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Abstract: The paper discusses the stability and robustness of the proportional-integral (PI), proportional-
integral-derivative (PID), and proportional-integral-derivative-accelerative (PIDA) controller for the
integral-plus-dead-time (IPDT) plants. To enable the implementation and measurement of noise atten-
uation, binomial low-pass filters are added to the traditional design of controllers with ideal transfer
functions, and the impact of the low-pass filters on the robust stability of the circuit is studied in detail.
The proposed controller tuning, which integrates the suboptimal controller and filter design, is based
on explicit tuning formulas derived by using the multiple real dominant pole (MRDP) method. It is
shown that by combining derivative actions with possibly higher-order low-pass filters, it is possible to
either accelerate the transients or increase the closed loop robustness and that the problem of defining
the robust stability area should be addressed at the stage of determining the process model. In addition,
if wishing to maintain the closed loop robustness of unfiltered PI control, while increasing the degree
of the derivative components, one needs to increase the filtering properties of the low-pass filter used
accordingly. Simple analytical relations for setting filtered PI, PID, and PIDA controllers with equivalent
robustness are derived.

Keywords: filtration; stability; robustness; multiple real dominant pole method; derivative action
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1. Introduction

PID controllers remain the most widely used technology for industrial process control.
However, some aspects of controller design deserve even more attention. For example,
the design of derivative filters, which are required to implement proportional-integral-
derivative (PID) control in practice, can prove to be found a troublesome problem, leading
to a trivial solution of eliminating derivative action and using only the simplest PI control.
Since the design of a filtered controller requires much more effort than the design of an ideal
controller without a filter, textbooks are flooded with sentences such as that the derivative
part is the most difficult to tune [1], or that the derivative action is not appropriate for noisy
and time-delayed processes [2]. On the other hand, signal filtering becomes very important
not only for controllers with derivative action [3–9]. Indeed, the measurement noise also has
significant effects on the control accuracy, energy consumption, heat dissipation, actuator
wear, unwanted vibration, acoustic noise, etc.

Through simulation and experiments on real processes, it was possible to show that
the design of filters can be included in the task of optimal tuning of controllers using the
method of multiple real poles [10,11]. From the point of view of damping the noise, optimal
results were given by filters with a higher order than the order of the used derivative
term. However, with respect to filtering, some authors object that using higher-order
filters is not practical from a discrete-time perspective, and similar results can be obtained
by using a first-order low-pass filter and ensuring that a good sensor is used for control.
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Despite technological advances, until today, low-pass filters only attenuate noise, they
cannot remove noise, even though higher-orders are used. As a counter-argument, it can be
argued that the higher speed of microprocessors and A/D converters is narrowing the gap
between analog and digital implementations. Moreover, digital controllers are still not the
only possible approach and in addition to traditional analog controllers (especially for fast
processes), newer approaches, such as Field Programmable Analog Arrays (FPAA) [12–14]
show promising results for analog implementations. By considering higher-order filters, we
open the space for the use of controllers with higher-order derivative components [15,16].
When proposing to use sensors with the lowest possible measurement noise, it should be
noted that such a solution is either costly or increases the sensor time constant. Control
solutions should be provided for the existing non-ideal measurement devices.

As indicated by quotations of older references from one of the first textbooks of
automatic control [17], the multiple real dominant pole (MRDP) method belongs to the
oldest methods of optimal adjustment of controllers for time-delayed systems [18–22].
Although even with the help of a simple performance portrait method [23–25] it is possible
to show that from the point of view of the resulting dynamics of the circuit, slightly
better results can be achieved based on complex conjugate poles. More rigorously, similar
problems have also been treated by the latest research in the field of the maximum decay
rate of the closed-loop response for linear time-invariant time-delay systems [26,27], also
giving a more detailed review of the latest research from this area. However, the ease of use
of the MRDP method is a great advantage, especially in the case of the analytical design of
controllers with higher order derivatives [15], which can further be modified for constrained
control design based on the series PID controllers [28], including an explicit observer of
input disturbances [29–31]. Recently, it was shown that a new integrated filter and controller
tuning allows one to deal with filters of an arbitrarily chosen order n, which gives much
better results than the traditional derivative filter design. It allowed tuning of filtered PI
and PID controllers [19]; the less common PIDD2 (PIDA) or PIDD2D3 controllers with
higher order derivative actions, up to the general-order controller using the simple notation
of PIDm

n control. By applying the derivative actions up to a degree m; m = 0, 1, 2, . . . ; m ≤ n
the excessive control effort is simultaneously reduced and the transient speed increased
while the control signals remain sufficiently smooth [15,32,33]. By consistently using integer,
possibly higher-order derivatives and filters, the presented design differs from fractional-
order PIDs [34]. With them, it is possible to use non-integer operators of derivation and
integration, and the designed controllers are finally approximated by filters of higher orders.

In this paper, we extend the design of filtered PI, PID, and PIDA controllers for
the integral plus time delay (IPDT) plant from [15,35] with robust stability evaluation
considering m = 0, 1, 2. In evaluating robustness, while taking into account the arguments
given in [36–38], the article avoids the calculations based on peak sensitivity functions
typically used in PID control or other advanced studies (such as treated in [39]), and focuses
instead on robust stability, which is explained, for example, in [40].

In this context, the paper is organized as follows. Section 2 summarizes the main
results of the ideal PIDm controller design for the IPDT plant for m = 0, 1 and 2 from [15].
The controller extension by binomial filters of the order n ≥ m is also described to obtain
fully implementable, proper, or strictly proper controllers. Section 3 presents the robust
stability problem, which is solved in Section 4 for unfiltered and filtered PI control. The
robust stability analysis of the filtered PID and PIDA controllers is then addressed in
Sections 5 and 6. The main results of the work and future developments are summarized in
the conclusions.

