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Abstract: Point cloud collection forming a 3D scene typically uses information from multiple data
scans. The common approach is to register the point cloud pairs consequentially using a variant of
the iterative closest point (ICP) algorithm, but most versions of the ICP algorithm only work correctly
for a small movement between two point clouds. This makes it difficult to accumulate multiple scans.
Global registration algorithms are also known, which theoretically process point clouds at arbitrary
initial positions. Recently, a multiparameter variational functional was described and used in the ICP
variant to register point clouds at arbitrary initial positions. The disadvantage of this algorithm was
the need for manual selection of parameters. In this paper, a modified version of the algorithm with
automatic selection of the model parameters is proposed. The proposed algorithm is a fusion of the
ICP and RANSAC concepts. Moreover, the algorithm can be parallelized. The performance of the
proposed algorithm is compared with that of known global registration algorithms.

Keywords: point cloud registration; variational functional; global registration; coarse registration;
closed-form solution; iterative closest points (ICP); orthogonal transformation; surface reconstruction
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1. Introduction

In computer vision, splicing different parts of 3D models is necessary to reconstruct
the objects in three-dimensional space. Point cloud registration is a basic element to solve
this problem. Point cloud registration is a widely studied problem. Known algorithms in
this area are described in surveys [1,2]. Registration algorithms can be divided into two
groups. The first of them contains refinement algorithms, and the second one contains
coarse registration algorithms. Refinement algorithms are used to align the source point
cloud P and the target point cloud Q if the rotation angles connecting P and Q are small
enough. Coarse registration algorithms are used in the case of sufficiently large angles.

The following abbreviations are used throughout the paper: ICP—iterative closest
points algorithm; PtP-ICP—point-to-point ICP; PCL-GICP—software implementation of
generalized ICP (GICP) from point cloud library; NICP—normal ICP; RANSAC—random
sample consensus algorithm; Cluster—registration algorithm based on the cluster ap-
proach; Super4PCS—global registration algorithm; Nsamples—overlap–parameters of
Super4PCS; λ-ICP—registration algorithm based on the multiparameter λ-functional; λ_r-
ICP—registration algorithm based on the proposed λ_r-functional; LCP—largest common
pointset; Delta—distance threshold for LCP; SHOT—signature of histograms of orienta-
tions descriptor; threshold_PtP—threshold of the distance for corresponding point pairs
for PtP-ICP; GL (3)—general linear group in three dimensions; SO(3)—special orthogonal
group in three dimensions.

The iterative closest points algorithm (ICP) [3,4] is a common refinement algorithm.
The two basic steps of the ICP algorithm alternate with each other, that is, the estima-
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tion of a geometric transformation based on a fixed correspondence (variational prob-
lem of the ICP algorithm) and updating the correspondences to their closest matches
(correspondence step).

The most well-known functionals used in the ICP variational problem are presented in
ICP variants, such as point-to-point [3], point-to-plane [4], generalized ICP (GICP) [5], and
normal ICP (NICP) [6,7]. Closed-form solutions to the affine point-to-point [8] and point-
to-plane [9,10] problems have been proposed. Closed-form solutions to the orthogonal
point-to-point problem [11–13] have also been obtained. Generalized ICP [5] and NICP [6,7]
with other functionals are more robust. In these cases, iterative conjugate gradients and
Gauss–Newton methods [5,6] are used to solve the variational ICP problems.

Stochastic methods based on the grey wolf optimizer (GWO) algorithm are exploited
to solve the variational ICP problems. The GWO has recently been used to a coarse point
cloud alignment [14] and implementation of the point-to-point ICP algorithm [15].

The paper in [6] presents an experimental comparative analysis of the NICP algorithm,
generalized ICP (GICP), NDT [16], and KinFu [17]. The analysis shows that the NICP
yields better results and higher robustness compared to the state-of-the-art methods [6]. A
closed-form solution to the NICP variational problem was proposed [7]. This solution was
compared with the performance of the iterative Gauss–Newton method [6].

Coarse registration approaches usually use some form of the well-known RANSAC
algorithm [18] or related methods to confirm a congruent relationship [19–21]. Based on
this technique, 4PCS [22] and Super4PCS [23] methods have achieved a significant increase
in speed compared to alternative approaches and provide unstructured and efficient scene
acquisition at scales that were previously impossible. In addition, feature-based methods
such as SHOT [24] and FPFH [25] are also popular; however, they are sensitive to noise.
SDRSAC [26] uses a randomized strategy without correspondences.

Registration methods based on neural networks can also be regarded as coarse regis-
tration algorithms. Recently, point cloud classification, segmentation, and shape matching
have been carried out using neural networks [27–32]. So, to solve the problem of registering
point clouds, a neural network referred to as deep closest points (DCP) was designed [33].
DCP is trained on the ModelNet40 3D point clouds database [34].

Recently, the λ-functional and λ-ICP algorithms have been proposed [35]. The
λ-functional is a generalized version of the NICP functional. In order to compute the
NICP functional, the covariance matrix in the vicinity of each cloud point is calculated.
By selecting diagonal elements for a given point cloud, the probability of NICP conver-
gence to acceptable solution can be increased [7]. A similar approach is also used for the
λ-functional.

In real applications, a registration algorithm deals with incongruent point clouds.
Therefore, the performance of registration algorithms should be compared on incongruent
clouds. It was shown in [35] that λ-ICP based on the λ-functional is very efficient, but
the drawback of λ-ICP is the need to select the λ parameters manually for a given type of
point cloud.

In this paper, a coarse registration algorithm based on a new λ_r-functional, which
is a reduced version of the λ-functional, is proposed. The proposed ICP-type algorithm,
referred to as λ_r-ICP, contains some elements based on RANSAC and deals with coarse
registration of incongruent point clouds. To solve the λ_r-ICP variational problem, first
the solution to the variational problem in the class GL (3) is obtained. Next, the result is
projected onto the submanifold SO(3). Finally, the translation vector is computed. The
variational problem λ-ICP [35], NICP [7] and point-to-plane ICP [36] is solved similarly.

In this paper, we propose a new solution to the first step of the scheme described
above. The λ_r-functional is a reduced version of the λ-functional with special properties.
In particular, the λ-functional contains terms that are vector projections onto local vector
bases, while the λ_r-functional contains terms that are vector projections onto the global
vector basis. This requires a different approach to calculating the functional gradient. To
minimize the λ-functional, 4 × 4 transformation matrices in homogeneous coordinates
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were used, while 3 × 3 matrices in Cartesian coordinates were used for the λ_r-functional.
The resulting calculation formulas for the λ_r-functional differ significantly from the
corresponding formulas for the λ-functional. The sequential (i.e., nonparallel) software
implementation of the proposed solution to minimize the λ_r-functional is about 10 times
faster than the sequential software implementation for the λ-functional. In addition, the
proposed solution calculates three rows of the rotation matrix independently, in parallel
computational threads.

Note that the λ-functional and the λ_r-functional contain, in a certain sense, the
point-to-point, point-to-plane, and NICP functionals. The parameters λ1, λ2, and λ3 of the
λ_r-functional are computed by averaging the local geometric information of all points in
the point cloud. After that, two free parameters, λ4 and k, where k is the neighborhood
size, are used. The λ_r-ICP algorithm contains iterating over two values of k and sixteen
values of λ4, i.e., the algorithm forms 32 geometric transformations. The choice of the best
transformation is carried out using the largest common pointset (LCP) [22,23]. Note that
the proposed λ_r-ICP algorithm contains elements of both ICP and RANSAC approaches.

The proposed algorithm is compared with known coarse registration algorithms,
Super4PCS and RANSAC, using the software implementation of Super4PCS [37]. The
program generates coarse geometric transformations and returns the best result according
to the LCP criterion. After that, we apply refinement with the point-to-point ICP with the
selection of pairs of corresponding points.

The λ_r-ICP and RANSAC algorithms are organized in the following way. First, these
algorithms form a set of coarse geometric transformations. Second, refinements are applied
to each coarse transformation. Third, the best transformation is selected according to the
LCP criterion.

We also use the following algorithms for comparison: point-to-point ICP with selection
of pairs of corresponding points; GICP [5] (its software implementation from the point cloud
library (PCL) [38]); and coarse registration algorithm based on the cluster approach [39,40].

