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Abstract: We propose a novel portfolio evaluation method, a distance-based approach, which directly
evaluates the portfolio composition rather than portfolio returns. In this approach, we consider a
portfolio as an estimator for an in-sample tangency portfolio, which we define as the optimal reference
portfolio. We then evaluate the portfolio by computing its vector distance to the optimal reference
portfolio. In search of the proper distance-based performance measure, we choose four representative
vector distances and compare their suitability as a new portfolio performance measure. Through
extensive statistical analysis, we find that the Euclidean distance is the most proper distance-based
performance measure of the four representative vector distances. We further verify that a portfolio
with a large Euclidean distance is not desirable because not only does it provide a low utility implied
by the first four moments of portfolio returns, but also it is not likely to maintain its long-term
performance. Hence, the Euclidean distance can complement the return-based performance measures
by confirming the reliability of a portfolio in its investment performance.
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1. Introduction

The portfolio selection theory [1] has been an important foundation of modern port-
folio theory. Despite its theoretical contribution, researchers have pointed out its limited
practical impact since its input parameters, the mean and the covariance of returns, have
to be estimated from historical data. Sample estimates obtained from such historical
data usually contain significant estimation errors, leading to unsatisfactory investment
performance [2,3].

To improve Markowitz’s portfolio model, abundant research has attempted to develop
more sophisticated models. Related literature includes imposing an additional constraint on
portfolio weights [4–6], incorporating robust optimization techniques [7,8], and developing
better estimates of the input parameters, such as shrinkage estimators [9,10]. Other efforts
include integrating the mean-variance model with various active management strategies,
such as time-varying investment targets [11] or dynamic self-rebalancing [12].

At the same time, researchers have developed various performance measures to
evaluate these portfolio models. Most literature focuses on return-based performance
measures such as the Sharpe ratio [13] that characterize the expected return-risk tradeoff of
a portfolio. Another example is the Treynor ratio [14], which measures how much excess
return was generated for each unit of systematic risk taken on by a portfolio. Recently, Refs
[15,16] investigated higher moments of portfolio returns, such as skewness and kurtosis, as
a new return-based performance measure.

While the return-based performance measure is intuitive, it is often insufficient for
more sophisticated portfolio evaluation. Indeed, researchers have reported empirical
results that for the Sharpe ratio, many portfolio models are statistically indifferent from a
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benchmark model such as the 1/N portfolio, which enforces an equal weight of 1/N to N
risky assets [17,18]. Hence, in a practical situation with a choice of many portfolio models,
more effort should be devoted to developing an additional dimension of portfolio analysis
to allow for more fine-grained evaluation.

To this end, we break away from the traditional return-based portfolio analysis and
propose to evaluate portfolio composition. While several researchers have focused on
portfolio composition as an object of interest for estimation, it has rarely been used for
portfolio evaluation. An idea of evaluating the portfolio composition appeared at best
indirectly in [19], who used the 2-norm distance between a portfolio obtained from historical
returns and an optimal reference portfolio with no estimation risk to measure the estimation
error. Extending this idea, we develop a novel framework for directly evaluating the
portfolio composition. We consider a portfolio as an estimator for an in-sample tangency
portfolio, which we define as the optimal reference portfolio. We then evaluate the portfolio
by computing its vector distance to the optimal reference portfolio. We refer to this new
evaluation as a distance-based performance measure.

In searching for the proper distance-based performance measure, we aim to explore
the following research questions. First, out of many vector distances, such as norm-based or
inner-product-based distances, which is the most suitable for portfolio evaluation? Second,
can the distance-based performance measure represent investor preference implied by the
traditional utility theory? Finally, what complementary information can the distance-based
performance measure provide as an additional dimension of portfolio analysis?

By addressing these research questions, we make the following contributions to the
literature. First, out of four representative types of vector distances—Euclidean, Manhat-
tan, Cosine, and Pearson—we confirm that the Euclidean distance is the most suitable for
portfolio evaluation. We randomly generate 30,000 portfolios and investigate their represen-
tative four vector distances from the in-sample tangency portfolio. Through our extensive
statistical analysis, we find that the Euclidean distance is the most proper distance-based
performance measure of the four representative vector distances since it evaluates portfolios
in the most unbiased and sophisticated manner and shows the most consistent relationship
with the traditional return-based performance measures.