2. PI, PID, and PIDA Controller for the IPDT Plant Tuned with the MRDP Method

In this paper, the velocity of the transients is evaluated using the absolute integral error

IAE =
∫ ∞

0
|e(t)|dt ; e = w− y (1)
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To keep the paper short, the evaluation deals only with the step responses of the input
disturbance, with all corresponding performance values denoted by the subscript “d”.

For the process output y(t) and the controller output u(t), the robustness analysis will
focus on an IPDT process model described by the transfer function

S(s) =
Y(s)
U(s)

= S0(s)e
−Tdps; S0(s) =

Ksp

s
; Ksp 6= 0; Tdp ≥ 0 (2)

with a gain Ksp and a dead time Tdp. In the “optimal” controller tuning, the omitted plant
model index “p” corresponds to the “nominal” model parameters Ks and Td.

2.1. Optimal “Ideal” Controller Design

To illustrate problems of the process modeling mentioned (without some deeper
analysis) already in [28], in the following, we start with summarizing the main results of
deriving the optimal parameters of PI, PID, and PIDA controllers from [15], which will
later be used to evaluate the robustness of the filtered PI, PID and PIDA controllers tuned
by the MRDP method. Where appropriate, we will refer to these controllers simply as PI,
PID, and PIDA, but in the case of efficiency (mainly in the treatment of filtered control),
we will also use the more detailed generalized designation of these controllers from the
article [15] in the form of PIDm

n . Controllers with higher derivatives m > 2 will be treated
in a special article.

Parallel PI, PID, and PIDA control can be specified by a transfer function

PIDm(s) = Kc

[
1 + Tims

Tims
+ TD1s + T2

D2s2
]
= Kcm +

Kim
s

+ KD1ms + KD2ms2;

m = 0, 1, 2
(3)

For m ≥ 1 such a controller needs a filter, which will be treated later. For the nominal
plant parameters and the most complex controller PID2(s) = C(s) corresponding to m = 2
(for the sake of simplicity, the index m has been omitted), the disturbance-to-output transfer
function is

Fdy(s) = Y(s)/Di(s) =
S(s)

1 + C(s)S(s)]
=

=
KsTis

Tis2eTds + KcKs[1 + sTi(1 + TD1s + T2
D2s2)]

(4)

Similarly, for example in [41], a simplified system expression can be based on dimen-
sionless parameters

p = sTd; K = KcKsTd; τi =
Ti
Td

; τ1 =
TD1

Td
; τ2 =

(
TD2

Td

)2
(5)

For (4) it yields

Fdy(p) =
1

Kc

Kτi p
τi p2ep + K[1 + sτi(1 + τ1 p + τ2

2 p2)]
(6)

This means that, in addition to dimensionless parameters (5), the standardized distur-
bance response also depends on the current value of Ks or Kc = K/(KsTd). For PID control
τ2 = 0 and for PI τ1 = τ2 = 0.

Optimal controller parameters determined by the MRDP method guarantee the (m +
2)-tuple real dominant pole po

po = soTd =
√

m + 2− (m + 2) (7)
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Thereby, the (m + 2) controller parameters of the normed quasi-polynomial

P(p) = τi p2ep + Ko[1 + pτi(1 + τ1 p + τ2 p2)] (8)

are determined to get an (m + 2)-tuple real dominant pole po fulfilling equations[
P(p) = 0;

dP(p)
dp

= 0; . . . ;
dm+2P(p)

dpm+2 = 0
]

p=po

(9)

From
dm+2P(p)

dpm+2 =
(

p2 + 2(m + 2)p + (m + 2)(m + 1)
)

the dominant pole is chosen

as the solution of dm+2P(p)/dpm+2 = 0 which is the closest to the origin.
The use of the dimensionless parameters (5) simplifies the optimal controller cal-

culation, especially the differentiation of P(p). For m ∈ [0, 2] the corresponding values
K, τi, τ1, τ2 are summarized in Table 1. For a more detailed derivation see [15] (or also [42]).

Table 1. Optimal PIDm parameters corresponding to (5) and (7), m ∈ [0, 2].

m = 0 m = 1 m = 2

K 0.4612 0.78361 1.08268

τi 5.8284 3.73205 3.00000

τ1 0 0.26289 0.37500

τ2 0 0 0.04167

Reasons for using the derivative action may be demonstrated by the optimal integral
of error (IE) values equal for the considered case to the integral of absolute error (IAE)

IAEd = Ti/Kc = KsT2
d IAEd (10)

As expressed by the index “d”, they are corresponding to unit input disturbance step
responses. Under the assumption of a not changing sign of the control error, they may be
derived as IAE = IE.

Obviously, with increasing parameter m the IAEd values decrease.
By increasing m from 0 to 1, the dimensionless value IAEd (see Table 2) decreases

more than 2 times and from 0 to 2 more than 4.5 times.

Table 2. Optimal normed IAEd = IAEd/(KsT2
d ) values corresponding to unit input disturbance step

responses for PIDm from Table 1.

- m = 0 m = 1 m = 2

IAEd 12.639 4.763 2.771

When wishing to examine the most important question, how far such improvements
can be achieved in real situations, we have to replace ideal PIDm controllers with a filtered
PIDm

n control. The total loop delay, including filtration, will be expressed in terms of the
plant dead time Tdp increased by the equivalent amount Te spent on filtration.