It is known that conventional eigenvalue decomposition algorithms produce eigen-
vectors with unpredictable directions [24,41]. The accurate choice of orientation of the
eigenvectors is important for the correct operation of the λ_r-ICP algorithm. In [35], an
algorithm was proposed for reorienting the eigenvectors calculated in a neighborhood
inside a point cloud. In this paper, a slightly modified version of this algorithm is described.
The modified algorithm is called orientation predictor and is based on a local geometric
descriptor. The descriptor is also used for selecting pairs of corresponding points in the
λ_r-ICP algorithm.

The main contributions of the proposed paper are as follows:

1. A new λ_r-functional is proposed, which is a reduced version of the previously
described λ-functional;

2. A new computational approach to minimization of the λ_r-functional is proposed.
This approach essentially differs from the corresponding one for the λ-functional and
is much faster;

3. A new registration algorithm λ_r-ICP is proposed, which automatically computes the
parameters of the λ_r-functional for the given source and target incongruent noisy
point clouds. The λ_r-ICP algorithm is a fusion of the ICP and RANSAC concepts.

The paper is organized as follows. Section 2 proposes an exact solution approximation
to the variation problem with the λ_r-functional. In Section 3, the orientation predictor and
λ_r-ICP algorithm are described. Section 4 presents and discusses the results of computer
simulations. Section 5 summarizes our findings.

2. Reduced λ-Functional

The proposed approach is based on the λ-functional described in [35]. In [35], the
values of the λ-functional parameters are selected manually. Here we propose an approach
to automatic parameters search.
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2.1. Local Geometric Features

Let P and Q be the source and target point clouds, respectively, with a given correspon-
dence between them (from the source cloud P to the target cloud Q), P = {p1, . . . ps} and
Q = {q1, . . . qs}, s is the number of points in the cloud P. Note that we consider clouds P
and Q with an already given correspondence, the initial quantity of points in P and Q may
be different. Let us consider the k-neighborhood {qi1, . . . , qik} of the point qi, i = 1, . . . , s,
in the cloud Q. Denoted by ci, the mass center of the neighborhood, ci =

1
k ∑k

j=1 qij. The
covariance matrix Σi of the neighborhood is defined as

Σi = Q̃Q̃t (1)

where

Q̃ =

q̃i11 q̃ik1
q̃i12 . . . q̃ik2
q̃i13 q̃ik3


q̃ij = qij − ci, j = 1, . . . , k

The eigendecomposition of the matrix Σi can be written as

Σi = <iΛi<i
t (2)

Λi =

λi1 0 0
0 λi2 0
0 0 λi3


where λi3 ≥ λi2 ≥ λi1 > 0 are the eigenvalues of the covariance matrix, and <i is the
orthogonal matrix of the eigenvectors. The matrix <i consists of the vector-columns ri1, ri2,
and ri3, corresponding to the eigenvalues λi1, λi2, and λi3. The vector ri1 can be considered
as a normal vector to the tangent plane at the point qij, and the vector ri3 corresponds to
the main axis of the inertia ellipsoid of the given neighborhood.

The covariance matrix for the point cloud P is defined in a similar manner.

2.2. λ-Functional and Its Variants

The λ-functional is given as follows [35]:

Jλ(R, T) = ∑s
i=1(Rri1

p − ri1
q)t<i

qΛi1
q(<i

q)t(Rri1
p − ri1

q) + (Rri2
p − ri2

q)t<i
qΛi2

q(<i
q)t(Rri2

p − ri2
q)+

(Rri3
p − ri3

q)t<i
qΛi3

q(<i
q)t(Rri3

p − ri3
q)+

(Rpi + T − qi)
t<i

qΛi4
q(<i

q)t(Rpi + T − qi)+(
Rtρi1

q − ρi1
p)t<i

pΛi1
p(<i

p)t(Rtρi1
q − ρi1

p)+ (Rtρi2
q − ρi2

p)t<i
pΛi2

p(<i
p)t(Rtρi2

q − ρi2
p)+(

Rtρi3
q − ρi3

p)t<i
pΛi3

p(<i
p)t(Rtρi3

q − ρi3
p) (3)

where ri1
p, ri2

p, and ri3
p are vector columns of the orthogonal matrix <i

p (of point cloud P),
Λi1

q, Λi2
q, and Λi3

q are diagonal matrices with elements
(
λij1

q, λij1
q, λij1

q), j− 1, 2, 3, which
are considered variable parameters, and the vectors ri1

q, ri2
q, and ri3

q are vector columns
of the orthogonal matrix <i

q (of point cloud Q). The elements of the diagonal matrix Λi4
q

are also considered variable parameters. The vectors ρi1
q, ρi2

q, and ρi3
q, the vectors ρi1

p,
ρi2

p, and ρi3
q, and the matrices Λi1

p, Λi2
p, and Λi3

p are defined similarly for the inverse
correspondence from P to Q. R is the rotation matrix and T is the translation vector.

The ICP variational problem (error minimization ICP step) based on the λ-functional
can be written as
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(R∗, T∗) = argmin
R,T

Jλ(R, T) (4)

subject to R∗ ∈ SO(3). The ICP-type algorithm with the variational problem (4) is called λ-
ICP. In [35], manual selction of parameters was considered, i.e., elements of the diagonal
matrices Λi1

q, Λi2
q, Λi3

q, Λi4
q, Λi1

p, Λi2
p, and Λi3

p for a given point cloud pair (P,Q). In
this paper, we propose an approach to find the parameters of the λ-functional automatically.

The first term in (3) can be rewritten as

(Rri1
p − ri1

q)t<i
qΛi1

q(<i
q)t(Rri1

p − ri1
q) = λi11

q〈ri1
q, Rri1

p − ri1
q〉2 + λi12

q〈ri2
q, Rri1

p − ri1
q〉2+

λi13
q〈ri3

q, Rri1
p − ri1

q〉2 (5)

where Λi1
q = diag(λi11

q, λi12
q, λi13

q) and <i
q = (ri1

q ri2
q ri3

q). It follows from (5) that the
four first terms in (3) take the form

∑s
i=1(Rri1

p − ri1
q)t<i

qΛi1
q(<i

q)t(Rri1
p − ri1

q) + (Rri2
p − ri2

q)t<i
qΛi2

q(<i
q)t(Rri2

p − ri2
q)+

(Rri3
p − ri3

q)t<i
qΛi3

q(<i
q)t(Rri3

p − ri3
q)+

(Rpi + T − qi)
t<i

qΛi4
q(<i

q)t(Rpi + T − qi) =

∑s
i=1 λi11

q〈ri1
q, Rri1

p − ri1
q〉2 + λi12

q〈ri2
q, Rri1

p − ri1
q〉2 + λi13

q〈ri3
q, Rri1

p − ri1
q〉2+

λi21
q〈ri1

q, Rri2
p − ri2

q〉2 + λi22
q〈ri2

q, Rri2
p − ri2

q〉2 + λi23
q〈ri3

q, Rri2
p − ri2

q〉2+

λi31
q〈ri1

q, Rri3
p − ri3

q〉2 + λi32
q〈ri2

q, Rri3
p − ri3

q〉2 + λi33
q〈ri3

q, Rri3
p − ri3

q〉2+

λi4
q(Rpi + T − qi)

t(Rpi + T − qi) (6)

where Λi4
q = diag(λi4

q, λi4
q, λi4

q).

2.3. Relationship between λ-Functional and Point-to-Point, Point-to-Plane, and NICP Functionals

Let us consider the relationship between such well-known ICP functionals as point-to-
point [3], point-to-plane [4], NICP [6,7], and λ-functional [35]. Note that the tens term of
the right side of (6) can be written as

∑s
i=1 λi4

q(Rpi + T − qi)
t(Rpi + T − qi) = ∑s

i=1 λi4
q||Rpi + T − qi||2 (7)

The functional in (7) is a weighted point-to-point functional.
The first term of the right side of (6) is given as

∑s
i=1 λi11

q〈ri1
q, Rri1

p − ri1
q〉2 (8)

Since the vector ri1
q can be considered normal to the tangent plane at the point qi, the

expression (8) is mathematically close to the weighted point-to-plane functional.
The first and fourth terms on the left side of (6) are the NICP functional and given as

∑s
i=1(Rri1

p − ri1
q)t<i

qΛi1
q(<i

q)t(Rri1
p − ri1

q) + (Rpi + T − qi)
t<i

qΛi4
q(<i

q)t(Rpi + T − qi) (9)

Therefore, the λ-functional is a generalization of the point-to-point, point-to-plane,
and NICP functionals.

