
Citation: Zhang, Z. Mapping

between Spin-Glass Three-

Dimensional (3D) Ising Model and

Boolean Satisfiability Problem.

Mathematics 2023, 11, 237. https://

doi.org/10.3390/math11010237

Academic Editors: Yury Shestopalov

and Hongyu Liu

Received: 11 November 2022

Revised: 15 December 2022

Accepted: 29 December 2022

Published: 3 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Mapping between Spin-Glass Three-Dimensional (3D) Ising
Model and Boolean Satisfiability Problem
Zhidong Zhang

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences,
72 Wenhua Road, Shenyang 110016, China; zdzhang@imr.ac.cn; Tel.: +86-24-23971859

Abstract: The common feature for a nontrivial hard problem is the existence of nontrivial topological
structures, non-planarity graphs, nonlocalities, or long-range spin entanglements in a model system
with randomness. For instance, the Boolean satisfiability (K-SAT) problems for K ≥ 3 MK≥3

SAT are
nontrivial, due to the existence of non-planarity graphs, nonlocalities, and the randomness. In this
work, the relation between a spin-glass three-dimensional (3D) Ising model M3D

SGI with the lattice size
N = mnl and the K-SAT problems is investigated in detail. With the Clifford algebra representation, it
is easy to reveal the existence of the long-range entanglements between Ising spins in the spin-glass
3D Ising lattice. The internal factors in the transfer matrices of the spin-glass 3D Ising model lead
to the nontrivial topological structures and the nonlocalities. At first, we prove that the absolute
minimum core (AMC) model M3D

AMC exists in the spin-glass 3D Ising model, which is defined as a spin-
glass 2D Ising model interacting with its nearest neighboring plane. Any algorithms, which use any
approximations and/or break the long-range spin entanglements of the AMC model, cannot result in
the exact solution of the spin-glass 3D Ising model. Second, we prove that the dual transformation
between the spin-glass 3D Ising model and the spin-glass 3D Z2 lattice gauge model shows that
it can be mapped to a K-SAT problem for K ≥ 4 also in the consideration of random interactions
and frustrations. Third, we prove that the AMC model is equivalent to the K-SAT problem for
K = 3. Because the lower bound of the computational complexity of the spin-glass 3D Ising model
CL

(
M3D

SGI

)
is the computational complexity by brute force search of the AMC model CU

(
M3D

AMC

)
,

the lower bound of the computational complexity of the K-SAT problem for K ≥ 4 CL

(
MK≥4

SAT

)
is

the computational complexity by brute force search of the K-SAT problem for K = 3 CU
(

MK=3
SAT

)
.

Namely, CL

(
MK≥4

SAT

)
= CL

(
M3D

SGI

)
≥ CU

(
M3D

AMC

)
= CU

(
MK=3

SAT

)
. All of them are in subexponential

and superpolynomial. Therefore, the computational complexity of the K-SAT problem for K ≥ 4
cannot be reduced to that of the K-SAT problem for K < 3.

Keywords: spin-glass 3D Ising model; Boolean satisfiability; computational complexity; topology

MSC: 82B20; 82B44; 68Q17; 68Q15

1. Introduction

In recent years, there has been great progress in computer science, specially, in ma-
chine learning, artificial intelligence, data mining, and so on. The technical advances in
these fields change our daily life, while they also benefit our better understanding on the
fundamental structures of mathematics. Meanwhile, there is a trend to strengthen the
discipline among mathematics, physics, and computer science to solve hard problems in
science. Indeed, to solve a problem in physics, one may need to understand in depth the
mathematical structures of a physical system, which may involve knowledge in algebra,
topology and geometry. By contrast, a hard problem in mathematics and computer science
may be related to a physical system, and to solve it, one may seek the guidance of physical
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significances. Moreover, successfully solving a hard problem in either physics or mathe-
matics/computer science may provide a new forum for dialogues between mathematicians,
physicists, as well as computer scientists.

The exact solution of a ferromagnetic three-dimensional (3D) Ising model in a zero ex-
ternal magnetic field is a well-known problem in physics, standing for almost 100 years [1–6].
To explicitly solve it, we need to understand well the mathematical structures with alge-
braic, topological, and geometric aspects [1–8], for instance, Jordan algebra [9–12]. The
procedures for exactly solving it involve employing several algebras (Lie algebra, Jordan
algebra, Clifford algebra, quaternion algebra, etc.), accounting for the contribution of the
nontrivial topological structures to the physical properties, and generating the geometric
phases on eigenvectors and eigenvalues of the ferromagnetic 3D Ising system [3,5–8,13].
The 3D Ising model is related closely with combinatorics, graph theory, and statistical
learning networks. A famous example in machine learning and artificial intelligence is
Alphago that defeated the world champion of the game of Go [14], with technical advances
in deep learning and artificial neural networks. The game of Go deals with computing
the total state of a system with three possible states (black, while, empty) at each site of a
19 × 19 lattice, which actually corresponds to a two-dimensional (2D) q = 3 Potts model
with a spin of three possible states (spin up, spin down, empty; or with values +1, −1, 0)
at each site. Note that the Ising model is a q = 2 Potts model with spin up and spin down
states (with values +1/2, −1/2). The computational complexity of the spin-glass 3D Ising
model is much more complicated than that of the game of Go because the lattice is 3D,
resulting in the nontrivial topological structures and the nonlocality (due to the long-range
entanglement between Ising spins, a pure quantum mechanics effect), and the lattice size
is N = mnl, where m, n, l are the numbers of lattice points along three crystallographic
directions, and in the thermodynamic limit m→ ∞, n→ ∞, l→ ∞, N→ ∞ [15].

