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Abstract: In this paper, a new Newton-based extremum-seeking control for dynamic systems is
proposed using Kalman filter for gradient and Hessian estimation as well as a stochastic perturbation
signal with time-varying amplitude. The obtained Kalman filter based Newton extremum-seeking
control (KFNESC) makes it possible to accelerate the convergence to the extremum and attenuate the
steady-state oscillations. The convergence and oscillation attenuation properties of the closed-loop
system with KFNESC are considered, and the proposed control is applied to a two-stages anaerobic
digestion process in order to maximize the hydrogen production rate, which has better robustness and
a slower steady-state oscillation with the comparison of Newton-based ESC and sliding mode ESC.
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1. Introduction

In many practical control problems, it is necessary to optimize the system output when
the mathematical model of the system is partially or completely unknown. Extremum-
seeking control (ESC) is largely used to solve such problems. ESC is an adaptive optimiza-
tion algorithm that needs only input and output data to keep the system in the optimal
operating point in real time. Stability conditions for ESC of nonlinear systems [1] were
obtained in 2000, and then various ESC algorithms were proposed: multi-input extremum
seeking control [2], slope extremum seeking control [3] discrete time extremum seeking
control [4], sliding mode extremum seeking control [5] and others. At the same time,
ESC has been applied in many fields, such as ABS (Automative Brake Systems) [6], flight
formation [7], biotechnological process control [8,9], etc.

An important problem in ESC design is to ensure sufficiently fast convergence of
the system output to its optimal operating point. A number of techniques have been
proposed to accelerate the ESC convergence speed. In 2003, the sliding mode extremum-
seeking control was developed [10], which can make the system to converge to the extreme
point at a speed set in advance. In 2010, the Newton-based extremum-seeking control
was proposed [11] and then it was extended to higher-order systems [12] and multi-
input systems [13,14]. To obtain a more accurate gradient estimate for the system output
equilibrium map, the recursive least squares method was used [15]. The recursive least
squares estimation method with forgetting factor was further utilized [16] in ESC. In
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recent years, Lie bracket method has been widely used [17,18] in extremum-seeking and
conditions for ESC uniform asymptotic stability have been obtained. The non-local stability
properties of ESC are considered in [19,20].

In ESC, a perturbation signal is superimposed to the estimated value of the system
control parameter so that the system output converges oscillatorily to its extremal value.
In the classical ESC, the perturbation signal is a periodic signal. The effects of periodic
perturbation signals with different amplitudes and jitter shapes on the ECS performances
are compared and analyzed [21] in terms of convergence speed, convergence range, and
accuracy. In 2009, stochastic perturbations were applied [22] for extremum seeking and then
stability conditions were obtained [23] for ESC using a stochastic perturbation signal. Later,
stochastic perturbations were applied [24,25] to classical ESC and Newton-based ESC.

In the mentioned ESC algorithms, the amplitude of the perturbation signal remains
constant when the system reaches the optimal operating point, which can provoke impor-
tant oscillations and excessive wear of the system actuators. To reduce the perturbation
signal amplitude in steady-state regime, Lyapunov-based extremum seeking control has
been proposed [26]. Using Lyapunov function, it is detected when the steady-state period
is reached, and then the amplitude of the perturbation signal is decreased exponentially.
An extremum-seeking algorithm without steady-state oscillations has been proposed [27].
In this algorithm the amplitude of the periodic excitation signal changes based on the
gradient information, so as to avoid steady-state oscillations. A similar approach has been
used in [28]. The ESC algorithm [29] uses sinusoidal detection technology to automatically
distinguish between steady-state and transient modes in the extremum seeking process
and cuts off the periodic perturbation signal when the steady-state regime is reached.

In this paper, we propose a model-free Newton-based extremum seeking control
for dynamic systems as well as a stochastic perturbation signal in which instead of a
combination of linear filters, a Kalman filter (KF) is used to estimate the gradient and
Hessian of the system output equilibrium map. The KF based estimator makes it possible
to obtain more accurate gradient and Hessian estimates, which enables speeding up the
convergence to the extremum [30,31]. To attenuate the steady-state oscillations, a stochastic
perturbation signal with decreasing amplitude is used. This algorithm is more realistic
for practical realization than those in [32], where an inverse optimal neural control of a
two-stage AD is proposed to follow hydrogen and methane production desired trajectories.