2.4. λ_r-Functional

Let us describe a reduced version of the λ-functional, referred to as λ_r-functional.
Consider the following functionals:

J11(R) = λ1 ∑s
i=1〈e1, Rri1

p − ri1
q〉2, J12(R) = λ2 ∑s

i=1〈e2, Rri1
p − ri1

q〉2, J13(R) = λ3 ∑s
i=1〈e3, Rri1

p − ri1
q〉2
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J21(R) = λ1 ∑s
i=1〈e1, Rri2

p − ri2
q〉2, J22(R) = λ2 ∑s

i=1〈e2, Rri2
p − ri2

q〉2, J23(R) = λ3 ∑s
i=1〈e3, Rri2

p − ri2
q〉2

J31(R) = λ1 ∑s
i=1〈e1, Rri3

p − ri3
q〉2, J32(R) = λ2 ∑s

i=1〈e2Rri3
p − ri3

q〉2, J33(R) = λ3 ∑s
i=1〈e3, Rri3

p − ri3
q〉2

J4(R, T) = λ4 ∑s
i=1〈Rpi + T − qi, Rpi + T − qi〉2 (10)

where e1 = (1 0 0)t, e2 = (0 1 0)t, and e3 = (0 0 1)t are basis vectors of the coordinate
system (in which clouds P and Q are considered). All coefficients λ (λ > 0) of (10) do not
depend on the number of points.

Definition 1. The following functional is called the λ_r-functional:

Jλ_r(R, T) = J11(R) + J12(R) + J13(R) + J21(R) + J22(R) + J23(R) + J31(R) + J32(R) + J33(R) + J4(R, T) (11)

The λ_r-ICP variational problem can be written as:

(R∗, T∗) = argmin
R,T

Jλ_r(R, T) (12)

subject to R∗ ∈ SO(3).

The λ_r-functional is obtained from the λ-functional by reduction. Suppose that
<i

q = I, and Λi1
q = diag(λ1

q, λ1
q, λ1

q), Λi2
q = diag(λ2

q, λ2
q, λ2

q), Λi3
q = diag(λ3

q, λ3
q, λ3

q),
Λ4

q = diag(λ4
q, λ4

q, λ4
q), i = 1, . . . , s. Note that information from the matrices <i

q is used
in expressions such as (Rri1

p − ri1
q).

2.5. Gradient of the λ_r-Functional

cp and cq denote the mass centers of the point clouds P and Q, respectively. Let us P′
and Q′ also denote the following point clouds:

P′ =
{

p′1, . . . p′s
}
=
{

p1 − cp, . . . ps − cp
}

, Q′ =
{

q′1, . . . q′s
}
=
{

q1 − cq, . . . qs − cq
}

(13)

The λ_r-functional for clouds P′ and Q′ takes the following form:

Jλ_r(R, T) = J11(R) + J12(R) + J13(R) + J21(R) + J22(R) + J23(R) + J31(R) + J32(R) + J33(R) + J4′(R) (14)

where
J4′(R) = λ4 ∑s

i=1〈Rp′i − q′i, Rp′i − q′i〉2 (15)

The λ_r-ICP variational problem can be rewritten as

R∗ = argmin
R

Jλ_r(R) (16)

subject to R∗ ∈ SO(3).
We have that

∇J11(R) = 2λ1 ∑s
i=1〈e1, Rri1

p〉e1(ri1
p)t − 2λ1 ∑s

i=1〈e1, ri1
q〉e1(ri1

p)t (17)

Let us denote the elements of R and ri1
p as

R =

R11 R12 R13
R21 R22 R23
R31 R32 R33

, ri1
p = (ri11

p ri12
p ri13

p)t (18)

Note that 〈e1, Rri1
p〉 =

〈
e1(ri1

p)t, R
〉

and

〈e1, Rri1
p〉e1(ri1

p)t =
〈
e1(ri1

p)t, R
〉
e1(ri1

p)t =
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〈ri11
p ri12

p ri13
p

0 0 0
0 0 0

, R
〉ri11

p ri12
p ri13

p

0 0 0
0 0 0

 =

ri11
p(ri11

pR11 + ri12
pR12 + ri13

pR13) ri12
p(ri11

pR11 + ri12
pR12 + ri13

pR13) ri13
p(ri11

pR11 + ri12
pR12 + ri13

pR13)
0 0 0
0 0 0

 =

(ri11
p)2R11 + ri11

pri12
pR12 + ri11

pri13
pR13 ri12

pri11
pR11 + (ri12

p)2R12 + ri12
pri13

pR13 ri13
pri11

pR11 + ri13
pri12

pR12 + (ri13
p)2R13

0 0 0
0 0 0

 (19)

The gradient ∇J11(R) depends only on the first row of the matrix obtained in (19).
This row in transposed form can be rewritten as (ri11

p)2 ri11
pri12

p ri11
pri13

p

ri1
p

2ri11
p (ri12

p)2 ri12
pri13

p

ri13
pri11

p ri1
p

3ri12
p (ri13

p)2


R11

R12
R13

 =
(

ri1
p(ri1

p)t
)R11

R12
R13

. (20)

The gradient (∇J11(R))t takes the form:

(∇J11(R))t = 2λ1 ∑s
i=1

(
ri2

p(ri2
p)t
)R11

R12
R13

− 2λ1(∑s
i=1〈e1, ri2

q〉e1(ri2
p)t)

t
1, (21)

where (∑s
i=1〈e1, ri2

q〉e1(ri2
p)t)

t
1 means the first column of the matrix ∑s

i=1〈e1, ri2
q〉e1(ri2

p)t.
In a similar manner, the gradients ∇J12(R), ∇J13(R), ∇J21(R), ∇J22(R), ∇J23(R),

∇J31(R), ∇J32(R), and ∇J33(R) are computed as

(∇J12(R))t = 2λ2 ∑s
i=1

(
ri1

p(ri1
p)t
)R21

R22
R23

− 2λ2(∑s
i=1〈e2, ri1

q〉e2(ri1
p)t)

t
2, (22)

(∇J13(R))t = 2λ3 ∑s
i=1

(
ri1

p(ri1
p)t
)R31

R32
R33

− 2λ3(∑s
i=1〈e3, ri1

q〉e3(ri1
p)t)

t
3, (23)

(∇J21(R))t = 2λ1 ∑s
i=1

(
ri2

p(ri2
p)t
)R11

R12
R13

− 2λ1(∑s
i=1〈e1, ri2

q〉e1(ri2
p)t)

t
1, (24)

(∇J22(R))t = 2λ2 ∑s
i=1

(
ri2

p(ri2
p)t
)R21

R22
R23

− 2λ2(∑s
i=1〈e2, ri2

q〉e2(ri2
p)t)

t
2, (25)

(∇J23(R))t = 2λ3 ∑s
i=1

(
ri2

p(ri2
p)t
)R31

R32
R33

− 2λ3(∑s
i=1〈e3, ri2

q〉e3(ri2
p)t)

t
3, (26)

(∇J31(R))t = 2λ1 ∑s
i=1

(
ri3

p(ri3
p)t
)R11

R12
R13

− 2λ1(∑s
i=1〈e1, ri3

q〉e1(ri3
p)t)

t
1, (27)

(∇J32(R))t = 2λ2 ∑s
i=1

(
ri3

p(ri3
p)t
)R21

R22
R23

− 2λ2(∑s
i=1〈e2, ri3

q〉e2(ri3
p)t)

t
2, (28)

(∇J33(R))t = 2λ3 ∑s
i=1

(
ri3

p(ri3
p)t
)R31

R32
R33

− 2λ3(∑s
i=1〈e3, ri3

q〉e3(ri3
p)t)

t
3. (29)
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Let us compute the gradient ∇J4(R)

(∇J4(R))t = 2λ4 ∑s
i=1 p′i(p′i)tRt − 2λ4 ∑s

i=1 p′i(q′i)t =

2λ4 ∑s
i=1

(
p′i(p′i)t

)R11 R21 R31
R12 R22 R32
R13 R23 R33

− 2λ4 ∑s
i=1 p′i(q′i)t. (30)

Formula (30) shows that the gradient (∇J4(R))t splits into three independent parts

2λ4 ∑s
i=1

(
p′i(p′i)t

)R11
R12
R13

− 2λ4(
(
∑s

i=1 p′i(q′i)t
)

1
, (31)

2λ4 ∑s
i=1

(
p′i(p′i)t

)R21
R22
R23

− 2λ4(
(
∑s

i=1 p′i(q′i)t
)

2
, (32)

2λ4 ∑s
i=1

(
p′i(p′i)t

)R11
R12
R13

− 2λ4(
(
∑s

i=1 p′i(q′i)t
)

3
, (33)

where (
(

∑s
i=1 p′i(q′i)t

)
j

means j-th column of the matrix ∑s
i=1 p′i(q′i)t, j = 1, 2, 3.