In computational complexity theory, NP is an abbreviation for non-deterministic
polynomial time, which is defined as the set of decision problems that can be solved in
polynomial time on a non-deterministic Turing machine. A P-problem can be solved
in polynomial time by a deterministic Turing machine. In NP, the set of all decision
problems whose solutions can be verified in polynomial time are cataloged to NP-complete
problems (Cook–Levin theorem [16,17]). A problem p in NP is NP-complete if every
other problem in NP can be transformed into p in polynomial time. The most notable
characteristic of NP-complete problems is that no fast solution to them is known. The K-
satisfiability (K-SAT) problem for K ≥ 3 is a central problem in combinatorial optimization,
being the first problem to be shown NP-complete. The K-SAT problem deals with an
ensemble of N Boolean variables, submitted to M constraints. Each constraint is expressed
in the form of an OR function of K variables (or their negations) in the ensemble, and the
problem is to check whether there exists one configuration (among 2N possible ones) of
the variables, which satisfies all constraints. An efficient algorithm for solving the K-SAT
problem in its worst-case instances will immediately lead to other algorithms for solving
efficiently thousands of different hard combinatorial problems. Among thousands of NP-
complete problems [18–31], we mention several well-known ones as follows: Hamiltonian
path problem, travelling salesman problem, Knapsack problem, subset sum problem,
vertex cover problem, subgraph isomorphism problem, independent set problem, graph
coloring problem, dominating set problem, protein folding problem, maximum edge
biclique problem, etc. At present, all known algorithms for NP-complete problems require
time that is super-polynomial in the input size, and it is unknown whether there are any
faster algorithms. In the previous work [32–34], the spin-glass 2D Ising model was proven
to be a P-problem, whereas the spin-glass 3D Ising model was proven to be a NP-complete
problem. There have been some reports [35–41] on the relation between the spin-glass Ising
models and K-SAT problems.

Although the NP-complete problem is an important problem in computer sciences,
it consists of thousands of problems in different fields, such as mathematics, physics,
chemistry, biology, and so on. It is thought that any advances in these fields for anyone
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of these problems may shed a certain light on solving this NP-complete problem. The
present author has been working on the 3D Ising models for tens of years and figures out
their mathematical structures [3–8,15,42], which are quite helpful for understanding the
spin-glass 3D Ising model. The aim of this work is to investigate the mapping between the
spin-glass 3D Ising model and the K-SAT problems, with emphasis of the Clifford algebra
representation and the dual transformation to reveal the nontrivial topological structures,
the non-planarity graphs, the nonlocalities, or the long-range spin entanglements in these
two systems. It is important to use the Clifford algebra representation to reveal the long-
range entanglement (as well as the nonlocality) between Ising spins in the spin-glass 3D
Ising lattice, which, together with the existence of the randomness, causes the non-triviality
of the problem. It is found that the spin-glass 3D Ising model can be mapped by a dual
transformation to a K-SAT problem for K ≥ 4. If we focus on an absolute minimum core
(AMC) model of the spin-glass 3D Ising model, which is defined as a spin-glass 2D Ising
model interacting with its nearest neighboring plane, the lower bound of the computational
complexity of the spin-glass 3D Ising model (as well as the K-SAT problems for K ≥ 4) is
reduced to the computational complexity by brute force search of the AMC model (as well
as a K-SAT problem for K = 3).

The paper is organized as follows: In Section 2, the Clifford algebra structure and
nonlocality of the spin-glass 3D Ising model are investigated. In Section 3, a mapping
between the spin-glass 3D Ising model and the Boolean satisfiability for K≥ 4 is established.
In Section 4, we figure out the mapping between the AMC model and the K-SAT problem
for K = 3. Section 5 is for conclusions.