2.2. PID Controllers with Proper Transfer Functions and the Delay Equivalence

To get implementable solutions, the above derived “ideal” controllers can be simply
augmented by an nth order binomial filter

Qn(s) = 1/
(

Tf s + 1
)n

; n = 1, 2, . . . ; n ≥ m (11)
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The resulting transfer function PIDm
n (s) = PIDm(s)Qn(s) becomes proper for n = m.

However, the measurement noise is significantly more attenuated for n > m. Of course,
we will pay for a better smoothing of the noise by slowing down the transient responses.
However, an important question will be how the selection of different filters in combination
with the derivative action will affect the robustness of the circuit.

For a long time, one of the most important reasons leading to the already mentioned
textbook comments [1,2] on the PID derivative action was given by the absence of simple
and reliable methods for its filter tuning. Even the newest works in this area consider
different filters for different components of the control signal, which further complicates
their optimal setting [9,43,44].

One possible solution to include the filter design in the optimal controller tuning is
based on the equivalence of n time constants Tf of Qn(s) with an equivalent dead time
Te, which can then be added to the process dead-time Tdp, i.e., when the considered dead-
time Td consists of an estimate of the loop delay Tdp (representing the sum of the process,
actuator, and measurement sensor delays with a communication and computation delay)
and an intentionally introduced equivalent filter delay estimate Te

Td = Tdp + Te (12)

Te can be approximated as (see e.g., [45])

Te = nNTf (13)

The coefficient N can be specified by values ranging from N = 0.5 (equivalence based
on “half rule”) to N = 1 (equivalence based on “average residence time”).

3. Robustness Issues

As documented by numerous approaches, the integral models represent more gen-
eral and cruder linear approximations allowing simple robust control design of a broad
class of non-linear, time-varying, and uncertain systems (see e.g., the controller tuning
by Ziegler and Nichols [46], the “model-free control” by Fliess and coworkers [47], the
“active-disturbance-rejection-control” developed by Han and Gao [48], the robust control
proposed by Mercader and coworkers [49], or the design in [50] to mention just a few
of them). Regardless of whether known or not, the system’s internal feedback gets here
into the role of an uncertainty compensated together with external input disturbances,
which significantly simplifies the controller design. Next, we will analyze, how a possible
mismatch of the plant and model parameters influences the closed-loop stability.

Robust Stability Analysis

The stability analysis will be based on the characteristic quasi-polynomial of the loop,
and a modification of the D-decomposition [51], or the parameter space method [40]. It is
looking for critical controller parameters corresponding to a pole p = jΩ, Ω ∈ [0, ∞) at the
imaginary axis

P(jΩ) = −TiΩ2(1 + jΩTf )
nejΩTd + KcKs[1 + jΩTi(1 + jΩTD1 −Ω2T2

D2)] (14)

it allows one to split a complex characteristic equation into two simpler real equations.
For the controller tuning

Td = Tdp + Te; Kc =
K

Ksp(Tdp+Te)
;

Ti = τi(Tdp + Te); TD1 = τ1(Tdp + Te); TD2 = τ2(Tdp + Te)2 (15)
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and the positive dimensionless variables

ω = Ω(Tdp + Te); τe =
Te

Tdp + Te
; τf =

Tf

Tdp + Te

τ =
Td
Tdp

; τ =
Td

Tdp + Te
=

τTdp

Tdp + Te
;

κ =
Ks

Ksp
; τ1 =

TD1

Tdp + Te
; τ2 =

(
TD2

Tdp + Te

)2

(16)

the quasi-polynomial (14) can be expressed as

P(jω) = −τiω
2(1 + jωτf )

nejωτ + κ[1 + jωτi(1 + jωτ1 −ω2τ2)] (17)

4. Robust Stability of PI Controllers
4.1. Unfiltered PI Controllers

In the simplest case of an unfiltered PI controller with m = n = 0, τe = 0 and τ = τ it
will be

P(jω) = −τiω
2ejωτ + κK(1 + jωτi) (18)

This complex quasi-polynomial can be used to formulate two real equations corre-
sponding to the stability border

−τiω
2cos(ωτ) + κK = 0

−τiω
2sin(ωτ) + κKωτi = 0

(19)

For ω = 0, we get the expression of the stability limit in the form of the first of the
equations

κ = 0 (20)

defining in the plane (κ, τ) a critical line. By eliminating κK from the equations (19), one
gets for ω > 0 the equation

cos(ωτ)ωτi = sin(ωτ), (21)

and
ωτi = tg(ωτ) (22)

Thus, one coordinate of the critical curve can then be expressed as

τ =
1
ω

arctg(ωτi) (23)

Its limit value for ω → 0 is
τ = τi (24)

For ω → ∞
τ = 0 (25)

By expressing the characteristic equation P(jω) = 0 corresponding for m = n = 0 to
(17) by means of absolute values, one gets the second coordinate of the critical curve as

κ =
1
K

ω2τi√
1 + ω2τ2

i

(26)

By changing ω ∈ (0, ∞), we get κ ∈ (0, ∞) and the stability boundary (κ, τ) drawn in
Figure 1 has boundary points

BP0
00 = (0, τi), for ω → 0

BP0
0∞ = (∞, 0), for ω → ∞.

(27)
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Figure 1. Stability borders of the nonfiltered PID0
0 and filtered PID0

1 and PID0
2 control for several

values of τe = Te/(Tdp + Te), Tdp = 1 and the average-residence-time tuning equivalence Tf = Te/n,
n = 1, 2; + denoting the nominal tuning.

This curve, together with the critical lines κ = 0 and τ = 0, delimits the region of
stable PID0

0 settings around the nominal point (1,1).