Formulas (21)–(29) and (31)–(33) show that the full gradient (∇J(R))t split into three in-
dependent parts with respect to variables (R11 R12 R13)

t, (R21 R22 R23)
t, and (R31 R32 R33)

t.

2.6. Solution to the Variational Problem

First, we solve the variation problem (16) without the restriction R∗ ∈ SO(3), i.e.,
we look for a solution in the class of affine transformations. Let us equate the gradient
(∇J(R))t to zero. M123 and M4 denote following matrices:

M123 = (∑s
i=1

(
ri1

p(ri1
p)t
)
+
(

ri2
p(ri2

p)t
)
+
(

ri3
p(ri3

p)t
)
) (34)

M4 = ∑s
i=1

(
p′i(p′i)t

)
(35)

So, three independent linear systems of equations are obtained

(λ1M123 + λ4M4)

R11
R12
R13

 = λ1(∑s
i=1〈e1, ri1

q〉e1(ri1
p)t)

t
1 + λ1(∑s

i=1〈e1, ri2
q〉e1(ri2

p)t)
t
1+

λ1(∑s
i=1〈e1, ri3

q〉e1(ri3
p)t)

t
1 + λ4(

(
∑s

i=1 p′i(q′i)t
)

1
, (36)

(λ2M123 + λ4M4)

R21
R22
R23

 = λ2(∑s
i=1〈e2, ri1

q〉e2(ri1
p)t)

t
2 + λ2(∑s

i=1〈e2, ri2
q〉e2(ri2

p)t)
t
2+

λ2(∑s
i=1〈e2, ri3

q〉e2(ri3
p)t)

t
2 + λ4(

(
∑s

i=1 p′i(q′i)t
)

2
, (37)

(λ3M123 + λ4M4)

R31
R32
R33

 = λ3(∑s
i=1〈e3, ri1

q〉e3(ri1
p)t)

t
3 + λ3(∑s

i=1〈e3, ri2
q〉e3(ri2

p)t)
t
3+

λ3(∑s
i=1〈e3, ri3

q〉e3(ri3
p)t)

t
3 + λ4(

(
∑s

i=1 p′i(q′i)t
)

3
. (38)
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Remark 1. Formulas (36)–(38) allow parallel computation of the rows of the matrix R.

After obtaining an affine solution R, it can be projected onto SO(3). The orthogonal
solution is given as

R∗ = USVt (39)

where the matrices U and V are the elements of the singular value decomposition UDVt of
the matrix A′ (assume that D is a diagonal matrix with nonincreasing diagonal entries),
and S is defined as

S =

{
I, i f det(U)det(V) = 1

diag(1, 1,−1), i f det(U)det(V) = −1
(40)

The translation vector can be computed as

T∗ =
1
s ∑s

i=1 qi − R∗pi (41)

Note that in Formula (41), we take points pi and qi from the original point clouds P
and Q without centralization.

2.7. Selection of Parameters

In [35], manual selection of the parameters of the λ-functional for a given point pair
(P, Q) was used. Here we propose an automatic selection of the parameters of of the
λ_r-functional parameters. Let k be the number of points in the neighborhood. Let us
compute all matrices Λi1

q, Λi2
q, and Λi3

q. Next, we define the matrix

Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 (42)

as
Λ =

1
s ∑s

i=1 Λi1
q + Λi2

q + Λi3
q (43)

The obtained values λ1, λ2, and λ3 are used in (10). Note that this method for calculat-
ing λ1, λ2, and λ3 was found experimentally.

If the values λ1, λ2, and λ3 are fixed, we have two variable parameters, k and λ4. In
this paper, two neighborhood sizes are used, that is, k = [0.15 ∗ s] and k = [0.85 ∗ s]. Let us
apply the following values of λ4:

λ4j = 10−8·4j, j = 1, .., 16 (44)

Thus, one can obtain 16·2 = 32 parameter values and corresponding 32 transforma-
tions (R∗, T∗).

Suppose that the point clouds P and Q are given. Let us consider a point pi in P and
compute (by the k-d tree algorithm) the closest point qi in Q. If the distance between pi
and qi is less than the value of the parameter δ, then we call pi a suitable point. The total
number of suitable points is called the largest common pointset (LCP) parameter.

In our case, 32 LCP values corresponding to geometric transformations are calculated.
After that, we select the transformation corresponding to the minimum value of LCP.

3. Vector Orientation Predictor and Full Registration Algorithm
3.1. Vector Orientation Predictor

It is known that eigendecomposition algorithms produce eigenvectors with unpre-
dictable orientation. This problem is described, in particular, in [24,41]. The performance of
the ICP algorithm based on the proposed λ_r-functional critically depends on the quality of
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the eigenvector orientation predictor. In [35], we described a method to obtain a predictable
orientation of vectors. Let us recall this algorithm and then modify it.

Let pi and qi be the corresponding points in the clouds P and Q, respectively. Consider
the k-neighborhoods of pi and qi and compute the corresponding covariance matrices. The
eigendecomposition of these matrices gives us the orthogonal matrices <i

p and <i
q. Recall

that these matrices consist of the vector-columns (ri1
p ri2

p ri3
p) and (ri1

q ri2
q ri3

q).
Suppose that eigenvalues of the covariance matrices are in ascending order. In this

case, the vector ri3
p corresponds to the main axis of inertia of the neighborhood, and vector

ri1
p corresponds to the normal vector, provided that the neighborhood is sufficiently flat.

The vector sets (ri1
p ri2

p ri3
p) and (ri1

q ri2
q ri3

q) to define the local vector frames in
P and Q. The origins of these frames are mass centers of the neighborhoods in P and Q.
Assume that the orientations of vectors of the frame in Q are fixed.

The goal is to choose such orientations for the vectors of the local frame in P that they
are co-oriented with those in Q.

Consider the vector ri3
q and the center of mass q̂i of the neighborhood in Q. The

vector ri3
q and the point q̂i define the oriented x-axis of the local frame. Let us consider

the orthogonal projections of all points of the cloud Q onto the x. qent and qext denote the
first and last projections on the x-axis. Consider a uniform partition of the line segment

[qent; qext] by points
{

qint(0) = qent, qint(1), . . . , qint(m) = qext

}
, where m is the number of

subsegments. Leat us consider each subsegment
[
qint(j−1); qint(j)

]
. We denoted by q′k the

projection, the point qk onto the axis, if this projection belongs to the considered subsegment.
cj denotes the center of subsegment

[
qint(j−1); qint(j)

]
, j = 1, . . . , m. Let us associate

the value dj with the subsegment as

dj =
1

∑qj ′∈[qint(j−1) ;qint(j) ]
(|cj−qint(j)|−|cj−qj ′|) ·

∑qj ′∈[qint(j−1);qint(j) ]

(∣∣∣cj − qint(j)

∣∣∣− ∣∣cj − qj′
∣∣) ‖ qj − q′j ‖L2 .

(45)

dsi3
q denotes the following vector:

dsi3
q = (d1, . . . , dm) (46)

We call the vector dsi3
q the descriptor of the third eigenvector of the local frame in

Q. Let us compute similar descriptors dsi3
p(+) and dsi3

p(−). The vector dsi3
p(−) is the

inverse version of the vector dsi3
p(+).