2. Nonlocality of the Spin-Glass 3D Ising Model

In nature, there exist different magnetic materials with, for instance, ferromagnetic,
antiferromagnetic, ferrimagnetic, paramagnetic, spin glass, and even spin liquid phases.
The formation of these magnetic phases and the phase transitions between them are
governed by competition between terms of various energies, including the exchange
interactions, the crystalline anisotropy energy, the Zeeman energy (caused by an external
magnetic field), and thermal activity. The existence of these magnetic states is controlled by
the minimum of the total free energy of the system. In a ferromagnet, the ferromagnetic
ordered state emerges at the critical point, which is spontaneously magnetized with unit
vector denoting direction of saturation magnetization. The spins in a ferromagnet all align
in the same direction in its ground state, while in an antiferromagnet, the neighboring spins
are antiparallelly aligned in the ground state. In an Ising magnet [1–4], the spontaneous
magnetization points to the z axis according to the usual definition. Above Curie (or Néel)
temperature, the parametric phase appears as a disorder state of spin alignments. A spin
glass is a disordered magnet [15,43–47], where the spins are aligned in an irregular pattern.
All the spins in a spin glass are frozen in a disorder ground state, aligning randomly to
different directions (in an Ising case, +z and -z directions). In a certain sense, the spin-glass
state is an ordered state with disorder orientations of spins. The difference between spin
glass and parametric phases is that, in the paramagnetic state, the spins align disorderly
in space and with the time evolution; in the spin glass, the spins align disorderly in
space but may remain ordered (and/or unchanged) with the time evolution (associated
to the onset of the spontaneous replica symmetry breaking). Furthermore, frustration,
non-ergodic behavior, and even nontrivial topological effect (in 3D) may occur in the spin
glass systems [15].

Definition 1. Let MD
A be a physical model where the upper script fixes the dimension, and the lower

indices indicate the character of the model.

Definition 2. Let C
(

MD
A
)

be the computational complexity of the model MD
A .
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Definition 3. Let CU(MD
A
)

be the upper bound of the computational complexity of MD
A . The upper

bound for a model is equal to the computational complexity as computed by brute force search.

Definition 4. Let CL
(

MD
A
)

be the lower bound of the computational complexity of MD
A .

Theorem 1. The long-range entanglement between Ising spins exists in the spin-glass 3D Ising
lattice, which is represented by the exponential factors of s′js

′
j+mn in the transfer matrices.

Proof of Theorem 1. The Hamiltonian of a spin-glass 3D Ising (Edwards–Anderson) model
M3D

SGI is written as [15,44]:
H = −∑

〈i,j〉
JijSiSj (1)

where Ising spins with S = 1/2 are arranged on a 3D lattice with the lattice size N = mnl.
The numbers (m, n, l) denote lattice points along three crystallographic directions. We
consider only the nearest neighboring interactions Jij with different signs (for ferromagnetic
or antiferromagnetic ones), which are randomly distributed and can be set to be different.
We shall use J̃, J̃′, and J̃ ′′ , being a probability distribution, to represent the randomly
distributed interactions along the three crystallographic directions, respectively. As usual,
the probability of finding the spin-gass 3D Ising lattice in a given configuration and a fixed
replica at the temperature T is proportional to exp{−Ec/kBT}, where Ec is the total energy of
the configuration and kB is the Boltzmann constant. The thermodynamic properties for the
spin-glass 3D Ising model can be found from the partition function Z, after mediating ln Z
over disorder. The partition function Z for the spin-glass 3D Ising lattice in a fixed replica
can be expressed as [2,3,15,48]:

Z = ∑
all con f igurations

encK̃+n′cK̃′+n′′c K̃′′ (2)

Here we use Z to represent the partition function in a fixed replica, that is, the annealed
average of the partition function Z. nc, n′c and n′′c are integers depending on the configura-
tion of the spin lattice [2,3,48], and Z is obtained by summarizing over all configurations
in a fixed replica. The variables K̃ ≡ J̃/(kBT), K̃′ ≡ J̃′/(kBT) and K̃′′ ≡ J̃ ′′/(kBT) are
introduced instead of J̃, J̃′, and J̃ ′′ for describing the randomly distributed interactions. The
partition function Z of the spin-glass 3D Ising lattice in a fixed replica may be written in
forms of three transfer matrices in forms of direct products of matrices [3,4,7,49,50]. The
following generators of Clifford algebra of the 3D Ising model are introduced:

Γ2k−1 = C⊗ C⊗ . . . . . .⊗ C⊗ s′ ⊗ 1⊗ . . .⊗ 1 (k− 1 times C) (3)

Γ2k = C⊗ C⊗ . . . . . .⊗ C⊗ (−is′′ )⊗ 1⊗ . . .⊗ 1 (k− 1 times C) (4)

Following the Onsager–Kaufman–Zhang notation [2–4,7], we have: s′′ =
[

0 −1
1 0

]
(=iσ2), s′ =

[
1 0
0 −1

]
(=σ3), C =

[
0 1
1 0

]
(=σ1), where σj (j = 1,2,3) are Pauli matrices.

Because we are interested in the computational complexity of the spin-glass 3D Ising model,
its partition function Z can be calculated from the average of the partition function Z
for many fixed replicas. Since the computational complexity for computing the partition
function Z is much more complicated than that of the annealed average Z, it is enough to
focus on Z for the lower bound of the computational complexity.