Our second contribution is to justify the Euclidean distance further by examining
its relationship with an investor’s utility preference and reliability of investment perfor-
mance. The traditional utility theory states that an investor should prefer a portfolio with
a high mean, a low standard deviation, a high skewness, and a low kurtosis of portfolio
returns [20]. Our numerical results suggest that the Euclidean distance shows a consistent
relationship with these four moments of portfolio returns. That is, investors should prefer a
portfolio with a shorter Euclidean distance since it gives a higher utility implied by portfolio
returns. Finally, we find that a portfolio with a large Euclidean distance is unreliable since
its mean return and risk are highly scattered around the average. Hence, we conclude
that the Euclidean distance can complement the return-based performance measures by
confirming the reliability of a portfolio in its investment performance.

From a practical perspective, we believe that our proposed distance-based framework
can provide investors with a more sophisticated tool for portfolio evaluation. Furthermore,
our findings suggest that decreasing the Euclidean distance can be a convincing direction
for improving out-of-sample performance. Indeed, a subsequent work of this paper has
developed a new algorithm that incorporates this idea and shows significantly improved
investment performance [21] over various benchmarks, including the 1/N portfolio.

The remainder of this paper is organized as follows. Section 2 formally introduces
the distance-based framework for portfolio evaluation. Section 3 lays out the design of
numerical experiments. Section 4 investigates the suitability of four representative vector
distances as a portfolio performance measure and confirms that the Euclidean distance
is the most proper one. Section 5 further justifies the Euclidean distance as a meaningful
performance measure by analyzing its relationship with an investor’s return-based utility
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and the reliability of investment performance. Finally, Section 6 provides conclusions and
directions for future research.

2. Distance-Based Performance Measures for Portfolio Analysis

Consider a typical investment for a period [0, T] consisting of n risky assets. At the
initial time 0, we choose a portfolio to hold for the investment period. Since we do not have
full knowledge of future returns, we can only use historical returns to choose a portfolio.
We denote this estimated portfolio as w = (w1, . . . , wn)

> ∈ Rn.
After the investment period, that is, at time T, we can observe the true (in-sample)

returns realized for [0, T] and evaluate the performance of w. A common approach to
doing so is a return-based approach where we measure its out-of-sample return. However,
we propose a distance-based approach to directly evaluate the portfolio composition since
it is a vector of decision variables that fundamentally affects the out-of-sample return of the
portfolio. In this approach, we consider w as an estimator for an optimal reference portfolio
w∗. We then evaluate w by measuring d(w, w∗) where d is a measure of similarity between
w and w∗. We will generally refer to d(·, ·) as a distance function. A small value of d(w, w∗)
indicates that w is compositionally similar to w∗ and, therefore, more desirable in the
distance-based approach. We refer to d(w, w∗) as a distance-based performance measure.

From the mean-variance perspective, the most intuitive choice for the optimal refer-
ence portfolio is an in-sample tangency portfolio (hereby, in-sample TP). The in-sample
TP is a portfolio obtained in an ex-post manner that achieves the highest Sharpe ratio
for the investment period. Formally, let µ∗ and Σ∗ denote the in-sample mean vector
and the covariance matrix of returns, respectively, obtained from the in-sample excess
returns (over a risk-free return) for [0, T]. The in-sample TP w∗ =

(
w∗1 , . . . , w∗n

)> ∈ Rn is
defined as follows:

w∗ = argmax
w∈Rn

w>µ∗(
w>Σ∗w

)1/2 (1)

s.t. w>1N = 1
w ≥ 0N ,

where 0N and 1N denote vectors of zeros and ones, respectively. That is, the in-sample
TP is the optimal portfolio that an investor should have targeted if the investor had fully
known the returns that would be realized for the future investment period. Note that w∗

and, therefore, d(w, w∗) can be computed only in an ex-post manner (i.e., at T). Hence, the
timeline for portfolio evaluation is the same as the return-based approach. The optimal
solution of the tangency portfolio model can be found with readily available software such
as R and Matlab [22].