Compare vectors dsi3
q with dsi3

p(+) and dsi3
q with dsi3

p(−) using the L2 norm. The
smallest norm value corresponds to the orientation of the third eigenvector ri3

p in the local
frame in P.

Similarly, we compute the descriptors dsi1
q in Q and dsi1

p in P and vector ri1
p. The

vector ri2
p is the vector product ri3

p × ri1
p.

Remark 2. The descriptors (dsi1
p, dsi2

p, dsi3
p) and (dsi1

q, dsi2
q, dsi3

q) are orthogonal invariants
of local neighborhoods.

Note that the algorithm described above is a simplified version of the following approach.
Suppose that we have a mass center and a main axis of the inertia ellipsoid of the point

cloud. Also, assume that the surface defined by the point cloud is triangulated. Consider
a set of planes perpendicular to the axis. Each plane intersects the triangulation edges
at some points. Let us compute the distances between these points and their orthogonal
projections onto the axis. After that, we calculate the average distance and draw the circle
in the considered plane. The circle has a radius equal to the calculated average distance.
The center of the circle lies on the axis. One can assign to a set of such coaxial circles an
array containing the radii of the circles. If the axis orientation changes, the array is inverted.
The original and inverted variants of the array determine the agreed vector orientations as
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follows. Suppose we have a vector and a mass center of a local vector frame in the source
point cloud. The vector and the mass center define the oriented axis.

Let us consider the corresponding axis in the target point cloud. One can compute a
similar array for the axis in the target point cloud. After that, the difference between the
array of the target point cloud and two arrays of the source point cloud is compared by
the norm. The smaller value of the norm indicates which axis orientation in the source
point cloud should be chosen. To simplify the calculations, the following version of the
described approach can be used; that is, the average distance (of orthogonal projections
onto the axis) is calculated for points where the projections lie between two adjacent coaxial
planes. This is done instead of averaging distances of points belonging to the intersection
of the co-axial plane and the triangulated surface (given by the point cloud). The described
simplified version is used, since the construction of a triangulated surface is a complex
computational task.

Figure 1 illustrates the described approach. The point cloud shown is from the
ModelNet40 database [34].
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Figure 1. The illustration of the vector orientation predictor: (a) 3D model; (b) axis and planes; (c) the
set of circles.

3.2. Full Registration Algorithm Based on λ_r-Functional

The proposed algorithm is called λ_r-ICP. In this paper, we use the λ_r-ICP algorithm
for coarse registration of the incongruent point clouds.

It is known that the classical ICP algorithm cannot work well with incongruent point
clouds. The ICP algorithm requires the selection of pairs of corresponding points to solve
the registration problem for the incongruent case. Moreover, the common ICP algorithm
is used to register point clouds for sufficiently small rotation angles. Thus, the point pair
selection is based on threshold values for the distance between corresponding points.

This approach does not work in coarse registration problems because coarse regis-
tration deals with large rotation angles. The coarse registration algorithm requires the
selection of pairs of points based on orthogonal invariant descriptors.

Note that the lengths of the inertia ellipsoid semi-axes are orthogonal invariants. These
lengths are determined by the eigenvalues λi1, λi2, and λi3. The descriptors (dsi1

p, dsi2
p, dsi3

p)
and (dsi1

q, dsi2
q, dsi3

q) from Section 3.1 are also orthogonal invariants.
Next, we describe the application of these orthogonal invariant descriptors in the

proposed version of the λ_r-ICP algorithm. Note that the size of neighborhood k is fixed.
Suppose that points pi and qi form a corresponding pair. Compute the local vector frames
for pi and qi (item 2.1). Let us denote by λi1

p, λi2
p, λi3

p and λi1
q, λi2

q, λi3
q the eigenvalues

for pi and qi, respectively. The parameters can be defined the follows:

dist_λi = max{|λi1
p − λi1

q|, |λi2
p − λi2

q|, |λi3
p − λi3

q|}, i = 1, . . . s (47)

dist_dsi = max
{
‖ dsi1

p − dsi1
q ‖L1 , ‖ dsi2

p − dsi2
q ‖L1 , ‖ dsi3

p − dsi3
q ‖L1

}
, i = 1, . . . s (48)
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Let us calculate values dist_λi for all corresponding pairs and select 20% of the best
pairs (i.e., with minimum values) from the total. After that, calculate values dist_dsi for
all remaining pairs and select 25% of the best pairs (i.e., with minimal values). After these
two selection steps, we are dealing with 5% of pairs. These steps are called the λ_r-ICP
selection procedure.

Remark 3. In the λ_r-ICP algorithm (for pairs selection), other orthogonal invariant descriptors
can be used instead of those metioned above.

Since the λ_r-ICP algorithm is used for coarse registration, we also apply the point-
to-point ICP with thresholds to refine the registration result. The threshold_PtP denotes
the percentage of best pairs in terms of distance between points. This parameter is used on
each iteration of the point-to-point ICP to select the threshold_PtP% of pairs.

The λ_r-ICP algorithm is summarized as follows in Algorithm 1.

Algorithm 1 λ_r-ICP Algorithm

1. input: cloud P, cloud Q, s = number of points in P, K = {[0.45 ∗ s], [0.85 ∗ s]}
2. for counter_1:=1 to 2 do
3. k:=K[counter_1]
4. compute local vector frames in P and Q for k-neighborhoods
5. for counter_2:=1 to 16 do
6. λ4 = 10(−8) · 4counter_2-1

7. for counter_3:= 1 to 300 do
8. compute correspondence between P and Q (by k-d tree algorithm)
9. apply vector orientation predictor for corresponding local frames in P and Q (here local
orthogonal invariant descriptors can be changed)
10. apply λ_r-ICP selection procedure
11. solve λ_r-ICP variation problem and obtain geometric transformation (R,T)
12. check the convergence criterion, if the criterion is valid then go to 14
13. end // for counter_3
14. append obtained geometric transformation (R,T) to the list tansform_list
15. end // for counter_2
16. end // for counter_1
17. make refinement by point-to-point ICP algorithm with treshold_PtP to all geometric
transformation from tansform_list and choose transformation (R,T) which gives the minimum LCP
value for clouds RP + T and Q
18. output: geometric transformation (R*,T*)

4. Computer Simulation
4.1. Compared Algorithms

With the help of a computer simulation, the performance the proposed algorithm λ_r-
ICP, known as the Super4PCS algorithm [23], and version of the RANSAC algorithm [18]
for coarse registration is illustrated and discussed.

We used the software implementation of the Super4PCS algorithm [37]. Super4PCS
generates several geometric transformations and chooses one of them that is the best
according to the LCP criterion. After that, refinement by the point-to-point ICP algorithm
with the parameter threshold_PtP (see Section 3.2) is performed.

The λ_r-ICP algorithm is implemented as follows. This algorithm computes 32 geo-
metric transformations and uses refinement for all of them. After that, the algorithm selects
one of them, which is the best according to the LCP criterion.

The RANSAC is implemented similarly to the λ_r-ICP algorithm. The algorithm takes
four random points in P and four random points in Q. The initial correspondence is given
by indices. After that, the standard point-to point ICP algorithm is used. The algorithm
generates some geometric transformations and uses refinement for all of them. After that,
the algorithm selects one of them, which is the best according to the LCP criterion.
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In our experiments, the choice of four points is optimal for RANSAC.
Another type of the coarse registration algorithm is described in [39] and its modified

version in [40]. This algorithm uses the SHOT descriptor [24] and is based on the cluster
approach. We refer to this algorithm as “Cluster”.

The point-to-point ICP algorithm (PtP-ICP) with the selection of pairs of corresponding
points and the GICP algorithm (PCL-GICP) [5] (its software implementation from the point
cloud library (PCL) [38]) are also used. Note that the considered version of the PtP-ICP
algorithm uses the selection of pairs of corresponding points and is more suitable for
processing truncated point clouds than PCL-GICP.