Definition 1 (Gain margin and dead-time margin). For an easier quantification of robustness,
it is also appropriate to introduce the concept of gain margin as amplification Ks, where a circuit
with a value of τ = 1 is placed at the limit of stability. By the term dead-time margin, we will again
understand the value Td, at which the circuit with the value κ = 1 reaches the limit of stability.

Thus, the gain and time margin defines two important boundary points of the PID0
0

controller
BP0

0κ = (κm, 1)
BP0

0τ = (1, τm).
(28)

For PI controller, the value τ = 1 corresponds (according to (21))

ωτi = tan(ω) → ω = 1.45329 (29)

From (26) then follows
κm = 3.129 (30)

Similarly, from κ = 1 one gets according to (26) ω = 0.4888 and after substituting this
value into to (23) the dead-time margin

τm = 2.523 (31)
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4.2. Filtered PI Controller with the First-Order Filter

Application of the first order filter (n = 1) to PI controller with m = 0 already requires
to choose some τe > 0 and to consider τ = τ/(1 + τe), which yields the characteristic
quasi-polynomial

P(jω) = −τiω
2(1 + jωτf )ejωτ + κK(1 + jωτi) (32)

It can be split into two real equations

−τiω
2[cos(ωτ)−ωτf sin(ωτ)] + κK = 0

−τiω
2[sin(ωτ) + ωτf cos(ωτ)] + κKωτi = 0

(33)

For ω = 0, we get again the stability limit in form of the critical line κ = 0 (20).
By eliminating κK from the Equation (33), one gets for ω > 0 the equation

cos(ωτ)−ωτf sin(ωτ) =
sin(ωτ) + ωτf cos(ωτ)

ωτi
, (34)

τ =
1
ω

arctg

(
ω(τi − τf )

1 + ω2τiτf

)
, (35)

and with respect to τ = (Tdp + Te)τ/Tdp = (1 + τe/(1− τe))τ

τ =
1 +

τe

1− τe
ω

arctg

(
ω(τi − τf )

1 + ω2τiτf

)
. (36)

By expressing the characteristic equation P(jω) = 0 corresponding for m = 0 to (17)
by means of absolute values, one gets the second coordinate of the critical curve as

κ =
1
K

ω2τi

(√
1 + ω2τf

)n

√
1 + ω2τ2

i

(37)

Depending on the choice of Tdp = 1 and the tuning equivalence Te = nTf with n = 1
corresponding to the PID01 controller, (36) and (37) then yield the stability borders in the
parameter plane (κ, τ) in Figure 1. The segments corresponding to different Te values have
boundary points

BP0
10 =

τi − τf

1− τe
=

τi − τe

1− τe
for ω → 0

BP0
1∞ = (∞, 0) for ω → ∞.

(38)

Again, it can be interesting to deal with the stability boundary points BP0
1κ = (κm, 1)

and BP0
1τ = (1, τm) defining the dead-time and gain margins. For PID0

1, i.e. filtered PI
controller, the values ωτ1 corresponding to τ = 1 (according to (36)) can be calculated
numerically e.g., by Newton–Raphson method [52]. For Tdp = 1 and different Te = Tf the
results are to find in Figure 2.

Similarly, according to (36) the values τκ1 corresponding to τ = 1 can be derived. The
calculated values are in Figure 3.
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Figure 2. Calculating the gain margin κm of the filtered PID0
1 and PID0

2 controllers for Tdp = 1 and
the Tf = Te/n tuning equivalence, n = 1, 2.

Figure 3. Calculating the dead-time margin τm of the PID0
1 and PID0

2 controllers for Tdp = 1 and the
Tf = Te/n tuning equivalence, n = 1, 2.
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4.3. Filtered PI Controller with the Second-Order Filter

Application of the second order filter (n = 2) to PI controller with m = 0 already re-
quires to choose some τe > 0 and to consider τ = τ/(1+ τe), which yields the characteristic
quasi-polynomial

P(jω) = −τiω
2(1 + jωτf )

2ejωτ + κK(1 + jωτi) (39)

It can be split into two real equations

−τiω
2[(1− τ2

f ω2)cos(ωτ)− 2ωτf sin(ωτ)] + κK = 0
−τiω

2[(1− τ2
f ω2)sin(ωτ) + 2ωτf cos(ωτ)] + κKωτi = 0

(40)

For ω = 0, we get again the stability limit in form of the critical line κ = 0 (20).
By eliminating κK from the equations (40), one gets for ω > 0 the equation

(1− τ2
f ω2)cos(ωτ)− 2ωτf sin(ωτ) =

(1− τ2
f ω2)sin(ωτ) + 2ωτf cos(ωτ)

ωτi
. (41)

This can be rewritten as(
(1− τ2

f ω2)

ωτi
+ 2ωτf

)
tg(ωτ) = (1− τ2

f ω2)−
2τf

τi
(42)

which yields

τ =
1
ω

arctg

(
ω
(1− τ2

f ω2)τi − 2τf

1 + ω2(2τiτf − τ2
f )

)
. (43)

Finally, with respect to τ = (1 + τe/(1− τe))τ

τ =
1 +

τe

1− τe
ω

arctg

(
ω
(1− τ2

f ω2)τi − 2τf

1 + ω2(2τiτf − τ2
f )

)
. (44)

By expressing the characteristic equation P(jω) = 0 corresponding for m = 0 and
n = 2 by means of absolute values (17), one gets from (37) the second coordinate of the
critical curve.

Depending on the choice of Tdp = 1 and the tuning equivalence Te = 2Tf , the stability
borders in the parameter plane (κ, τ) are again illustrated in Figure 1. The stability border
segments corresponding to PID0

2 have the boundary points

BP0
20 =

τi − 2τf

1− τe
=

τi − τe

1− τe
for ω → 0

BP0
2∞ = (∞, 0) for ω → ∞.

