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Table 18. CIB: out-of-sample performance results for the KPR strategy by varying ∆γ.

∆γ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

0.0 0.000981 0.011789 0.0832 0.12415 0.5066 1.0381 0.02016 1.2685 0.000373 0.12541 6.5
0.1 0.000974 0.011693 0.0832 0.12423 0.4953 1.0387 0.01951 1.2690 0.000369 0.12424 6.0
0.2 0.000971 0.011585 0.0837 0.12500 0.4909 1.0408 0.01928 1.2709 0.000371 0.12324 5.0
0.3 0.000976 0.011449 0.0852 0.12729 0.4868 1.0417 0.02011 1.2766 0.000382 0.12349 3.5
0.4 0.000895 0.011070 0.0808 0.11965 0.4870 1.0231 0.01113 1.2627 0.000319 0.10851 8.0
0.5 0.000944 0.010695 0.0882 0.13118 0.4893 1.0358 0.01736 1.2969 0.000382 0.11614 4.0
0.6 0.000840 0.010536 0.0796 0.1173 0.5092 1.0257 0.00501 1.2627 0.000284 0.09765 9.0
0.7 0.000957 0.010540 0.0908 0.1352 0.4951 1.0528 0.01911 1.3033 0.000403 0.11932 2.5
0.8 0.000993 0.010276 0.0965 0.1482 0.5007 1.1015 0.02422 1.3210 0.000441 0.12933 1.0

Table 19. CIB: out-of-sample performance results for the KPR strategy by varying ∆σ (with ∆γ = 0.8).

∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

−0.1 0.000778 0.00924 0.0842 0.1274 0.4700 1.0758 −0.00265 1.2761 0.0002787 0.09576 6.0
0.0 0.000993 0.01028 0.0965 0.1482 0.5007 1.1015 0.02422 1.3210 0.0004409 0.12933 2.0
0.1 0.001048 0.01128 0.0929 0.1400 0.5118 1.0795 0.02856 1.3133 0.0004615 0.13328 4.0
0.2 0.001162 0.01201 0.0967 0.1496 0.5514 1.0990 0.03934 1.3199 0.0005459 0.15526 2.0
0.3 0.001178 0.01281 0.0919 0.1416 0.5598 1.0883 0.03857 1.3003 0.0005300 0.15399 3.5
0.4 0.001240 0.01378 0.0899 0.1396 0.5956 1.1196 0.04128 1.2920 0.0005601 0.16652 3.0
0.5 0.001103 0.01486 0.0742 0.1131 0.5618 1.0747 0.02599 1.2334 0.0003947 0.12415 6.5

Table 20. Summary of results for CIB.

Approach ∆γ ∆σ µout σout Sharpe Sortino Turnover Rachev InfoR Omega Jensen Avg. ROI Score

RMZ – – 0.001059 0.0105 0.1012 0.1513 0.5196 1.0449 0.0324 1.3318 0.000496 0.15278 3.0
KP – – 0.000981 0.0118 0.0832 0.1242 0.5066 1.0381 0.0202 1.2685 0.000373 0.12541 4.0

RMZR 1.2 −0.1 0.001135 0.0092 0.1232 0.1908 0.4451 1.1482 0.0439 1.4241 0.000639 0.16165 1.0
KPR 0.8 0.2 0.001162 0.0120 0.0967 0.1496 0.5514 1.0990 0.0393 1.3199 0.000546 0.15526 2.5

GMinV – – 0.000291 0.0044 0.0667 0.0951 0.0193 1.0322 −0.0633 1.2778 0.000060 0.04965 5.0
INDEX – – 0.000798 0.0104 0.0769 0.1098 – 0.9042 – 1.2411 – 0.12483 5.0

4.4. Discussion

Thus far, we provided an empirical analysis of a wide range of assets (from equities
to bonds, from ETFs to commodities) of two SSD strategies with and without the skewed
benchmark, along with the global minimum variance portfolio. Our empirical findings
revealed that improving the benchmark index distribution leads to selecting SSD portfolios
with superior out-of-sample performance results. This confirms earlier results by [14,36]
who found that “the Fama and French market portfolio is significantly inefficient relative
to benchmark portfolios formed on market capitalization and book-to-market equity ra-
tio”. In this sense, see Faff et al. [63] and Jurdi [64] for Australia, Kubota et al. [65] for
Japan, Alrabadi et al. [66] for Jordan, Eyvazloo et al. [67] for Iran, and Griffin et al. [68]
at a global level. As a methodological note, in terms of misallocation and correctness of
economic financial decisions, a proper performance measure is key. Section 4.2 lists some
of them, including the Omega ratio, which some refer to as a “universal performance
measure” [61,69]. However, Bernard et al. [70] introduced compatibility conditions (i.e.,
the so-called non-strict dominance compatibility and the strict dominance compatibility
conditions). Thus, the Omega ratio is not compatible with the second-order stochastic
dominance criterion when using the strict dominance compatibility condition. Further, a
critical meta-analysis points out that “the use of Omega in asset selection and optimal asset
allocation may entail real computational economics issues and may lead to unreasonable
financial decisions” [70]. This is mainly due to the incompatibility with the second-order
stochastic dominance criterion under the strict dominance compatibility condition. How-
ever, due to the different ranges of performance measures adopted, we can reasonably
assume that this study was unaffected by the issues mentioned above.

In terms of testing, apart from the aforementioned variety of metrics that extend the
usual results based on the Sharpe ratio and information ratio [42], this study identified
those portfolios that dominate the respective benchmarks. However, as pointed out by [42],
the main limitation of some tests [11,15,36,71] on SSD dominance is that they only analyze
in-sample performance. Instead, “for practical portfolio allocation problems, it is important
to establish the out-of-sample properties of SSD-efficient portfolios” [42]. To this end,
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following [42,72–74], we implemented an out-of-sample assessment to properly judge the
performance of the considered portfolios.

5. Conclusions

In this paper, we empirically compared the SSD-based portfolio selection models of
Roman et al. [14] and Kopa and Post [15], with a reshaping of the skewness and variance of
the benchmark distribution. To this end, following Valle et al. [10], the reference distribution
was reshaped to select SSD-efficient portfolios that provide more appealing features for in-
vestors. Through an extensive empirical analysis based on multiasset investment universes,
we showed that the SSD portfolios that dominate the new skewed benchmark generally
perform better. In fact, comparing the out-of-sample performance of the “improved” SSD
portfolios with respect to the original ones and the global minimum variance portfolio,
we demonstrated that the improvement in benchmark distribution leads to select SSD
portfolios that deliver superior out-of-sample performance results.

In terms of policy implications, failures in understanding the risk are often related
to SSD dominance. Therefore, analysis may help in discovering the neglected downside
risk, as opposed to overstated upside opportunities [75]. The application of this analysis
ranges from the relationship between bank capital and risk [75], which has regulatory
and allocation effects, to the evaluation of the Chinese IPO market [76], from portfolio
diversification and its links between renewable energy, commodities, and financial stock
markets [77] to evaluation of multidimensional measures of poverty [78], etc.

Future research could be directed to extend the analysis to exact higher-order stochas-
tic dominance (see, e.g., [17–19]) and approximate stochastic dominance rules (see,
e.g., [41,52,79]), disclosing the policy implication by testing different techniques for re-
modeling the reference index in accordance with real-world distributions [16,43]. Forming
CAPM β ranked portfolios would be another dimension to control for systemic risk [80].
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