4.2. Organisation of Experiments

All point clouds used in our experiments have a diameter ≈ 2. The following four
point clouds were used in the experiments: Stanford Bunny; Airplane from the ModelNet40
database [34]; Scan_1; and Scan_2. The Bunny and Airplane clouds consist of 1024 points.
The point clouds Scan_1 and Scan_2 were acquired by the Intel RealSense D435 depth
camera. Using the depth camera, we made two maps of the depth of the room for the same
camera position, but at different time. We converted depth maps to point clouds, which
are similar but not identical. In particular, these point clouds are noisy independently of
each other and have a different number of points. The first and second clouds consist of
73,340 and 73,081 points, respectively. We applied downsampling to these point clouds and
acquired the clouds Scan_1 and Scan_2, which consist of 2631 and 2362 points, respectively.
Clouds Scan_1 and Scan_2 are scaled to a diameter of ≈2. Figure 2 shows the Airplane,
Bunny, Scan_1, and Scan_2 point clouds.
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Suppose that we have a point cloud Cloudinit. Let us fix a value of the parameter
truncate_rate as a percentage. Calculate the mass center of the cloud and take a randomly
oriented line containing the mass center. Let us project all points of Cloudinit onto a straight
line. Find the first and last projections on the line. We select truncate_rate% projections
to lie on the line after the first projection. Delete corresponding points from the cloud
Cloudinit. Let us denote the resulting point cloud as Pinit.

Select truncate_rate% projections lying on the line before the last projection. Delete
corresponding points from the cloud Cloudinit. Let us denote the obtained point cloud as
Qinit.

In our experiments, the following values of the parameter truncate_rate are used:
truncate_rate = 10%, truncate_rate = 20%, and truncate_rate = 25%. Note that the
parameter truncate_rate is related to the parameter overlap_rate. This parameter describes
the percentage of common parts of the clouds Pinit and Qinit. The corresponding values for
overlap_rate are as follows: overlap_rate ≈ 89%, overlap_rate = 75%, and overlap_rate ≈
67%.

The point cloud Q′ is obtained from the point cloud Qinit as

Q′ = RtrueQinit + Ttrue (49)
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Information about the rotation matrix Rtrue and the translation vector Ttrue is contained
in the matrix Mtrue in homogeneous coordinates.

The point clouds Pinit and Q′ are degraded by additive Gaussian and impulse noise
independently of each other. Denote the obtained point clouds as P and Q, respectively.

In the case of additive Gaussian noise, each point coordinate was corrupted by adding
a Gaussian random variable with a zero mean and a standard deviation of σ = 0.05 and
σ = 0.10.

All points are also distorted by impulse noise as follows: each point coordinate is
changed by adding a random variable uniformly distributed in the interval [−0.2; 0.2].
The values of the noise level and truncate_rate (overlap_rate) are as follows: (σ = 0.10,
truncate_rate =10% (overlap_rate ≈ 89%)); (σ = 0.05, truncate_rate = 20% (overlap_rate
= 75%)); (impulse noise, truncate_rate = 10% (overlap_rate ≈ 89%)). We also carried out
experiments with the Scan_1 and Scan_2 point clouds using the following conditions:
only sensor noise, truncate_rate = 20% (overlap_rate = 75%). The registration task for the
Airplane point cloud was also considered with conditions: noise-free, truncate_rate = 25%
(overlap_rate ≈ 67%). Note that, in our experiments, we sought a balance between the level
of noise and truncation, so that, on the one hand, the registration problem would be quite
difficult for the compared algorithms. On the other hand, the algorithms should show a
satisfactory level of results.

Mest denotes the matrix of geometric transformation in homogeneous coordinates,
which is the result of the registration algorithm. Consider the following expression:

dist_m =‖ Mtrue −Mest ‖L2 (50)

The parameter dist_m describes the difference between the true and estimated trans-
forms. Since we are dealing with noisy point clouds, the true transformation cannot be
restored exactly. Therefore, the following criterion for the quality of the result of the reg-
istration algorithm is applied. We say that the result is good if 0 ≤ dist_m < 0.2, and the
result is medium if 0.2 ≤ dist_m < 0.6.

Remark 4. The parameter dist_m evaluates the quality of the registration result for noisy incongru-
ent point clouds with a single number. The selected parameter values work only for point clouds
scaled to a diameter of about 2.

Figure 3a shows the initial point clouds P and Q. Figure 3b shows the registration
result with the parameter dist_m = 0.112. Figure 3c shows the registration result with
the parameter dist_m = 0.204. Figure 3d shows the registration result with the parameter
dist_m = 2.827.
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Figure 3. (a) Initial point clouds P and Q; (b) registration result with the parameter dist_m = 0.112;
(c) registration result with the parameter dist_m = 0.204; and (d) registration result with the parame-
ter dist_m = 2.827.
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The statistical experiments are organized as follows. Let us fix the value of the rotation
angle. We took a random, uniformly distributed direction vector defining a line containing
the origin of the coordinate system. This line is the axis of rotation at a fixed angle.
In addition, the components of the translation vector are a random variable uniformly
distributed in the interval [0; 1]. The synthesized geometric transformation matrix (true
matrix Mtrue) was applied to source cloud P. The algorithms were tested on the clouds P
and Q. To guarantee statistically correct results, 500 trials for each fixed rotation angle were
carried out. The rotation angle varied from 0 to 180 degrees with a step of 30 degrees. The
number of trials satisfied to the condition of good and medium results was counted.

The percentage of good results (0 ≤ dist_m < 0.2) is shown in the graphs. Note that
the notation “Convergence rate” for this value is also used in the graphs. The abscissa axis
shows the values of rotation angles in degrees. Good and medium results (0 ≤ dist_m < 0.6)
are also shown in the graphs.

Information about the algorithm parameters are given in the tables. The parameter
“Number of ICP iterations” refers to the maximum number of ICP iterations per trial.

Our experiments were carried out on a standard desktop with Ryzen 7 1700XCPU,
32 Gb RAM, GPU NVIDIA GeForce 1080 Ti with 11 Gb GDRAM.

4.3. Experimental Results
4.3.1. Gaussian Noise with σ = 0.10, truncate_rate = 10% (overlap_rate ≈ 89%)

Figure 4 shows examples of pairs (P, Q) with Gaussian noise with σ = 0.10 and trun-
cate_rate = 10% (overlap_rate ≈ 89%). These pairs are the input to the coarse registration
algorithms under consideration.
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(overlap_rate ≈ 89%): (a) Airplane; (b) Bunny; and (c) Scan_1 and Scan_2.

Figure 5a shows the convergence rate of good results, i.e., the frequency of results with
0 ≤ dist_m < 0.2 for Airplane. Figure 5b shows the convergence rate of good and medium
results together, i.e., the frequency of results with 0 ≤ dist_m < 0.6 for Airplane.

Table 1 shows the parameters of the tested algorithms for Airplane with σ = 0.10 and
truncate_rate = 10% (overlap_rate ≈ 89%).

Table 1. Parameters of the tested algorithms for Airplane with σ = 0.10 and truncate_rate = 10%
(overlap_rate ≈ 89%).

Total Time per
3500 Trials, s

Number of ICP
Iterations

Threshold
PtP

Delta
(LCP)

Nsamples
(Super4PCS)

Overlap
(Super4PCS)

λ_r-ICP 28,958 300 0.95 0.06 - -
RANSAC 29,192 - 0.95 0.06 - -

Super 4PCS 28,751 - 0.95 0.06 110 0.85
Cluster 8253 - 0.95 0.06 - -

PCL-GICP 592 300 - - - -
PtP-ICP 117 300 0.95 - - -
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Figure 5. The graphs for the Airplane point cloud, noisy with Gaussian noise with σ = 0.10
and truncate_rate = 10% (overlap_rate ≈ 89%): (a) frequency (convergence rate) of good results
(0 ≤ dist_m < 0.2); and (b) frequency (convergence rate) of good and medium results (0 ≤ dist_m < 0.6).

Figure 6a shows the convergence rate of good results, i.e., the frequency of results with
0 ≤ dist_m < 0.2 for Bunny. Figure 6b shows the convergence rate of good and medium
results together, i.e., the frequency of results with 0 ≤ dist_m < 0.6 for Bunny.
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Table 2 shows the parameters of the tested algorithms for Bunny, with σ = 0.10 and
truncate_rate = 10% (overlap_rate ≈ 89%).

Figure 7a shows the convergence rate of good results, i.e., the frequency of results with
0 ≤ dist_m < 0.2 for the Scans. Figure 7b shows the convergence rate of good and medium
results together, i.e., the frequency of results with 0 ≤ dist_m < 0.6 for the Scans.
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Table 2. Parameters of the considered algorithms for Bunny with σ = 0.10 and truncate_rate = 10%
(overlap_rate ≈ 89%).