The partition function Z of the spin-glass 3D Ising model in a fixed replica can be
expressed as follows [3–5]:

Z =
(

2sinh2K̃
)mnl

2 ·trace(V3V2V1) (5)
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V3 =
mnl

∏
j=1

exp

{
iK̃′′ Γ2j

[
j+mn−1

∏
k=j+1

iΓ2k−1Γ2k

]
Γ2j+2mn−1

}
=

mnl

∏
j=1

exp
{

iK̃′′ s′ js′ j+mn

}
(6)

V2 =
mnl

∏
j=1

exp
{

iK̃′Γ2jΓ2j+1

}
=

mnl

∏
j=1

exp
{

iK̃′s′ js′ j+1

}
(7)

V1 =
mnl

∏
j=1

exp
{

iK̃∗·Γ2j−1Γ2j

}
=

mnl

∏
j=1

exp
{

iK̃∗·Cj

}
(8)

Here, K̃∗ is defined by e−2K̃ ≡ tanhK̃∗ [2–8]. We define the matrices Cj and s′j
as follows:

Cj = I ⊗ I ⊗ . . .⊗ I ⊗ C⊗ I ⊗ . . .⊗ I (9)

and
s′ j = I ⊗ I ⊗ . . .⊗ I ⊗ s′ ⊗ I ⊗ . . .⊗ I (10)

For the ferromagnetic 3D Ising model, the Clifford algebra representation plays an
important role in solving analytically its exact solution [3–5]. Meanwhile, the Clifford
algebra representation is also important to reveal the mathematical structures of the spin-
glass 3D Ising model, in which non-local behavior, non-Gaussian, and non-commutative of
operators exist also.

For the spin-glass 3D Ising model, the Clifford algebra representations for the partition
function Z (Equation (5)) and the transfer matrices (Equations (6)–(8)) have the almost
same formulas as those of the ferromagnetic 3D Ising model, with the following differences:
(1) The present interactions K̃, K̃′, and K̃′′ are randomly distributed. (2) The partition
function Z for the spin glass cannot be written in terms of trace(V3V2V1)

m (and ∑2nl

i=1 λm
i )

as in the ferromagnetic case (see, for instance, Equation (2) in [4]). (3) In the products of
Equations (6)–(8), j run from 1 to mnl, but in Equations (3)–(5) of [4], j run from 1 to nl.
(4) For the internal factors in the transfer matrix V3 (see Equation (6)), k for the product run
from j + 1 to j + mn− 1, while in Equation (3) of [4], k run from j + 1 to j + n− 1. (5) The
exponential factors of s′ js′ j+mn shows up in V3 for the spin glass model (see Equation (6)),
but the exponential factors of s′ js′ j+n appear in Equation (A10) of [4] for the ferromagnetic
one. All these differences are caused by randomness of interactions in the spin-glass 3D
Ising model, which do not change a fact of existing long-range entanglement between
Ising spins within a plane (mn spins). The periodic boundary condition and the largest
eigenvalue principle used in Zhang–Suzuki–March procedure [4] for the ferromagnetic 3D
Ising model cannot be utilized for computing analytically the spin-glass 3D Ising model.

Although the Ising model with only the nearest neighboring interactions behave to be
fully locally defined in the Ising spin variable language, in the transfer matrices, the set of
all allowed states contribute to partition function and free energy in a way of that all spins
are entangled. In the transfer matrix V3, the nonlocality shows up in the alternative Clifford
algebra description, defined through auxiliary fermionic Γ-operators, which reflects the
global effect of the system with the nontrivial topological structures [3–5]. This is caused by
the contradiction between the 2D character of transfer matrices and the 3D arrangement of
spins located on a 3D lattice. The interaction between each of the two nearest neighboring
spins along the third-dimension acts as a long-range engagement via a medium of the
entanglement of all the spin in a plane. The nearest neighboring interaction along the
third dimension behaves as an effective long-range interaction. This is indeed a pure
quantum mechanics effect, being a natural character of a 3D many-body interacting spin
system. Thus, such a nonlocality exists also in the space of all the Ising spin states since
the descriptions in the two different spaces (with Ising spin variable language and Clifford
algebra description, respectively) are connected by a series of equalities [4]. Besides the
existence of the nontrivial topological structures, the spin-glass 3D Ising model possesses
the characters of nonlocality, non-planarity, randomness, frustration, and non-ergodic
behavior [15,47]. �
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Definition 5. The absolute minimum core (AMC) model of the spin-glass 3D Ising model, M3D
AMC,

is defined as a spin-glass 2D Ising model interacting with its nearest neighboring plane.

Theorem 2. Any algorithms, which use any approximations and/or break the long-range spin
entanglement in the AMC model, M3D

AMC, cannot result in the exact solution of the spin-glass 3D
Ising model M3D

SGI .