The paper is organized as follows. The proposed KFNESC is described in Section 2
and its convergence and oscillation attenuation are considered are considered in Section 3.
The application of KFNESC to a two-stage anaerobic digestion process is presented and
discussed in Section 4. The concluding remarks are given in Section 5.

2. Extremum-Seeking Control for Dynamic Systems Using Newton Optimization and
Kalman Filtering

Consider a single-input single-output nonlinear system{ .
x = f (x, u)
y = h(x)

(1)

where x ∈ Rn is the system state, u ∈ R is the input, y ∈ R is the output, f : Rn × R→ Rn

and h : Rn → R are smooth functions.
Let the smooth control law be similar to the following form u = α(u, θ), which is

parameterized by a scalar parameter θ ∈ R. Then, the closed-loop system has the unique
equilibria parameterized by θ:

.
x = f (x, α(x, θ)) (2)

To optimize the system (2) using extremum-seeking control, it is assumed that:

• Assumption 1: There exists a smooth function l : R→ Rn such that

f (x, α(x, θ)) = 0 if and only if x = l(θ) (3)
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• Assumption 2: For each θ, the equilibrium x = l(θ) of system (2) is exponentially stable
uniformly in θ.

• Assumption 3: There exists θ∗ ∈ R such that:

∂(h ◦ l)
∂θ

∣∣∣∣
θ=θ∗

= 0,
∂2(h ◦ l)

∂θ2

∣∣∣∣
θ=θ∗

= H < 0

Thus, it is assumed that the output equilibrium map y = h(l(θ)) has a local maximum
at θ ∈ θ∗.

The extremum-seeking control makes possible to maximize the steady-state value y∗

of the output without requiring the knowledge of either θ∗ or the functions y = h(x) and
x = l(θ).

In this paper, a new extremum-seeking control for dynamic systems is proposed,
combining the Newton algorithm [33] and the Kalman filter algorithm [34]. The advantage
of Newton-based extremum-seeking over the gradient-based extremum-seeking is that
the convergence speed is independent of the Hessian of output equilibrium map, but it
is difficult to avoid system steady-state oscillations. The use of a Kalman filter (KF) to
estimate the gradient and Hessian of the output equilibrium map makes it possible to speed
up the convergence of the extremum-seeking algorithm. The steady-state oscillations are
attenuated by using stochastic perturbation signal which amplitude tends to zero when the
system output converges to its maximum. The schematic diagram of the proposed Kalman
filter based Newton extremum-seeking control (KFNESC) is shown in Figure 1.
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 if Ĥ  is a good estimate of the Hessian H. In addi-

tion, by tuning the value of parameter h , the convergence speed of the control algorithm 

can be adjusted to a certain extent. 

To estimate the unknown gradient b and Hessian matrix H of ( ( ))y h l = , both b 

and H are considered as discrete Kalman filter states:    1 2

T T
x x b H= . The Kal-

man filter is implemented based on the following state and measurement equations: 

1 1

1

2 1

2

2

( ) 1 0
( ) ( )

( ) 0 1

1
( ) ( )

( ) 2
( ) ( )

( ) 1
( ) ( )

2

k

k

k k k

k

k k
k

k k k

k n
k n k n

M

x t
x t x t

x t

t t
y t

z t x t
y t

t t



 



 

+

+

+

−
− −

   
= = +  

  

 
   

= = +  
    

  

  (6) 

Figure 1. Structure of the Kalman filter based Newton extremum-seeking control for dynamic systems.

The system input θ is obtained by superimposing the perturbation signal aS(t) to the

estimate
_
θ of θ, which is produced by the Newton optimizer. In turn, the Kalman filter

computes the real-time gradient and Hessian estimates b̂ and Ĥ for the output equilibrium
map y = h(l(θ)).

The estimate of the input θ̂ is computed by the following Newton algorithm:

dθ̂

dt
= −kΓb̂ (4)
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dΓ
dt

= hΓ− hΓ2
_
H (5)

until reaching the extremum point. Here, k, h > 0 are design parameters and Γ is the
estimate of the inverse of the Hessian matrix H of the output equilibrium map y = h(l(θ)).