The in-sample TP has the following desirable properties as the optimal reference
portfolio. First, since a high Sharpe ratio indicates a suitable risk-return tradeoff, the
literature has used TP as a superior portfolio [23,24]. Second, the composition of the
in-sample TP is uniquely determined on the efficient frontier [25,26]. Lastly, unlike the
mean-variance portfolio, the tangency portfolio is independent of an individual investor’s
attitude toward risk, such as minimum acceptable return [27].

There are many types of a distance function d that quantify the compositional similarity
between w and w∗. Generally, vector distances in Rn can be categorized as either norm or
inner product distances. In search of a proper distance-based performance measure, we
investigate four representative vector distances, as shown in Table 1. We first choose two
norm distances: Manhattan and Euclidean distances. The Manhattan distance is the sum of
the compositional difference between w and w∗, while the Euclidean distance is the shortest
length between the two portfolio vectors. We also investigate two inner product distances:
Cosine and Pearson distances. The Cosine distance measures an angle between w and w∗

while the Pearson distance evaluates the correlation between the two vectors. Note that
we have slightly adjusted the definition of the two inner product distances so that, like the
norm distances, a small value indicates that the two portfolios are compositionally similar.
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Table 1. Distances for the portfolio composition evaluation.

Category Distance Method Formula

Norm

Euclidean
distance

√
∑n

i=1
∣∣wi − w∗i

∣∣2
Manhattan

distance ∑n
i=1
∣∣wi − w∗i

∣∣

Inner Product

Cosine
distance

1− ∑n
i=1 wi ·w∗i√

∑n
i=1|wi |2

√
∑n

i=1|w∗i |
2

Pearson
distance

1− ∑n
i=1(wi−w)(w∗i −w∗)√

∑n
i=1|wi−w|2

√
∑n

i=1|w∗i −w∗|2
= 1− ρw,w∗

(w = ∑n
i=1 wi/n, w∗ = ∑n

i=1 w∗i /n
)

Figure 1 visualizes the difference between the norm and the inner product methods
for measuring the compositional difference between the two portfolios. The shorter the
norm distance d between the two portfolios, the more similar the two portfolios are. In
addition, the smaller the inner product distance θ between the two portfolios, the more
similar the directions of the two portfolios are.

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 19 
 

 

is the sum of the compositional difference between 𝒘 and 𝒘∗, while the Euclidean dis-

tance is the shortest length between the two portfolio vectors. We also investigate two 

inner product distances: Cosine and Pearson distances. The Cosine distance measures an 

angle between 𝒘 and 𝒘∗ while the Pearson distance evaluates the correlation between 

the two vectors. Note that we have slightly adjusted the definition of the two inner prod-

uct distances so that, like the norm distances, a small value indicates that the two portfo-

lios are compositionally similar.  

Figure 1 visualizes the difference between the norm and the inner product methods 

for measuring the compositional difference between the two portfolios. The shorter the 

norm distance 𝒅 between the two portfolios, the more similar the two portfolios are. In 

addition, the smaller the inner product distance 𝜽 between the two portfolios, the more 

similar the directions of the two portfolios are.  

 

Figure 1. Norm and inner product methods to measure similarity between two vectors. (a) dis-

tance measured by the norm; (b) distance measured by the inner product. 

As stated in the first research question, our goal is to investigate which vector dis-

tance would be the most suitable for portfolio evaluation. To this end, in the following 

section, we design numerical experiments to examine the different implications that each 

vector distance has in evaluating portfolios. 

  

Figure 1. Norm and inner product methods to measure similarity between two vectors. (a) distance
measured by the norm; (b) distance measured by the inner product.



Mathematics 2023, 11, 221 5 of 19

As stated in the first research question, our goal is to investigate which vector distance
would be the most suitable for portfolio evaluation. To this end, in the following section,
we design numerical experiments to examine the different implications that each vector
distance has in evaluating portfolios.