Proof of Theorem 2. Finding the ground state of the spin-glass Ising model can be ac-
complished by computing H(σ) for accounting the combinatorial complexity for all 2N

possible configurations. The upper bound of the computational complexity of a spin-glass
3D Ising model, CU

(
M3D

SGI

)
, is O(2N) [43,47,51]. In what follows, we shall determine the

lower bound of the computational complexity of a spin-glass 3D Ising model, CL

(
M3D

SGI

)
.

Determining the ground state properties as well as the critical behavior at glassy phase
transitions in disordered spin systems could be relevant for complexity theory of the satisfi-
ability problem, due to the intractability concentration phenomena [16,27,52]. The Clifford
algebra representation reveals the basic character of mathematical structures, which plays
an importation role in determining the lower bound for its computational complexity [15].
The key point is that as revealed above with the Clifford algebra representation (Theorem
1), the long-range entanglement exists between spins in the spin-glass 3D Ising model, due
to the nonlinear internal factors in the transfer matrices (see Equation (6)). The randomness
of interactions in the spin-glass 3D Ising model does not change this character (the nature
of the 3D many-body systems) but increases the computational complexity. Thus, an AMC
model, M3D

AMC, exists in the spin-glass 3D Ising model [15], in which the entanglements
between the spins should not be broken. Indeed, the AMC model is the basic element of
the spin entanglements in M3D

SGI . Any algorithms, which use any approximations and/or
break our AMC model, cannot find the exact solution of the spin-glass 3D Ising model. �

Theorem 3. CL
(

M3D
SGI
)
≥ CU(M3D

AMC
)
.

Proof of Theorem 3. We have to consider frustration in the spin glass systems [15]. There
are two cases for the computational complexity of the core model, C

(
M3D

SGC
)
, for com-

puting the spin-glass 3D Ising model: (1) In some replicas, frustration is limited to occur
within a plaquette, which can be included always in two neighboring planes (i.e., the
AMC model). We have CL

(
M3D

SGI

)
= CL

(
M3D

SGC
)

= CU
(

M3D
AMC

)
. (2) In some repli-

cas, frustration in the 3D case may appear on closed polygons that are higher than
a plaquette, which cannot be included always in two neighboring planes. We have
CL

(
M3D

SGI

)
= CL

(
M3D

SGC
)
> CU

(
M3D

AMC

)
. Therefore, combining the two cases, we have

the following conclusion: the lower bound for computational complexity of the spin-
glass 3D Ising model, CL

(
M3D

SGI

)
, is equal to or larger than the computational com-

plexity as computed by brute force search of the AMC model, CU
(

M3D
AMC

)
. That is,

CL

(
M3D

SGI

)
≥ CU

(
M3D

AMC

)
. �

3. Mapping between the Spin-Glass 3D Ising Model and the Boolean Satisfiability

Definition 6. Let MK
B be an optimization model where the upper script fixes the parameter K, and

the lower indices indicate the character of the model.

Definition 7. Let C
(

MK
B
)

be the computational complexity of the model MK
B .

Definition 8. Let CU(MK
B
)

be the upper bound of the computational complexity of MK
B . The upper

bound for a model is equal to the computational complexity as computed by brute force search.
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Definition 9. Let CL
(

MK
B
)

be the lower bound of the computational complexity of MK
B .

Theorem 4. The spin-glass 3D Ising model can be mapped into the Boolean satisfiability problem
for K ≥ 4. Namely, M3D

SGI ⇔ MK≥4
SAT and C

(
M3D

SGI
)
= C

(
MK≥4

SAT

)
.

Proof of Theorem 4. It has been known for long that links exist between statistical physics
and combinatorial optimization [38,47]. The statistical physics of frustrated spin models
serves to acquire a better understanding of complexity, by mapping the study of the ground
states of disordered models onto the optimization problems [38,47]. In fact, the spin-glass
problem is at the core of the statistical physics of disordered systems, which also deals with
Boolean variables (spins), interacting with random exchange couplings [38,47]. Each pair
of interacting spins can be treated as a constraint and finding the state of minimal energy
in a spin-glass is equalized to minimizing the number of violated constraints. Although
the precise form of the constraints in a spin glass model and a K-SAT problem somehow
differ, deep similarities exist [39,53]. In both cases, the difficulty for computations comes
from the existence of frustration [38,47], nonlocality [4,15,32,34], and randomness, which
forbids us to find the global optimal state by a purely local optimization procedure. In
what follows, we illustrate the mapping between the spin-glass 3D Ising model and the
Boolean satisfiability problem.