Total Time per
3500 Trials, s

Number of ICP
Iterations

Threshold
PtP

Delta
(LCP)

Nsamples
(Super4PCS)

Overlap
(Super4PCS)

λ_r-ICP 32,853 300 0.95 0.06 - -
RANSAC 29,344 - 0.95 0.06 - -

Super 4PCS 33,665 - 0.95 0.06 120 0.85
Cluster 4909 - 0.95 0.06 - -

PCL-GICP 371 300 - - - -
PtP-ICP 114 300 0.95 - - -
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Figure 7. The graphs for Scan_1 and Scan_2 point clouds noisy by Gaussian noise with σ = 0.10 and trun-
cate_rate = 10% (overlap_rate≈ 89%): (a) frequency (convergence rate) of good results (0 ≤ dist_m < 0.2);
and (b) frequency (convergence rate) of good and medium results (0 ≤ dist_m < 0.6).

Table 3 shows the parameters of the tested algorithms for Scan_1 and Scan_2 with
σ = 0.10 and truncate_rate = 10% (overlap_rate ≈ 89%).

Table 3. Parameters of the tested algorithms for Scan_1 and Scan_2 with σ = 0.10 and
truncate_rate = 10% (overlap_rate ≈ 89%).

Total Time per
3500 Trials, sec

Number of ICP
Iterations

Threshold
PtP

Delta
(LCP)

Nsamples
(Super4PCS)

Overlap
(Super4PCS)

λ_r-ICP 30,194 300 0.95 0.06 - -
RANSAC 28,920 - 0.95 0.06 - -

Super 4PCS 30,090 - 0.95 0.06 120 0.85
Cluster 5589 - 0.95 0.06 - -

PCL-GICP 319 300 - - - -
PtP-ICP 119 300 0.95 - - -

4.3.2. Gaussian Noise with σ = 0.05, truncate_rate = 20% (overlap_rate = 75%)

Figure 8 shows examples of pairs (P, Q) with Gaussian noise with σ = 0.05 and trun-
cate_rate = 20% (overlap_rate ≈ 75%). These pairs are the input to the coarse registration
algorithms under consideration.

Note that we consider here point clouds Scan_1 and Scan_2 without additional noise,
only with sensor noise.
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Figure 8. Examples of input data (𝑃, 𝑄) with Gaussian noise with 𝜎 = 0.05 and truncate_rate=

20% (overlap_rate= 75%): (a) Airplane; (b) Bunny; and (c) Scan_1 and Scan_2. 
Figure 8. Examples of input data (P, Q) with Gaussian noise with σ = 0.05 and truncate_rate = 20%
(overlap_rate= 75%): (a) Airplane; (b) Bunny; and (c) Scan_1 and Scan_2.

Figure 9a shows the convergence rate of good results, i.e., the frequency of results with
0 ≤ dist_m < 0.2 for Airplane. Figure 9b shows the convergence rate of good and medium
results together, i.e., the frequency of results with 0 ≤ dist_m < 0.6 for Airplane.
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Figure 9. The graphs for Airplane point cloud noisy with Gaussian noise with σ = 0.05
and truncate_rate = 20% (overlap_rate = 75%): (a) frequency (convergence rate) of good results
(0 ≤ dist_m < 0.2); and (b) frequency (convergence rate) of good and medium results (0 ≤ dist_m < 0.6).

Table 4 shows the parameters of the tested algorithms for Airplane with σ = 0.05 and
truncate_rate = 20% (overlap_rate = 75%).

Table 4. Parameters of the tested algorithms for Airplane with σ = 0.05 and truncate_rate = 20%
(overlap_rate = 75%).

Total Time per
3500 Trials, s

Number of ICP
Iterations

Threshold
PtP

Delta
(LCP)

Nsamples
(Super4PCS)

Overlap
(Super4PCS)

λ_r-ICP 24,731 300 0.85 0.06 - -
RANSAC 28,989 - 0.85 0.06 - -

Super 4PCS 29,694 - 0.85 0.06 110 0.75
Cluster 4404 - 0.85 0.06 - -

PCL-GICP 280 300 - - - -
PtP-ICP 88 300 0.85 - - -

Figure 10a shows the convergence rate of good results, i.e., the frequency of results
with 0 ≤ dist_m < 0.2 for Bunny. Figure 10b shows the convergence rate of good and
medium results together, i.e., the frequency of results with 0 ≤ dist_m < 0.6 for Bunny.



Mathematics 2023, 11, 35 19 of 25Mathematics 2022, 10, x FOR PEER REVIEW 20 of 27 
 

 

  

(a) (b) 

Figure 10. The graphs for Bunny point cloud noisy with Gaussian noise with 𝜎 = 0.05 and trun-

cate_rate = 20%  (overlap_rate   = 75% ): (a) frequency (convergence rate) of good results ( 0 ≤

𝑑𝑖𝑠𝑡_𝑚 < 0.2); (b) Frequency (Convergence rate) of good and medium results (0 ≤ 𝑑𝑖𝑠𝑡_𝑚 < 0.6). 

Table 5 shows the parameters of the tested algorithms for Bunny with 𝜎 = 0.05 and 

truncate_rate = 20% (overlap_rate = 75%). 

Table 5. Parameters of the tested algorithms for Bunny with 𝜎 = 0.05 and truncate_rate = 20% 

(overlap_rate = 75%). 

 
Total Time per 

3500 Trials, s 

Number of ICP Itera-

tions 

Threshold 

PtP 

Delta 

(LCP) 

Nsamples 

(Super4PCS) 

Overlap 

(Super4PCS) 

λ_r-ICP 29,243 300 0.85 0.06 - - 

RANSAC 29,238 - 0.85 0.06 - - 

Super 4PCS 22,966 - 0.85 0.06 120 0.75 

Cluster 4740 - 0.85 0.06 - - 

PCL-GICP 350 300 - - - - 

PtP-ICP 100 300 0.85 - - - 

Figure 11a shows the convergence rate of good results, i.e., the frequency of results 

with 0 ≤ 𝑑𝑖𝑠𝑡_𝑚 < 0.2 for the Scans. Figure 11b shows the convergence rate of good and 

medium results together, i.e., the frequency of results with 0 ≤ 𝑑𝑖𝑠𝑡_𝑚 < 0.6  for the 

Scans. 

Figure 10. The graphs for Bunny point cloud noisy with Gaussian noise with σ = 0.05 and
truncate_rate = 20% (overlap_rate = 75%): (a) frequency (convergence rate) of good results
(0 ≤ dist_m < 0.2); (b) Frequency (Convergence rate) of good and medium results (0 ≤ dist_m < 0.6).

Table 5 shows the parameters of the tested algorithms for Bunny with σ = 0.05 and
truncate_rate = 20% (overlap_rate = 75%).

Table 5. Parameters of the tested algorithms for Bunny with σ = 0.05 and truncate_rate = 20%
(overlap_rate = 75%).

Total Time per
3500 Trials, s

Number of ICP
Iterations

Threshold
PtP

Delta
(LCP)

Nsamples
(Super4PCS)

Overlap
(Super4PCS)

λ_r-ICP 29,243 300 0.85 0.06 - -
RANSAC 29,238 - 0.85 0.06 - -

Super 4PCS 22,966 - 0.85 0.06 120 0.75
Cluster 4740 - 0.85 0.06 - -

PCL-GICP 350 300 - - - -
PtP-ICP 100 300 0.85 - - -

Figure 11a shows the convergence rate of good results, i.e., the frequency of results
with 0 ≤ dist_m < 0.2 for the Scans. Figure 11b shows the convergence rate of good and
medium results together, i.e., the frequency of results with 0 ≤ dist_m < 0.6 for the Scans.

Table 6 shows the parameters of the tested algorithms for Scan_1 and Scan_2 with
σ = 0.05 and truncate_rate = 20% (overlap_rate = 75%).

Table 6. Parameters of the tested algorithms for Scan_1 and Scan_2 with σ = 0.05 and
truncate_rate = 20% (overlap_rate = 75%).