3. Experiment Design

We first generate 30,000 random portfolios for evaluation, denoted as wR =(
wR1 , . . . , wRn

)> ∈ Rn, using Random Portfolio Weights Generator from Rho-Works’ website
(http://www.rhoworks.com/randweights.php, accessed on 18 July 2021). We thereafter
construct the in-sample TP w∗ using monthly excess returns of 17 industry portfolios (For
a detailed description of the 17 industry portfolios, please see Appendix A) from Kenneth
French’s database (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french, accessed
on 18 July 2021) from October 1992 to September 2017. Kenneth French’s database is widely
used for portfolio research and is created using all stock information provided by The
Center for Research in Security Price (CRSP) in the United States. The 17 industry portfolios
are composed of Food, Mines, Oil, and 14 other industries. The total investment period
is 25 years (300 months). For each random portfolio, we compute the four representative
vector distances in Table 1 and hence obtain 30,000 observations for each vector distance.
We standardize each vector distance as shown in Table 2 to unify their scales. Furthermore,
we compute the mean return, the risk, and the Sharpe ratio for each random portfolio to
investigate their relationship with each vector distance.

Table 2. Formulas for standardizing distance methods.

Standardized Distance Formula

Euclidean distance ED(w∗ ,wR)−Mean{ED(w∗ ,wR)}
Std{ED(w∗ ,wR)}

Manhattan distance MD(w∗ ,wR)−Mean{MD(w∗ ,wR)}
Std{MD(w∗ ,wR)}

Cosine distance CD(w∗ ,wR)−Mean{CD(w∗ ,wR)}
Std{CD(w∗ ,wR)}

Pearson distance PD(w∗ ,wR)−Mean{PD(w∗ ,wR)}
Std{PD(w∗ ,wR)}

Figure 2 outlines the experiments. In Section 4, we compare the suitability of each
vector distance as a performance measure. We focus on two necessary conditions of a
proper performance measure. First, it should not show significant bias and skewness
when evaluating randomly generated portfolios. Second, it should suggest a consistent
relationship with the traditional return-based performance measures. Section 4.1 examines
the first condition by examining the distribution of each vector distance. Section 4.2
investigates the second condition by analyzing how the mean portfolio return, the risk,
the Sharpe ratio, and their proportions of outperformance to the 1/N portfolio change as
each vector distance increases. Based on the numerical results in Section 4, out of the four
representative vector distances, we argue that the Euclidean distance is the most suitable
performance measure for portfolio analysis.
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practical investors caring about portfolio returns, it should provide a higher return-based
utility. Section 5.1 investigates this by analyzing how the Euclidean distance is associated
with the preference implied by the traditional return-based utility theory. In Section 5.2,
we discuss how the Euclidean distance can complement the return-based performance
measures. By analyzing how the random portfolios grouped by the Euclidean distance are
located on the risk-return plane, we provide an insight into the relationship between the
Euclidean distance and the reliability of investment performance. All experimental proce-
dures, such as optimization, distance calculation, and statistical analyses, are conducted
using MATLAB R2017a.

4. Comparing the Suitability of Vector Distances as a Performance Measure
4.1. Analysis of the Distribution of Each Vector Distance

Figure 3a shows the scatter plot of each vector distance and the Sharpe ratio, respec-
tively. We first observe that all of the vector distances show a strong negative correlation
with the Sharpe ratio. This result is also supported by Table 3, which lists the Pearson’s corre-
lation coefficients between each vector distance and the Sharpe ratio. This negative relation-
ship is indeed expected since we use the in-sample TP as the optimal reference portfolio.
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Table 3. The correlations between each distance and the Sharpe ratio.

Standardized Distance Pearson’s Correlation Coefficient

Euclidean distance −0.5569
Manhattan distance −0.6517

Cosine distance −0.6849
Pearson distance −0.6684

However, the negative relationship with the Sharpe ratio is not enough for a vector
distance to be a proper performance measure. Since the random portfolios are generated
without sampling bias, a vector distance that reveals strong skewness may not be suitable
for portfolio evaluation. Figure 3b lists how the 30,000 random portfolios are distributed
when each distance is applied. It is visually explicit that the Euclidean distance has a
smooth and symmetric distribution without a strong skewness. However, the other three
distance methods show a strong negative skewness. If the evaluation results of randomly
selected portfolios are negatively skewed, it is difficult to distinguish which portfolios are
good or bad since considerable proportions of the portfolios are far from the in-sample TP.