(45)

Comparison with PID0
1 controller shows lower limits of stability in the area of large

κ = Ks/Ksp values. Even here, however, the robustness of the circuit set on the basis of the
controller tuning derived by the MRDP method for the IPDT model is better than with the
unfiltered PID0

0 controller.
Again, it can be interesting to deal with the stability boundary points BP0

2κ = (κm, 1)
and BP0

2τ = (1, τm) defining the dead-time and gain margins. Dependence of dead-time
and gain margins on τe = Te/(Tdp + Te) and comparisons of both considered filtration
options are shown in Figures 2 and 3.

4.4. Discussion on the Filtered PI Control

Figure 1 shows that by increasing the equivalent dead-time, Te used for filter tuning,
the corresponding areas of stability expand - the use of filters increases the robustness of
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the PI control. It can e.g., be demonstrated by the dependencies in Figures 2 and 3, which
indicate that by increasing the value of Te, resp. τe = Te/(Tdp + Te), when they are adjusted
in the controller settings according to (15), the values of gain margin and dead-time margin
increase - the circuit is stable in a larger range of uncertainty of the model parameters than
a circuit with an unfiltered PI controller (PID0

0), which yields the values κm = 3.129 (30)
and τm = 2.523 (31). Therefore, although the PI controller does not need low-pass filters for
implementation, in addition to smoothing the measurement noise, their presence improves
the robustness of the circuit against model parameter uncertainties. However, the adverse
consequence is the slowing down of transients, which can be compensated by accelerating
the transients by using controllers with a derivative action.

However, due to the uncertainty of the individual model parameters Ksp and Tdp and
the order n of filters used, the increase in robustness is uneven, which can be documented
by particular boundary points. Whereas the boundary points BP0

20 = (0, (τi − τe)/(1− τe))
of the PID0

2 controller are the same as for the PID0
1 controller (38), the boundary points

B0
1τ = (1, τm) corresponding to the dead-time margin already indicate slightly higher

robustness of the PID0
1 controller (see Figure 3). In contrast, from the boundary points

B0
1κ = (κm, 1) corresponding to the gain margin, the robustness of the PID0

1 controller with
the first-order filter is clearly higher (see Figure 2).

To clarify the issue of evaluating robust stability, we will add two notes.

Remark 1 (The question of the accuracy of the determined limits of stability). Although the
optimal setting of the parameters of the considered filtered PI controllers (PID0

n) is based on simplified
relationships, the determination of the stability limits already takes into account the real dynamic
elements of the circuit and therefore gives the exact values of the critical loop parameters in relation to
the parameters of the model considered during the setting. The courses of the simulation from Figure 4
corresponding to PID0

2 controller confirm the critical values determined according to Figure 1.

Figure 4. Verifying the dead-time and gain margins of the PID0
2 controllers for Tdp = 1, Te = 1, and

the Tf = Te/2 tuning equivalence.

Remark 2 (The effect of filtering on the amplitudes of input and output of the process). As
shown by the input and output responses of the systems in Figure 5, by filtering the signals, the
amplitudes of the controller output responses change only slightly after a disturbance step. However,
by increasing Te, due to the increase in the total loop delay Tdp + Te also, the amplitude of the
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process output increases significantly. At a given equivalence, the filter degree itself only slightly
affects the output and input responses of the process.

Figure 5. Verifying the dead-time and gain margins of the PID0
2 controllers for Tdp = 1, Te = 1, and

the Tf = Te/2 tuning equivalence.

5. Robust Stability of Filtered PID Control

While the low-pass filter is optional for PI controllers, it is already necessary for PID
controllers and can significantly reduce the resulting performance if the chosen filter is
inappropriate. This is one of the reasons for the lower application of PID controllers
compared to PI controllers.

For the nth-order filters, the characteristic polynomial corresponding to the controller
designated as PID1

n is

P(jΩ) = −TiΩ2(1 + jΩTf )
nejΩTd + KcKs[1 + jΩTi(1 + jΩTD1)] (46)
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For the nominal case, the controller parameters are given in Tab. 1 and

Td = Tdp + Te; Kc =
Ko

Ksp(Tdp + Te)
;

Ti = τi(Tdp + Te); TD1 = τ1(Tdp + Te);
τi = 3.73204; K = 0.78361; τ1 = 0.2628.

(47)

For stability analysis, it is more convenient to work with dimensionless variables
(16), when the system at the stability boundary is described by the following complex
quasi-polynomial

P(jω) = −τiω
2(1 + jωτf )

nejωτ + κK[1 + jωτi(1 + jωτ1)] (48)

To determine the critical controller parameters, Equation (48) can be transformed into
the equation with absolute values

τiω
2(
√

1 + ω2τ2
f )

n = κK
√
(1−ω2τiτD)2 + ω2τ2

i (49)

or in two equations for real and imaginary parts. Again, the investigation is divided
according to the chosen filter order n.

5.1. PID with the First-Order Filters

For n = 1, two real equations can be formulated on the basis of (48)

−τiω
2[cos(ωτ)−ωτf sin(ωτ)] + κK(1−ω2τiτD) = 0

−τiω
2[sin(ωτ) + ωτf cos(ωτ)] + κKωτi = 0

(50)

For ω = 0, according to the first equation, the stability limit is κ = 0 (20).
Eliminating κK from Equation (50), we obtain for ω > 0 the equation

cos(ωτ)−ωτf sin(ωτ)

1−ω2τiτD
=

sin(ωτ) + ωτf cos(ωτ)

ωτi
, (51)

from which we finally obtain

τ =
1 +

τe

1− τe
ω

arctg

(
ω

τi − (1− τiτDω2)τf

1 + ω2(τiτf − τiτD)

)
. (52)

Considering (49) and n = 1, it is possible to plot the curves corresponding to the
robust stability border in Figure 6. The segments of the stability border corresponding to
PID1

1 have the boundary points

BP1
10 =

τi − τf

1− τe
=

τi − τe

1− τe
for ω → 0

BP1
1∞ = (∞, 0) for ω → ∞.