The Riccati Equation (5) has two equilibrium points: Γ∗ = 0 and Γ∗ =
>
H
−1

. Due to the fact

h > 0, only the equilibrium point Γ∗ =
>
H
−1

is exponentially stable. Thus, Γ can converge
to the actual value of H−1 if Ĥ is a good estimate of the Hessian H. In addition, by tuning
the value of parameter h, the convergence speed of the control algorithm can be adjusted to
a certain extent.

To estimate the unknown gradient b and Hessian matrix H of y = h(l(θ)), both b and
H are considered as discrete Kalman filter states:

[
x1 x2

]T
=
[
b H

]T . The Kalman filter
is implemented based on the following state and measurement equations:

x(tk+1) =

[
x1(tk+1)
x2(tk+1)

]
=

(
1 0
0 1

)
x(tk) + ωk

z(tk) =

[
∆y(tk)

∆y(tk−n)

]
=

[
∆θ(tk)

1
2 ∆θ(tk)

2

∆θ(tk−n)
1
2 ∆θ(tk−n)

2

]
︸ ︷︷ ︸

Mk

x(tk) + υk
(6)

where ∆y(tk) = y(tk)− y(tk−1), ∆y(tk−n) = y(tk−n)− y(tk−n−1), ∆θ(tk) = θ(tk)− θ(tk−1),
∆θ(tk−n) = θ(tk−n)− θ(tk−n−1), and ωk, υk are independent normally distributed white
noises with covariance matrices Q and R, respectively. The time-shifted input–output pair
(∆θ(tk−n), ∆y(tk−n)) is used to ensure the system observability. More details on the state
estimation by KF in real time can be found [30].

The estimates b̂ and Ĥ of b and H are calculated by the following Kalman filter
algorithm [31]:

P−k = Pk−1 + Q
x̂k = x̂k−1 + P−k MT

k R−1(zk −Mk x̂−k )
Pk = (P−k + MT

k R−1Mk)
−1

(7)

where xk =
[
x1k x2k

]T
=
[
bk Hk

]T , x̂k−1 and x̂k are the state estimates at the k-th and k
− 1 steps, P−k and Pk are the prior error covariance matrix and covariance matrix at step k,
and Pk−1 is the covariance matrix at step k.

In order to attenuate the steady-state oscillations, the amplitude of the perturbation
signal is adjusted so that it tends to zero when the system output y converges to its
maximum. In this paper, we use perturbation signal aS(t) with

a = r
wl

s + wl
(y− ζ), ζ =

s
s + wh

y (8)

S(t) = sin(η(t)), η(t) = wπ(1 + sin W(t)) (9)

Here, wl and wh are the frequencies of the corresponding low-pass or high-pass filters,
r > 0 is a constant gain for adjusting the convergence speed, W(t) is the standard Brownian
motion process, and w is a positive constant.

Combined with Figure 1, the equation of closed-loop control system can be described
as follows:

θ = θ̂ + aS(t)
.
θ̂ = −kΓb̂
b̂, Ĥ = KF(θ, y)
.
Γ = hΓ− hΓĤΓ
a = r wl

s+wl
(y− ς)

.
ς = −wh ς + why

(10)
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where KF(·) is the Kalman filtering algorithm. In order to simplify the system proper-
ties study, S(t) is regarded as a constant 1, b̂ and Ĥ computed by the Kalman filter are
considered as actual values of b and H at the current moment.

3. Convergence and Oscillation Attenuation Properties of the Closed-Loop System

In this section, the convergence and oscillation attenuation properties of the closed sys-
tem with the proposed Kalman filter based Newton extremum-seeking control (KFNESC)
are analyzed. The presented results on convergence and oscillation attenuation will be
confirmed equally by the numerical simulations in the next section.

Firstly, the convergence of the Kalman filter based Newton extremum-seeking con-
troller will be considered. To analyze the estimations b̂ and Ĥ, the static function between
input and output y = f (θ) can be rewrite by Tayler expansion:

y = f (θ) = f (θ∗) +
f ′′ (θ∗)

2
(θ − θ∗)2 (11)

Define the error variables θ̃ = θ̂ − θ∗, Γ̃ = Γ − H−1, ς̃ = ς − h ◦ l(θ∗), and the
estimation of the gradient and Hessian in the dynamic systems can be written as:

b̂ = ∂ f (θ)
∂θ =

∂

(
f ∗+

f ′′ (θ∗)
2 (θ̃+a)

2
)

∂(θ∗+θ̃+a)
= f ′′ (θ∗)

(
θ̃ + a

)
= H∗

(
θ̃ + a

)
Ĥ = ∂2 f (θ)

∂θ2 = ∂b
∂θ = H∗

(12)

with H∗ = ∂2(h◦l)
∂θ2

∣∣∣
θ=θ∗

.