This visual implication is supported by the descriptive statistics of each vector distance
in Table 4. The standardized Euclidean distribution has a skewness coefficient close to
0, the lowest kurtosis coefficient, and the largest range. Since all standard deviations
are adjusted to 1, the fact that the Euclidean distribution has the largest range implies
that the Euclidean distance can distinguish portfolio composition with the highest level
of sophistication. A distribution with a skewness coefficient between −0.5 and 0.5 is
classified as symmetric [28]. Moreover, the lower the kurtosis of the distribution is, the less
peaked and the smoother the shape of the distribution is. Considering that the standard
normal distribution has a kurtosis coefficient of 3, the standardized distribution of the
Euclidean distribution is the smoothest and the most symmetric to approximate the normal
distribution. Hence, we conclude that the Euclidean distance method is the most suitable
evaluation for portfolio composition.

Table 4. Descriptive statistics for each vector distance.

Standardized
Distance Range (=max–min) Coefficient of

Skewness
Coefficient of

Kurtosis

Euclidean distance 6.2208 −0.1549 3.0141
Manhattan distance 5.7967 −1.0847 3.5950

Cosine distance 4.6691 −1.3696 4.1047
Pearson distance 5.4545 −1.4195 4.3447
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4.2. Relationship between Each Vector Distance and the Traditional Return-Based
Performance Measures

In this subsection, we identify which vector distance shows the most consistent re-
lationship with the traditional performance measures. Intuitively, for a vector distance
to be suitable as an evaluation method, it should suggest a consistent tendency where
portfolios with longer distances, on average, have lower Sharpe ratios. Hence, we aim
to examine how the Sharpe ratio changes as each vector distance increases. Furthermore,
since changes in the Sharpe ratio are accompanied by changes in the mean portfolio return
and/or the risk, we also investigate how these two performance measures change as each
vector distance increases.

The meaning of the consistent relationship is defined as follows: if there is an instance
where a longer distance implies a statistically significant increase in the Sharpe ratio, the
distance method may not be aligned with the existing portfolio evaluation. In this sense,
such vector distance does not show a consistent relationship with the Sharpe ratio. For the
same reason, we expect that the mean return (the risk) decreases (increases) as a vector
distance increases if it shows a consistent relationship.

We categorize the 30,000 random portfolios for evaluation into 100 groups based on
the percentile from each distance. We thereafter examine how their average investment per-
formance varies due to the changes in the percentile group. For example, the first percentile
group in the Euclidean distance contains 300 portfolios with the shortest Euclidean distance
among the 30,000 random portfolios, and the 100th percentile group in the Manhattan
distance contains the 300 portfolios with the longest Manhattan distance. We analyze how
the average (annualized) Sharpe ratio, the mean return, the risk, and their proportions
of outperformance to the 1/N portfolio change with the percentile group for each vector
distance. The proportion of outperformance compared to the 1/N portfolio is defined
as the probability that a portfolio performs better than the 1/N portfolio. For example,
the proportion of outperformance of the Sharpe ratio to the 1/N portfolio in the first per-
centile group is the proportion of portfolios with a higher Sharpe ratio than that of the 1/N
portfolio among the 300 portfolios with the shortest distance. We include this proportion
of outperformance since outperformance over the 1/N portfolio has been considered an
objective criterion to judge whether investment performance is good or bad [12,17].

We first examine the visual implications of each vector distance with Figures 4 and 6.
Figure 4 shows the changes in the average investment performance by the distance level.
Figure 4a–c represent the Sharpe ratio, the mean portfolio return, and the risk, respectively.
The central line of each graph represents the average performance of all portfolios in
each percentile group. The lower (upper) line represents the average of portfolios in the
lower (upper) 10% in each percentile group. The horizontal axis represents percentile
groups for each distance. Figure 6 shows the corresponding changes in the proportions of
outperformance to the 1/N portfolio by distance level.
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From Figures 4 and 6, we observe that the Euclidean distance shows the most consistent
relationship with the three return-based performance measures. The Euclidean distance
generally shows monotone relationships where portfolios with longer Euclidean distances,
on average, have lower Sharpe ratios, lower mean returns, and higher risks. However, the
other vector distances do not show a systematic decrease (increase) of the Sharpe ratio
and the mean portfolio return (the risk) as each vector distance increases. Figure 6 shows
qualitatively similar results to Figure 4 in that only the Euclidean distance satisfies the
condition that the portfolios with longer distances, on average, have lower proportions of
outperformance to the 1/N portfolio.
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For example, for the Manhattan distance in Figure 4, the average Sharpe ratio of the
70th percentile group is higher than that of the 60th percentile group. This means that the
average Sharpe ratio can even go up with the increasing Manhattan distance. One can also
observe that, in the graphs on Manhattan, Cosine, and Pearson distances, the first and the
ninth decile lines for all the performance measures exhibit irregular trend movements. For
example, when portfolios are classified with the Pearson distance, the difference between
the first and the ninth decile of the risk decreases from the 60th percentile in Figure 4, which
means that a portfolio with a longer Pearson distance can be, on average, more stable than
a portfolio with a shorter Pearson distance.