(53)

5.2. PID with the Second-Order Filter

For n = 2, two equations can be formulated based on (48)

−τiω
2[(1−ω2τ2

f )cos(ωτ)− 2ωτf sin(ωτ)] + κK(1−ω2τiτD) = 0
−τiω

2[(1−ω2τ2
f )sin(ωτ) + 2ωτf cos(ωτ)] + κKωτi = 0

(54)

For ω = 0, it follows from the first equation that the stability limit is defined by the
critical line κ = 0 (20).
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Figure 6. Stability borders of the nonfiltered PI (PID0
0) and filtered PID1

1 , PID1
2 , and PID1

3 control
for several values of τe = Te/(Tdp + Te), Tdp = 1 and the average-residence-time tuning equivalence
Tf = Te/n, n = 1, 2, 3; + denoting the nominal tuning.

Eliminating κK from (50), for ω > 0 we obtain

(1−ω2τ2
f )cos(ωτ)− 2ωτf sin(ωτ)

1−ω2τiτD
=

=
(1−ω2τ2

f )sin(ωτ) + 2ωτf cos(ωτ)

ωτi
,

(55)

from which we finally get

τ =
1 +

τe

1− τe
ω

arctg
(1−ω2τ2

f )ωτi − 2ωτf (1−ω2τiτD)

(1−ω2τ2
f )ωτi + 2ω2τiτf

. (56)

The stability boundary segments corresponding to PID1
2 have the boundary points

BP1
20 =

τi − 2τf

1− τe
=

τi − τe

1− τe
for ω → 0

BP1
2∞ = (∞, 0) for ω → ∞.

(57)

Considering (49) and n = 2, it is then possible to draw curves corresponding to the
robust stability border in Figure 6.

5.3. PID with the Third-Order Filter

For n = 3, the following two equations can be formulated based on (48)

−τiω
2[(1− 3ω2τ2

f )cos(ωτ)−ωτf (3−ω2τ2
f )sin(ωτ)] + κK(1−ω2τiτD) = 0

−τiω
2[(1− 3ω2τ2

f )sin(ωτ) + ωτf (3−ω2τ2
f )cos(ωτ)] + κKωτi = 0

(58)
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For ω = 0, the stability limit according to the first equation is again the critical line
κ = 0 (20).

Eliminating κK from Equation (50), we obtain for ω > 0 the equation

(1− 3ω2τ2
f )cos(ωτ)−ωτf (3−ω2τ2

f )sin(ωτ)

1−ω2τiτD
=

=
(1− 3ω2τ2

f )sin(ωτ) + ωτf (3−ω2τ2
f )cos(ωτ)

ωτi
,

(59)

from which we finally get

τ =
1
ω

arctg
(1− 3ω2τ2

f )ωτi −ωτf (3−ω2τ2
f )(1−ω2τiτD)

(1− 3ω2τ2
f )(1−ω2τiτD) + ωτf (3−ω2τ2

f )ωτi
,

τ = (1 +
τe

1− τe
)τ.

(60)

Combining (49) and n = 3, it is then possible to draw the curves corresponding to the
robust stability border in Figure 6.

The segments of the stability border corresponding to PID1
3 have the following bound-

ary points

BP1
30 =

τi − 3τf

1− τe
=

τi − τe

1− τe
for ω → 0

BP1
3∞ = (∞, 0) for ω → ∞.

(61)

5.4. Discussion about Filtered PID Control

For all values n considered, it may be interesting to study the stability boundary points
BP1

nκ = (κm, 1) and BP1
nτ = (1, τm) that define the dead-time margins and the gain margins.

The dependence of the dead-time and the gain margins on τe = Te/(Tdp + Te) and the
comparison of the two considered filter options are shown in Figures 7 and 8.

Figure 7. Calculating the gain margin κm of the filtered PID1
1 , PID1

2 , and PID1
3 controllers for Tdp = 1

and the Tf = Te/n tuning equivalence, n = 1, 2, 3.
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Figure 8. Calculating the dead-time margin τm of the PID1
1 , PID1

2 , and PID1
3 controllers for Tdp = 1

and the Tf = Te/n tuning equivalence, n = 1, 2, 3.

When using the PID control with Te < Tdp (τe < 0.5), the performed analysis shows
a slight deterioration of the robust stability compared to PI without filtering. For small
values of κ = Ks/Ksp when Te = nTf is applied, the robust stability practically does not
depend on the filter order n. For higher values of κ, the stability decreases with increasing
filter order n. It is, therefore, reasonable to choose a model identification method that yields
the largest possible absolute estimate of Ksp.

The asymmetry of robust stability with respect to the uncertainties of the individual
model parameters and the filter degrees n used is also evident in the calculation of the
gain and dead-time margins κm and τm (see Figures 7 and 8). For the dead-time margin τm,
stability is almost not dependent on n, and improvements over the unfiltered PI control can
be approximately achieved for te ≥ 0.4. However, for n = 3 and Te = nTf , the gain margin
κm = 3.129 of the unfiltered PI control (30) is achieved at τe ≈ 0.66, which is nearly twice
as long as τe ≈ 0.38 for n = 1. Thus, the suitability of using higher-order filters cannot be
affirmed or rejected in a blanket manner but depends on the specific application.