Letting x at its equilibrium value x = l(θ∗ + θ̃ + aS(t)), the following error system on
time scale τ = δt can be obtained [9,13,35]:

d
dτ


θ̃r
Γ̃r
ar
ς̃r

 = δ


kH∗(θ̃r + ar)(Γ̃r + H−1)

−hΓ̃r
2H∗ − hΓ̃r

−wlar + wlr(h ◦ l(θ∗ + θ̃r + ar)− h ◦ l(θ∗)− ς̃r)

−wh ς̃r + wh(h ◦ l(θ∗ + θ̃r + ar))

 (13)

for the fact that H∗ = ∂2(h◦l)
∂θ2

∣∣∣
θ=θ∗

.

With the averaging theorem Xr = 1
T
∫ t+T

t x(τ)dτ, the corresponding average error
system can be deduced as follow:

d
dτ


θ̃a

r
Γ̃a

r
aa

r
ς̃a

r

 = δ


kH∗(θ̃a

r + aa
r )(Γ̃a

r + H−1)

−hΓ̃a2
r H∗ − hΓ̃a

r

−wlar − wlrς̃a
r +

wlr
2π

∫ 2π
0 v(θ̃a

r + aa
r )dω

−wh ς̃a
r +

wh
2π

∫ 2π
0 v(θ̃a

r + aa
r )dω

 (14)

Theorem 1. Consider system (14) under Assumption 3. The equilibrium point [θ̃a,e
r Γ̃a,e

r aa,e
r ς̃a,e

r ]
of (14) is stable.

Proof. The equilibrium point [θ̃a,e
r Γ̃a,e

r aa,e
r ς̃a,e

r ] satisfies the following equations:
kH∗(θ̃a,e

r + aa,e
r )(Γ̃a,e

r + H−1) = 0
−hΓ̃a,e2

r H∗ − hΓ̃a,e
r = 0

wlr
2π

∫ 2π
0 v(θ̃a,e

r + aa,e
r S(ω))S(ω)dω =wla

a,e
r + wlrς̃a,e

r
wh
2π

∫ 2π
0 v(θ̃a,e

r + aa,e
r S(ω))S(ω)dω = wh ς̃a,e

r

(15)
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At the equilibrium point [θ̃a,e
r Γ̃a,e

r aa,e
r ς̃a,e

r ] = [0 0 0 0], the Jacobian matrix of the average
system (14) can be calculated as:

J = δ


−k 0 −k 0
0 −h 0 0
0 0 −wl 0
0 0 0 −wh

 (16)

The matrix J is Hurwitz, which implies that the equilibrium of the average system
is stable.

Secondly, let us analyze now the oscillation attenuation properties of the closed-loop
system by perturbation signal. The amplitude of the perturbation signal a affects both
the steady-state and the dynamic performances of the system. The larger is the value of
a, the better is the dynamic performance of the control algorithm, but the poorer is the
steady-state performance.

By Tayler expansion and with Equation (11), one has the following output amplitude
satisfying

|y− y∗| = 1
2

∂2(h ◦ l)
∂θ2

∣∣∣∣
θ=θ∗

(θ̃ + aS(t))
2

(17)

a =
r
2

∂2(h ◦ l)
∂θ2

∣∣∣∣
θ=θ∗

θ̃2 (18)

where y∗ = h(l(θ∗)).
The error system being stable, θ̃ will gradually converge to zero and the amplitude

of the perturbation signal will approach zero with time. This means that the proposed
extremum-seeking control algorithm makes attenuating steady-state oscillations possible.