We first focus on the K-SAT problem, which is defined as follows [35–37,39,40]. We
consider N Boolean variables {xi = 0; 1}i=1;:::;N and choose randomly K among N possible
indices i. For each of them, choose a literal that is the corresponding xi or its negation xi
with equal probabilities of one half. A clause C is the logical OR of the K literals previously
chosen, and C will be true (or satisfied) if and only if at least one literal is true. We repeat
this process to obtain M independently chosen clauses {Cl}l = 1,...,M and ask for all of them
to be true at the same time (i.e., taking the logical AND of the M clauses). Therefore, we
reach a Boolean expression in the conjunctive normal form [40], written as:

F =
M
∧

l=1
Cl =

M
∧

l=1

(
K
∨
i
z(l)i

)
(11)

where ∧ and ∨ stand for the logical AND and OR operations, respectively. We realize a
solution of the K-SAT problem when a logical assignment of the {xi}s satisfying all clauses,
i.e., evaluating F to be true. If no such assignment exists, F will be unsatisfiable. For
large instances (M, N → ∞), mathematical analysis and numerical simulations indicate
evidently that when α = M/N crosses a critical value αc(K), the probability of finding a
logical assignment of the {xi}s satisfying all the clauses falls abruptly from one down to
zero [37].

For K-SAT problems, all interactions involve K spins, and the energy of an interaction
node a involving spins σi1 , . . . , σip is represented by [36,39]:

Ea = 2
K

∏
r=1

(1 + Jr
aσir )

2
(12)

It depends on a set of K coupling constants Ja = (J1
a , . . . , JK

a ), which take values ±1.
This interaction node possesses a simple interpretation as a clause: the energy Ea is zero as
soon as at least one of the spins σir is opposite to the corresponding coupling JK

a . If all spins
equal their couplings, the energy is equal to 2.

We then focus on the Ising spin model: Consider a set of N Ising spins σi ∈ {±1} and
M groups of interacting variables, which are called function nodes. A set of na spins is
involved in each function node a. The set of all these spins is denoted by Va. The interaction
is an arbitrary function of the spins in Va, depending on the problem one considers and
can also involve hidden variables. When we adopt the Ising spin notion, a true Boolean
variable is mapped onto Si = +1, whereas a false variable gives Si = −1 (in Ising models
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with S = 1/2, we have Si = ±1/2). A logical assignment {S} is a set of N spins Si out of all
2N possible configurations. Denote the (random) set of clauses by {C}. We then choose the
energy-cost function H[{C}; {S}] to be the number of clauses violated by the configuration
{S}. The total energy of a configuration σ1, . . . , σN is represented as [39]:

E =
M

∑
a=1

Ea (13)

and the goal in combinatorial optimization is to search a configuration of spins, which
minimizes E. If the ground state energy is zero (respectively strictly positive), the logical
clauses are satisfiable (respectively unsatisfiable). The free-energy density f of the resulting
spin system at a formal temperature T is given by the logarithm of the partition function [35]

Z[{C}] = ∑
{S}

exp
(
−H[{C}, {S}]

kBT

)
(14)

with assumption of being self-averaging as the size N of the instance of the K-SAT problem
goes to infinity. In order to calculate the disorder average, one can use the replica trick:

ln Z = lim
n→0

∂nZn (15)

where at first a positive integer number n is considered, and the replica limit n → 0 is
achieved by some kind of analytical continuation in n. This problem is generalized by
introducing an additional parameter β = 1/(kBT), an inverse temperature in the physics
language, and studying the Boltzmann probability distribution [39]:

P(σ1, . . . σN) =
1
Z

exp(−βE) (16)

where Z is a normalization constant. This arises naturally from the point of view of
physics and connects directly with problems in statistical mechanics. <O> is denoted as
the expectation of an observable O (can be any function of the spin σi) with respect to
this measure. These expressions are just those defined for the spin-glass Ising model we
studied in quantum statistical mechanics. In the statistical mechanics, the temperature is
an important parameter for measuring physical properties.

For spin glasses systems (described by the Edwards–Anderson model [44]), usually,
all the interactions involve two spins, so all na are equal to 2; the energy of an interaction
node a involving spins σi and σj is given by [39] Ea = −Jijσiσj, where Ji j is called the
exchange coupling constant. The total energy of a configuration σ1, . . . , σN is described by
Equation (13), while the partition function and the Boltzmann probability distribution are
given by Equations (15) and (16), respectively. These expressions are just consistent with
the Hamiltonian (1) and the partition function (2) or (5) for the spin-glass 3D Ising model if
we consider random interactions.