Let us note that all considered boundary points Bm
n0, m = 0, 1 are formally given by

the same relation. If we assign the index m to the considered values τi and τe and search
for a value for τ1

e that leads to a dynamics corresponding to the unfiltered PI (PID0
0) with

τ0
e = 0, we have to solve the following equation

τ0
i − τ0

e

1− τ0
e

=
τ1

i − τ1
e

1− τ1
e

(62)

This gives

τ1
e =

τ0
i − τ1

i
τ0

i − 1
= 0.4342 (63)

This result is in good agreement with the graphical solution of the equivalence based
on the dead-time span curves in Figure 8.

Similarly, it would be possible to estimate the values of τe that ensure the equivalence
of the filtered PID controller with the filtered PI controller.
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The use of one or more derived terms should also be justified in terms of robustness.
For the chosen value of the parameter τe, which provides at least the same gain and stability
margins as the unfiltered PI, in the nominal case with exactly known parameters of the
model, we obtain the input and output responses of the closed loop as shown in Figure 9.
The maximum amplitudes of the disturbance responses at the input and output of the
process can also be higher than for unfiltered PI. This is due to the fact that adding Te
to the process delay Tdp increases the total delay. Therefore, after a disturbance step, the
maximum deviations at the input and output of the system increase.

Figure 9. Disturbance responses of the nominal IPDT system with Tdp = 1 and Ksp = 1 for the
unfiltered PI control (PID0

0) and PID1
n controllers with three different values τe and the Tf = Te/n

tuning equivalence, n = 1, 2, 3.
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6. Robust Stability of PIDA Controller

Similar to the PID controller, the implementation of the PIDA controller requires at
least a 2nd order filter. For the nth-order filters, the characteristic polynomial corresponding
to the controller denoted as PID2

n is

P(jΩ) = −TiΩ2(1 + jΩTf )
nejΩTd + KcKs[1 + jΩTi(1 + jΩTD1 −Ω2T2

D2)] (64)

For the nominal case, the controller parameters are given in Table 1 and

Td = Tdp + Te; Kc =
K

Ksp(Tdp + Te)
;

Ti = τi(Tdp + Te); TD1 = τ1(Tdp + Te); T2
D2 = τ2(Tdp + Te)2;

τi = 3.0; K = 1.08268; τ1 = 0.37500; τ2 = 0.04167.

(65)

For stability analysis, it is more convenient to work with dimensionless variables (16),
when the system at the stability limit is described by the complex quasi-polynomial

P(jω) = −τiω
2(1 + jωτf )

nejωτ + κK[1 + jωτi(1−ω2τ2 + jωτ1)] (66)

When determining the critical controller tuning, it can be converted into the equation
with absolute values

τiω
2(
√

1 + ω2τ2
f )

n = κK
√
(1−ω2τiτ1)2 + ω2τ2

i (1−ω2τ2)2 (67)

or in two equations for real and imaginary parts. Again, we will treat the conditions for the
different orders n separately.

6.1. PIDA with the Second-Order Filters

For n = 2, the following two equations can be formulated based on (48):

−τiω
2[(1−ω2τ2

f )cos(ωτ)− 2ωτf sin(ωτ)] + κK(1−ω2τiτ1) = 0
−τiω

2[(1−ω2τ2
f )sin(ωτ) + 2ωτf cos(ωτ)] + κKωτi(1−ω2τ2) = 0

(68)

For ω = 0, the first equation provides the stability limit in the form of the critical line
κ = 0 (20).

Eliminating κK from Equation (68), we obtain (for ω > 0) the expression

(1−ω2τ2
f )cos(ωτ)− 2ωτf sin(ωτ)

1−ω2τiτ1
=

(1−ω2τ2
f )sin(ωτ) + 2ωτf cos(ωτ)

ωτi(1−ω2τ2)
, (69)

from which we finally get

τ =
1 +

τe

1− τe
ω

arctg

(
ωτi(1−ω2τ2)(1−ω2τ2

f )− 2ωτf (1−ω2τiτ1)

2ωτf τi(1−ω2τ2) + (1−ω2τ2)(1−ω2τiτ1)

)
. (70)

The stability boundary segments corresponding to PID2
2 have the boundary points

BP2
20 =

τi − 2τf

1− τe
=

τi − τe

1− τe
for ω → 0

BP2
2∞ = (∞, 0) for ω → ∞.

(71)

In combination with (67), it is then possible to draw curves corresponding to the robust
stability border in Figure 10.
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Figure 10. Stability borders of the nonfiltered PI (PID0
0) and filtered PIDA controllers (PID2

2 , PID2
3 ,

and PID2
4) for several values of τe = Te/(Tdp + Te), Tdp = 1 and the average-residence-time tuning

equivalence Tf = Te/n, n = 2, 3, 4; + denoting the nominal tuning.

6.2. PIDA with the Third-Order Filters

For n = 3, two equations can be formulated based on (48)

−τiω
2[(1− 3ω2τ2

f )cos(ωτ)−ωτf (3−ω2τ2
f )sin(ωτ)] + κK(1−ω2τiτ1) = 0

−τiω
2[(1− 3ω2τ2

f )sin(ωτ) + ωτf (3−ω2τ2
f )cos(ωτ)] + κKωτi(1−ω2τ2) = 0

(72)

For ω = 0, the first equation provides the stability limit in terms of the critical line
κ = 0 (20).