Thus, the convergence and oscillation attenuation properties of the closed controlled
system with the proposed KFNESC are successfully demonstrated. �

4. Application to Two-Stage Anaerobic Digestion Process Control
4.1. Process Description and Optimization Target

The anaerobic digestion (AD) process refers to a biochemical process in which anaero-
bic microorganisms convert biodegradable complex organic matter into simple compounds,
such as methane, carbon dioxide, inorganic nutrients and humus in the absence of oxygen.
Generally speaking, the AD process can be divided in four main phases of hydrolysis, acido-
genesis, acetogenesis and methanogenesis. In the hydrolysis phase, undissolved complex
organic compounds are hydrolyzed into small molecule compounds. In the acidogenesis
stage, small molecule compounds are converted to volatile fatty acids (VFAs), hydrogen
and carbon dioxide. In the acetogenesis phase, some VFAs (propionate and butyrate) are
decomposed into acetate, hydrogen and carbon dioxide. In the methanogenesis phase, the
acetoclastic methanogenic bacteria transform the acetate into methane and carbon dioxide.

A number of mathematical models for AD have been developed and investigated with
a complete analysis for the existence and local stability of its steady states and conditions
for maximal biogas production [36].

During the last 40 years, many different control methodologies for substrate feed
control of the AD have been proposed, however full-scale biogas plants are mostly still
operated without a closed-loop feed control and researchers have to design substrate feed
control that does not rely on extensive online measurement equipment [37].

In recent years, an improved version of AD, known as two-stage AD, has become
attractive among researchers for combined hydrogen and methane production from organic
wastes [38,39]. The obtained mixed gas, known as bio-hydrogen can be used as fuel, and
its thermal power is higher than petroleum derived fuel [40].

The two-stage AD system considered in this paper is a cascade of hydrogen reactor
BR1 and methane reactor BR2 (see Figure 2) [41]. The bioreactors require the same inflows,
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and let F be the inflows in the first and second bioreactor. The reactor BR1 (with working
volume V1) performs the biochemical reactions in the hydrolysis and acidogenesis phases,
while BR2 (with working volume V2) performs acetogenic and methanogenic phases. The
volatile fatty acids (VFAs)—acetate, propionate and butyrate, are produced in BR1 flow into
BR2, where the propionate and butyrate will be further converted into acetate (acetogenic
phase) and then into CH4 and CO2 (methanogenic phase).
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The considered AD process has been simulated in MATLAB/Simulink using the
following mathematical model [42]

dS0
dt = −D1S0 − βX1S0 + D1YpSin

0
dS1
dt = −D1S1 + βX1S0 +

µ1X1
Y1

dX1
dt = µ1X1 − D1X1

dPr1
dt = µ1X1

YPr1
− D1Pr1

dBut1
dt = µ1X1

YBut1
− D1But1

dAc1
dt = µ1X1

YAc1
− D1 Ac1

QH2 = YH2 µ1X1

dXPr
dt = µPrXPr − D2XPr

dPr2
dt = − µPrXPr

Y Pr2
+ D2(Pr1 − Pr2)

dXBut
dt = µButXBut − D2XBut

dBut2
dt = − µButXBut

Y But2
+ D2(But1 − But2)

dXAc
dt = µAcXAc − D2XAc

dAc2
dt = − µAcXAc

Y Ac2
+ µPrXPr

Y Pr2
+ µButXBut

Y But2
+D2(Ac1 − Ac2)

QCH4 = YCH4 µAcXAc

(19)

where Sin
0 , S0 and S1 are the concentrations of the inlet organic waste, macromolecular

organics and soluble small molecule organics; D1 and D2 are the dilution rates of BR1
and BR2; X1, XPr, XBut and XAC denote, respectively, the acidogenic bacteria, propionic
acid-degrading bacteria, butyric acid-degrading bacteria and methanogenic bacteria con-
centrations; Pr2, But2 and AC2 are propionate, butyrate and acetate concentrations; and
QH2 , QCH4 represent the hydrogen and methane production rates. The model parameters
are defined in Table 1 [43].
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Table 1. Model parameters.

Parameter Value Parameter Value

µ1max 0.568 Y1 0.08

µPrmax 0.05 YPr1 4.2

µButmax 0.05 YBut1 2.1

µAcmax 0.025 YAc1 1.1

Ks1 3.914 YPr2 1.5

KPr 0.22 YBut2 1.5

KBut 0.22 YAc2 0.5

KAc 0.8 YH2 0.22

β 1 YCH4 142

Yp 1 - -

Then, the objective of controlling anaerobic digestion processes is to obtain maximum
quantity of biogases. In this article, the proposed extremum-seeking control is applied to the
described AD system, considering the hydrogen production rate QH2 as optimization target.