From the first glimpse, it seems that the spin-glass Ising models correspond to the
K-SAT problem with K = 2. However, as we have known, the dimensionality of the spin-
glass Ising models contributes greatly to the computational complexity of the systems.
The previous work [32–34] revealed that the spin-glass 2D Ising model is a P-problem,
whereas the spin-glass 3D Ising model is a NP-complete problem. The 2D Ising model
is a self-dual model, which is dual to a 2D Ising model with Ea = −Jijsisj, with Ising
spins si and sj. However, the 3D Ising model is dual to a 3D Z2 lattice gauge model with
Ea = −Jijpqsisjspsq, with Ising spins si, sj, sp, and sq around primitive squares (or plaquettes)
of the lattice. Figure 1 shows the duality between the 3D Z2 lattice gauge model and the
original 3D Ising model [13,54,55], while Figure 2 illustrates the mapping between a two-
spin link interaction in the 3D Ising model and a four-spin plaquette interaction in the
3D Z2 lattice gauge model. The 3D Z2 lattice gauge lattice is displaced from the original
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3D Ising lattice by half a lattice spacing in each crystallographic direction [13,54–57]. The
vertices of the 3D Z2 lattice gauge lattice lie in the centers of the elementary cubes of the
original lattice and vice versa. As shown in Equation (2.30) of ref. [55], the duality is valid
as the condition kνλ,i =

1
2
(
1− riri+µ̂

)
is held. From Equations (2.27)–(2.29) in [55], besides a

factor of
(

sinh2β̃
)3N/2

, the product of Ck

(
β̃
)

is the only factor associated with interactions
in the partition function. As the interactions become random, the duality condition is
not altered.
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Notice that in Figure 2, we just illustrate the cases for parallel spin alignments, but
the spins can align with randomly distributed directions (even with frustrations) in the
spin-glass systems. As indicated above, the randomness of interactions and spin alignments
does not affect the mapping, as long as the particular constraint could be satisfied for such
a mapping [13,54,55]. It clearly shows that the spin-glass 3D Ising model corresponds to
the K-SAT problem with K = 4. However, in some replicas, frustration in the 3D case could
appear on closed polygons, which are higher than a plaquette. Such closed polygons cannot
be included always in two neighboring planes. If we consider all the possible frustrations in
the 3D lattice, more than two neighboring planes must be considered, and the interactions
between more than four spins need to be taken into account also. Therefore, the spin-glass
3D Ising model is equivalent to the K-SAT problem for K ≥ 4. Namely, M3D

SGI ⇔ MK≥4
SAT and

thus C
(

M3D
SGI

)
= C

(
MK≥4

SAT

)
. �

4. Mapping between the AMC Model in the Spin-Glass 3D Ising Model and the
Boolean Satisfiability

Theorem 5. The AMC model in the spin-glass 3D Ising model can be mapped into the Boolean
satisfiability problem for K = 3. Namely, M3D

AMC ⇔ MK=3
SAT and C

(
M3D

AMC
)
= C

(
MK=3

SAT
)
.

Proof of Theorem 5. The AMC model in the spin-glass 3D Ising model is constructed
by a spin-glass 2D Ising model interacting with its nearest neighboring plane [15]. We
have shown that the lower bound of the computational complexity of the spin-glass
3D Ising model is that of the AMC model as computed by brute force search. That is,
CL

(
M3D

SGI

)
= CU

(
M3D

AMC

)
. We shall figure out the equivalence between the AMC model

and the K-SAT problem. The AMC model M3D
AMC can be treated as a plane lattice where

three links (as a star) imposed on each site (see Figure 3 for equivalence between three
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interactions in the AMC model and those in a star lattice) if we neglect the nontrivial
topological structure of the 3D lattice. This simplification does not affect the proof of
the present theorem because the nontrivial topological structure would cause even more
computational complexity. Such a star model is the duality of a triangular lattice by the well-
known star-triangular relation (the Yang–Baxter equation in the continuous limit) [7]. The
star-triangular relation was developed firstly in electric networks [58] and is represented
for Ising models as follows:

K1K∗1 = K2K∗2 = K3K∗3 = K1K2 + K2K3 + K3K1 =
K∗1 K∗2 K∗3(

K∗1 + K∗2 + K∗3
) (17)

where Ki and K∗i (i = 1, 2, 3) are interactions for the star and triangular lattices, respectively.
The Kramers–Wannier relation between the dual lattices is identified [2,54,55,59]:

K∗ = −1
2

ln(tanhK) (18)
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Figure 3 also represents the duality between a star lattice (i.e., the AMC model) and a
triangular lattice.

Then, following the procedure in [13,54,55], we can perform a similar process to dual a
star lattice (i.e., the AMC model) to a 2D triangular lattice model with Ea = −Jijpsisjsp, with
Ising spins si, sj, and sp located around primitive triangles of the lattice. Figure 4 illustrates
mapping between a two-spin interaction for a link in a star lattice (i.e., the AMC model) and
a three-spin interaction for a triangle in a triangular lattice. Note that in Figure 4, we just
illustrate the parallel spin alignments, but the spins can align with randomly distributed
directions in the spin-glass systems, even with frustrations. However, according to the
discussion above, the factors related with interactions in the partition function are not
associated with the condition for the mapping. Thus, we can obtain a conclusion that the
randomness of interactions and spin alignments and even frustrations will not affect the
mapping, as the particular constraint should be satisfied for such a mapping [13,54,55].
Therefore, the AMC model of the spin-glass 3D Ising model is equivalent to the K-SAT
problem for K = 3. Namely, M3D

AMC ⇔ MK=3
SAT and thus C

(
M3D

AMC

)
= C

(
MK=3

SAT

)
. �
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Theorem 6. The lower bound of the computational complexity of the Boolean satisfiability problem for
K ≥ 4 equals to the computational complexity by brute force search of the AMC model in the spin-glass
3D Ising model, which is equivalent to the computational complexity by brute force search of the Boolean
satisfiability problem for K = 3. Namely, we have CL

(
MK≥4

SAT

)
≥ CU(M3D

AMC
)
= CU(MK=3

SAT
)
.