Total Time per
3500 Trials, s

Number of ICP
Iterations

Threshold
PtP

Delta
(LCP)

Nsamples
(Super4PCS)

Overlap
(Super4PCS)

λ_r-ICP 27,109 300 0.85 0.04 - -
RANSAC 29,026 - 0.85 0.04 - -

Super 4PCS 31,291 - 0.85 0.04 120 0.75
Cluster 2113 - 0.85 0.04 - -

PCL-GICP 301 300 - - - -
PtP-ICP 77 300 0.85 - - -
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Figure 11. The graphs for Scan_1 and Scan_2 point clouds noisy with Gaussian noise with the own
sensor noise and truncate_rate = 20% (overlap_rate = 75%): (a) frequency (convergence rate) of
good results (0 ≤ dist_m < 0.2); (b) frequency (convergence rate) of good and medium results
(0 ≤ dist_m < 0.6).

4.3.3. Impulse Noise with, truncate_rate = 10% (overlap_rate ≈ 89%)

The parameters of impulse noise are described in Section 4.2. Figure 12 shows ex-
amples of pairs (P, Q) with impulse noise and truncate_rate = 10% (overlap_rate≈ 89%).
These pairs are the input to the coarse registration algorithms under consideration.
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Figure 12. Examples of input data (P, Q) with impulse noise and truncate_rate = 10% (overlap_rate≈ 89%):
(a) Airplane; (b) Bunny; and (c) Scan_1 and Scan_2.

Figure 13a shows the convergence rate of good results, i.e., the frequency of results
with 0 ≤ dist_m < 0.2 for Airplane. Figure 13b shows the convergence rate of good and
medium results together, i.e., the frequency of results with 0 ≤ dist_m < 0.6 for Airplane.

Table 7 shows the parameters of the tested algorithms for Airplane with the impulse
noise and truncate_rate = 10% (overlap_rate ≈ 89%).

Figure 14a shows the convergence rate of good results, i.e., the frequency of results
with 0 ≤ dist_m < 0.2 for Bunny. Figure 14b shows the convergence rate of good and
medium results together, i.e., the frequency of results with 0 ≤ dist_m < 0.6 for Bunny.

Table 8 shows the parameters of the tested algorithms for Bunny with the impulse
noise and truncate_rate = 10% (overlap_rate ≈ 89%).
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Figure 13. The graphs for Airplane point cloud noisy by the impulse noise and truncate_rate = 10%
(overlap_rate ≈ 89%): (a) frequency (convergence rate) of good results (0 ≤ dist_m < 0.2);
(b) frequency (convergence rate) of good and medium results (0 ≤ dist_m < 0.6).

Table 7. Parameters of the tested algorithms for Airplane with the impulse noise and
truncate_rate = 10% (overlap_rate ≈ 89%).

Total Time per
3500 Trials, s

Number of ICP
Iterations

Threshold
PtP

Delta
(LCP)

Nsamples
(Super4PCS)

Overlap
(Super4PCS)

λ_r-ICP 28,610 300 0.95 0.06 - -
RANSAC 29,223 - 0.95 0.06 - -

Super 4PCS 28,624 - 0.95 0.06 110 0.85
Cluster 6572 - 0.95 0.06 - -

PCL-GICP 340 300 - - - -
PtP-ICP 116 300 0.95 - - -
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Figure 14. The graphs for Bunny point cloud noisy with the impulse noise and truncate_rate = 10%
(overlap_rate ≈ 89%): (a) frequency (convergence rate) of good results (0 ≤ dist_m < 0.2); and
(b) frequency (convergence rate) of good and medium results (0 ≤ dist_m < 0.6).
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Table 8. Parameters of the tested algorithms for Bunny with the impulse noise and
truncate_rate = 10% (overlap_rate ≈ 89%).

Total Time per
3500 Trials, s

Number of ICP
Iterations

Threshold
PtP

Delta
(LCP)

Nsamples
(Super4PCS)

Overlap
(Super4PCS)

λ_r-ICP 29,669 300 0.95 0.06 - -
RANSAC 29,357 - 0.95 0.06 - -

Super 4PCS 33,560 - 0.95 0.06 120 0.85
Cluster 4599 - 0.95 0.06 - -

PCL-GICP 373 300 - - - -
PtP-ICP 108 300 0.95 - - -

Figure 15a shows the convergence rate of good results, i.e., the frequency of results
with 0 ≤ dist_m < 0.2 for the Scans. Figure 15b shows the convergence rate of good and
medium results together, i.e., the frequency of results with 0 ≤ dist_m < 0.6 for the Scans.
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Figure 15. The graphs for Scan_1 and Scan_2 point clouds noisy by the impulse noise and
truncate_rate = 10% (overlap_rate≈ 89%): (a) Frequency (Convergence rate) of good results
(0 ≤ dist_m < 0.2); (b) Frequency (Convergence rate) of good and medium results (0 ≤ dist_m < 0.6).

Table 9 shows the parameters of the tested algorithms for Scan_1 and Scan_2 with the
impulse noise and truncate_rate = 10% (overlap_rate≈ 89%).

Table 9. Parameters of the tested algorithms for Scan_1 and Scan_2 with the impulse noise and
truncate_rate = 10% (overlap_rate≈ 89%).

Total Time per
3500 Trials, s

Number of ICP
Iterations

Threshold
PtP

Delta
(LCP)

Nsamples
(Super4PCS)

Overlap
(Super4PCS)

λ_r-ICP 31,676 300 0.95 0.06 - -
RANSAC 29,248 - 0.95 0.06 - -

Super 4PCS 29,723 - 0.95 0.06 120 0.85
Cluster 5668 - 0.95 0.06 - -

PCL-GICP 333 300 - - - -
PtP-ICP 118 300 0.95 - - -

4.3.4. Noiseless, truncate_rate = 25% (overlap_rate ≈ 67%)

In addition, we carry out experiments with point clouds without noise and with
a large truncation value (i.e., with sufficiently small common parts of clouds P and Q).
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Figure 16 shows an example of point clouds P (blue color) and Q (red color) without noise
and truncate_rate = 25% (overlap_rate ≈ 67%). This pair is the input to the tested coarse
registration algorithms.
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Figure 16. Example of input data P (blue color) and Q (red color) without noise and truncate_rate
= 25% (overlap_rate ≈ 67%).

Figure 17a shows the convergence rate of good results, i.e., the frequency of results
with 0 ≤ dist_m < 0.2 for Airplane. Figure 17b shows the convergence rate of good and
medium results together, i.e., the frequency of results with 0 ≤ dist_m < 0.6 for Airplane.
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Figure 17. The graphs for airplane point cloud without noise and truncate_rate = 25%
(overlap_rate ≈ 67%): (a) frequency (convergence rate) of good results (0 ≤ dist_m < 0.2);
(b) frequency (convergence rate) of good and medium results (0 ≤ dist_m < 0.6).

Table 10 shows the parameters of the tested algorithms for airplane without noise and
truncate_rate = 25% (overlap_rate ≈ 67%).

Table 10. Parameters of the tested algorithms for airplane without noise and truncate_rate = 25%
(overlap_rate ≈ 67%).

Total Time per
3500 Trials, s

Number of ICP
Iterations

Threshold
PtP

Delta
(LCP)

Nsamples
(Super4PCS)

Overlap
(Super4PCS)

λ_r-ICP 30,097 300 0.6 0.004 - -
RANSAC 29,302 - 0.6 0.004 - -

Super 4PCS 5881 - 0.6 0.004 1000 0.66
Cluster 1523 - 0.6 0.004 - -

PCL-GICP 256 300 - - - -
PtP-ICP 64 300 0.6 - - -
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5. Conclusions

In this paper, a new version of the variational problem of the ICP algorithm was
considered. The introduced variational functional is a version of the λ-functional. The
drawback of the previously described λ-ICP is that it is necessary to manually select the
values of the parameters λ for the given source and target point clouds. Here we described
a method for the automatic calculating of these parameters. An approximate solution to
the corresponding variational problem using the proposed functional was presented. An
efficient λ_r-ICP algorithm for the coarse registration of incongruent point clouds was also
proposed. The algorithm contains elements of both the ICP and RANSAC approaches.
With the help of computer simulation, the performance of the proposed algorithms was
compared with that of the state-of-the-art coarse registration algorithms such as Super4PCS
and RANSAC. The proposed algorithm yields the best results among tested algorithms in
the case of strong noise.
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