Eliminating κK from Equation (72), for ω > 0 we obtain the equation

(1− 3ω2τ2
f )cos(ωτ)−ωτf (3−ω2τ2

f )sin(ωτ)

1−ω2τiτ1
=

=
(1− 3ω2τ2

f )sin(ωτ) + ωτf (3−ω2τ2
f )cos(ωτ)

ωτi(1−ω2τ2)
,

(73)

from which we finally get

τ =
1 +

τe

1− τe
ω

arctg

(
ωτi(1−ω2τ2)(1− 3ω2τ2

f )−ωτf (1−ω2τiτ1)(3−ω2τ2
f )

(1− 3ω2τ2
f )(1−ω2τiτ1) + ω2τiτf (1−ω2τ2)(3−ω2τ2

f )

)
. (74)

The stability boundary segments of PID2
3 have the boundary points

BP2
30 =

τi − 3τf

1− τe
=

τi − τe

1− τe
for ω → 0

BP2
3∞1 = (∞, 0) for ω → ∞.

(75)
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In combination with (67), it is then possible to draw curves corresponding to the robust
stability border in Figure 10.

6.3. PIDA with the Fourth-Order Filters

For n = 4, two equations can be formulated based on (48):

−τiω
2[(1− 6ω2τ2

f + ω4τ4
f )cos(ωτ)− 4ωτf (1−ω2τ2

f )sin(ωτ)] + κK(1−ω2τiτ1) = 0
−τiω

2[(1− 6ω2τ2
f + ω4τ4

f )sin(ωτ) + 4ωτf (1−ω2τ2
f )cos(ωτ)] + κKωτi(1−ω2τ2) = 0

(76)

For ω = 0, the first equation provides the stability limit in the form of the critical line
κ = 0 (20).

Eliminating κK from equations (72), for ω > 0, we obtain

(1− 6ω2τ2
f + ω4τ4

f )cos(ωτ)− 4ωτf (1−ω2τ2
f )sin(ωτ)

1−ω2τiτ1
=

=
(1− 6ω2τ2

f + ω4τ4
f )sin(ωτ) + 4ωτf (1−ω2τ2

f )cos(ωτ)

ωτi(1−ω2τ2)
,

(77)

from which we finally get

τ =
1 +

τe

1− τe
ω

arctg

(
(1− 6ω2τ2

f + ω4τ4
f )ωτi(1−ω2τ2)− 4ωτf (1−ω2τ2

f )(1−ω2τiτ1)

(1− 6ω2τ2
f + ω4τ4

f )(1−ω2τiτ1) + 4ω2τf τi(1−ω2τ2
f )(1−ω2τ2)

)
.

(78)
The stability boundary segments corresponding to PID2

4 have the boundary points

BP2
40 =

τi − 4τf

1− τe
=

τi − τe

1− τe
for ω → 0

BP2
4∞1 = (∞, 0) for ω → ∞.

(79)

In combination with (67), it is then possible to draw curves corresponding to the robust
stability border in Figure 10.

The dependence of the stability and gain margins on τe = Te/(Tdp + Te) and the
comparison of the considered filtration options are shown in Figures 11 and 12, respectively.

6.4. Discussion on the Filtered PIDA Control

The analysis of the robust stability of the PIDA controller allows to formulate similar
conclusions as for the PID controller. When applying higher- order filters n > 2, the Ksp
should be chosen so that the process is well approximated with variable (non-zero) gain Ks
at the highest determined absolute values of Ks.

Again, all boundary points B2
n0 considered are formally given by the same relation

as for m = 0 or m = 1. Therefore, for m = 2 we can find τ2
e leading to the dynamics

corresponding to the unfiltered PI (PID0
0) with τ0

e = 0. By solving the equation

τ0
i − τ0

e

1− τ0
e

=
τ2

i − τ2
e

1− τ2
e

(80)

one obtains

τ2
e =

τ0
i − τ2

i
τ0

i − 1
= 0.5858 (81)

This result is in good agreement with the graphical solution of the equivalence based
on the B2

nτ boundary points and the corresponding dead-time margin curves in Figure 12.
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Figure 11. Calculating the gain margin κm of the filtered PID2
2 , PID2

3 , and PID2
4 controllers for

Tdp = 1 and the Tf = Te/n tuning equivalence, n = 2, 3, 4.

Figure 12. Calculating the dead-time margin τm of the PID2
2 , PID2

3 and PID2
4 controllers for Tdp = 1

and the Tf = Te/n tuning equivalence, n = 2, 3, 4.
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7. Conclusions

The evaluation of the stability range, which depends on the derivative term and the
applied low-pass filters, showed that the filtering itself increases the robust stability of the
control loop. When the uncertainty of κ = Ks/Ksp is large, it is advisable to use low-pass
filters with the minimal possible order. The possibility of using higher-order filters should
already be taken into account when selecting the model parameter Ksp during process
identification to get max{κ} ≈ 1.

If we want to speed up transient responses by including derivative components
compared to an unfiltered PI controller and using more “aggressive” settings (choosing
lower values of Te), we must not be surprised by a decrease in the range of stable parameters,
i.e. a decrease in robustness.

Simple analytical relations for setting filtered PI, PID, and PIDA controllers with
equivalent robustness have been derived.

To ensure the operation of the circuit in the area of stability, even when considering
the uncertainty of the model parameters, its nominal parameters must be appropriately
selected.

In future research, we will focus on the evaluation of robust stability when higher-
order derivative terms are used. The results obtained for m = 0, 1, and 2 indicate that they
could also apply to higher values of m, which are interesting from the point of view of
direct replacement of fractional-order PID controllers using approximations with higher-
order filters.
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32. Huba, M.; Vrančić, D. Comparing filtered PI, PID and PIDD2 control for the FOTD plants. In Proceedings of the 3rd IFAC

Conference on Advances in Proportional-Integral-Derivative Control, Ghent, Belgium, 9–11 May 2018; pp. 954–959.
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