Proof of Theorem 6. It is a direct consequence of Theorems 1–5. According to Theo-
rems 1–3, any algorithms, which use any approximations and/or break the long-range
spin entanglement in the AMC model, M3D

AMC, cannot result in the exact solution of

the spin-glass 3D Ising model M3D
SGI. CL

(
M3D

SGI

)
≥ CU

(
M3D

AMC

)
. According to Theo-

rem 4, M3D
SGI ⇔ MK≥4

SAT and C
(

M3D
SGI

)
= C

(
MK≥4

SAT

)
. According to Theorem 5, we have

M3D
AMC ⇔ MK=3

SAT and C
(

M3D
AMC

)
= C

(
MK=3

SAT

)
Therefore, any algorithms, which use any

approximations and/or break the long-range spin entanglement in the K-SAT problem for
K = 3, MK=3

SAT , cannot result in the exact solution of the K-SAT problem for K ≥ 4, MK≥4
SAT . We

have CL

(
MK≥4

SAT

)
= CL

(
M3D

SGI

)
≥ CU

(
M3D

AMC

)
= CU

(
MK=3

SAT

)
. �

Theorem 7. M3D
AMC is the border between M3D

SGI and M2D
SGI, while MK=3

SAT is the border between
MK≥4

SAT and MK=2
SAT .

Proof of Theorem 7. It is evidently correct. According to Theorems in [16,32–34], M3D
SGI and

MK≥4
SAT are catalogued to a kind of models for NP-complete. According to Theorems 5 above,

CU
(

M3D
AMC

)
= CU

(
MK=3

SAT

)
is the lower bound of their computational complexity. M3D

AMC

is also NP-complete, but cannot be reduced furthermore to be a P-problem. By contrast,
M2D

SGI and MK=2
SAT are catalogued to a kind of models for P-problem. Thus, the theorem is

validated. �

Theorem 8. The lower bound of the computational complexity of the Boolean satisfiability problem
for K ≥ 4, CL

(
MK≥4

SAT

)
, orCU(MK=3

SAT
)
, is in subexponential and superpolynomial.

Proof of Theorem 8. It is valid as an immediate consequence of Theorem 3 of [15] and
Theorem 6. According to Theorem 3 in [15], the computational complexity of the AMC
model of a spin-glass 3D Ising model, C

(
M3D

AMC

)
, cannot be reduced to be less than O(2mn)

by any algorithms. It means that the AMC model must be computed by brute force search
in order to obtain the solution of the spin-glass 3D Ising model. O(2mn) equals to O((1 + ε)N),
with ε 6= 1/N, which is subexponential, and superpolynomial [15]. According to Theorem
6, we have CL

(
MK≥4

SAT

)
= CL

(
M3D

SGI

)
≥ CU

(
M3D

AMC

)
= CU

(
MK=3

SAT

)
. Thus, CL

(
MK≥4

SAT

)
, or

CU
(

MK=3
SAT

)
, is in subexponential and superpolynomial. �

5. Conclusions

In conclusion, we have proven that the spin-glass 3D Ising model can be mapped to the
K-SAT problem for K ≥ 4, that is, M3D

SGI ⇔ MK≥4
SAT , by the duality between the spin-glass 3D

Ising model and the spin-glass 3D Z2 gauge lattice theory and the consideration of random
interactions and frustration. Furthermore, we have proven that the AMC model of the spin-
glass 3D Ising model is equivalent to the K-SAT problem for K = 3, namely, M3D

AMC ⇔ MK=3
SAT .

We have proven that CL

(
MK≥4

SAT

)
= CL

(
M3D

SGI

)
≥ CU

(
M3D

AMC

)
= CU

(
MK=3

SAT

)
. M3D

AMC is

the border between M3D
SGI and M2D

SGI, while MK=3
SAT is the border between MK≥4

SAT and MK=2
SAT .

The lower bound of the computational complexity of the Boolean satisfiability problem
for K ≥ 4, CL

(
MK≥4

SAT

)
, is in subexponential and superpolynomial. The computational

complexity of the K-SAT problem for K≥ 4 cannot be reduced to that of the K-SAT problem
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for K < 3. The present work provides a bridge between mathematics, computer science, and
physics, which enhances understanding and efficiency of solutions of related problems.
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