The AD process static characteristics QH2 = QH2(D1) (Figure 3) show that for each
inlet organics concentration Sin

0 there exists an optimal dilution rate D1 where the maximal
hydrogen production rate Q∗H2

is delivered. The maximum of QH2
depends on the concen-

tration of organic waste Sin
0 . The larger is the value of Sin

0 , the larger is the maximal value
of hydrogen production rate QH2

.
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4.2. Numerical Simulations

In MATLAB/Simulink simulation experiments, we suppose that only the dilution
rate D1 and the hydrogen production rate QH2 of the AD process are available for on-line
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measurement. A process optimization is realized by controlling the dilution rate D1 in
order to maximize the hydrogen production rate QH2 .

To demonstrate the performances of the proposed control, they are compared with the
performances of the sliding mode ESC (SMESC) [10] and Newton-based ESC (NESC) [23].
The structure of the SMESC and NESC is shown in Figures 4 and 5. KFNESC parameters
are set as: k = 0.0036, r = 1.6, wl = 0.02, wh = 0.08, w = 0.1 rad/s, Γ(0) = −0.06. The
perturbation signal frequency w and the parameters wl , wh of the linear filters in ESC and
NESC are the same as those of KFNESC. The parameter k of ESC is set k = 1. The SMESC
design parameters are k = 0.004 and β = 0.0007. In turn, the NESC design parameters are
k = 5, wh = 0.05, wl = 0.02, wr = 0.02 and α = −0.03.
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In the simulation experiment, the initial dilution rate D1(0) = 0.01 h−1 and inlet
organics concentration Sin

0 = 30 g/L. At 800 h of the reaction, the inlet organics concentration
step changed to 25 g/L. At 1600 h of the reaction, the inlet organics concentration step
changed to 35 g/L. At 2400 h of the reaction, the inlet organics concentration step changed to
30 g/L. For the hydrogen production rate as optimization target, the obtained comparison
results for SMESC, NESC and KFNESC are shown in Figure 6.
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Figure 6. AD processes for different ESC and hydrogen production rate as optimization target. (a) In-
put: dilution rate, (b) Optimization target: hydrogen production rate, (c) Methane production rate.

It can be seen that when the inlet organics concentration Sin
0 changes stepwise at 800 h,

1600 h and 2400 h, the proposed KFNESC ensures the shortest convergence time and
smoothness of the dilution rate and gas production rate evolution. KFNESC also ensures
dilution rate and gas production rate without chattering during steady state period.

The state variables trajectories of the AD process with KFNESC for Sin
0 stepwise

changes and hydrogen production rate as optimization target are shown in Figure 7.
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hydrogen production rate as optimization target. (a) Trajectories of substrates concentrations in
BR1, (b) Trajectories of concentrations of VFAs in BR1, (c) Trajectory of biomass concentration in
BR1, (d) Trajectories of concentrations of VFAs in BR2, (e) Trajectories of concentrations of biomasses
in BR2.

The trajectories of the operating point for different initial values of the dilution rate
(D1(0) = 0.01, 0.15, 0.25, 0.32 h−1) are given in Figure 8. It can be seen that regardless of
whether the initial value of the dilution rate is on the left or on the right of the optimal
value of QH2 , KFNESC can bring the AD system to the optimal operating point.
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5. Conclusions

In this paper, a new Newton-based extremum-seeking control for dynamic systems
is developed using a Kalman filter for gradient and Hessian estimation and a stochastic
perturbation signal with decreasing amplitude. The Kalman filter makes it possible to
obtain more accurate gradient and Hessian estimates for the output equilibrium map and to
speed up the convergence to the optimal operating point of the controlled system. When the
system output converges to the maximum value, the system has better robustness, and the
amplitude of the disturbance signal approaches zero thereby attenuating the steady-state
oscillation of the system.

The new extremum-seeking control is applied to a two-stage anaerobic digestion
process in order to maximize the hydrogen production rate. The performances of the
proposed control are compared by numerical simulations with the performances of the
existing Newton-based extremum-seeking control and the sliding mode extremum-seeking
control. The obtained simulation results demonstrate the better performances of the new
extremum-seeking control in comparison with the existing extremum-seeking controls.

Future work will be realized in order to apply the proposed extremum-seeking control
method to a real two-stage AD process and to generalize this method for multi input
nonlinear systems.
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