To rigorously confirm these visual implications, we conduct multiple independent
t-tests investigating whether the differences in the three return-based performance mea-
sures between ith and jth percentile groups (i < j and i, j = 1, 2, . . . , 100) are statistically
significant. Multiple independent t-tests involve conducting an independent t-test between
each pair of groups among the entire set. Although conducting a t-test multiple times is
known to increase type I errors, it can be adjusted by various methods, such as Bonfer-
roni correction [29]. The significance level adjusted by Bonferroni correction is defined as
α′ = α

m when t-tests are performed m times at a target significance level α. This adjustment
is frequently used in medical and health studies [30]. We conduct pairwise comparisons
of the investment performance for 100 percentile groups at the target significance level
α = 0.1. Therefore, a total of m = 100!

2!(100−2)! = 4950 t-tests are conducted at the corrected

significance level α′ = 0.1
4950 .

Formally, let Yi generally denote each return-based performance measure (and its
proportion of outperformance) in the ith percentile distance group with E[Yi] denoting the
mean of Yi. We construct the null and alternative hypotheses as (2)–(7). These hypothe-
ses verify whether the changes in the Sharpe ratio, the mean return, the risk, and their
proportions of outperformance due to the changes in each vector distance are consistent
with the intuition. Hence, we define “Inconsistency” as the case of adopting the alternative
hypothesis and “Consistency” as the case of failing to reject the null hypothesis.

Investment performance:

Sharpe ratio H10: E[Yi]− E
[
Yj
]
≥ 0 vs. H11: E[Yi]− E

[
Yj
]
< 0 (i < j ) (2)

Rate of return H20: E[Yi]− E
[
Yj
]
≥ 0 vs. H21: E[Yi]− E

[
Yj
]
< 0 (i < j ) (3)

Risk H30: E[Yi]− E
[
Yj
]
≤ 0 vs. H31: E[Yi]− E

[
Yj
]
> 0 (i < j ) (4)

Proportion of outperformance:

Sharpe ratio H40: E[Yi]− E
[
Yj
]
≥ 0 vs. H41: E[Yi]− E

[
Yj
]
< 0 (i < j ) (5)

Rate of return H50: E[Yi]− E
[
Yj
]
≥ 0 vs. H51: E[Yi]− E

[
Yj
]
< 0 (i < j ) (6)

Risk H60: E[Yi]− E
[
Yj
]
≥ 0 vs. H61: E[Yi]− E

[
Yj
]
< 0 (i < j ) (7)

Table 5 shows the numerical results of the multiple t-tests. Table 5a compares the in-
vestment performance among the percentile groups, and Table 5b compares the investment
proportions of outperformance among the groups. The upper figure for each distance is the
number of “Inconsistency” or “Consistency” cases, and the lower one is its corresponding
proportion out of the entire 4950 t-tests. Results of the Euclidean distance show that, in all
pairs, portfolios in a lower percentile group do not have a lower Sharpe ratio, a lower mean
portfolio return, a higher risk, and a lower proportion of outperformance on average than
the other portfolios in a higher percentile group. However, for the other three distances,
there exist cases inconsistent with the intuition with a non-negligible proportion, which par-
allels the visual implications of Figures 4 and 6. For example, in 63 out of the 4950 (1.27%)
t-tests, portfolios with shorter Manhattan distances have, on average, higher Sharpe ratios
than the other portfolios with longer Manhattan distances. Similar inconsistencies are
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found for Cosine and Pearson distances. In summary, we statistically verify that only the
Euclidean distance is consistent with the traditional return-based performance measures.
Therefore, we conclude that, out of the four representative vector distances, the Euclidean
distance is the most proper distance-based performance measure for portfolio analysis.

Table 5. Multiple t-test results. (a) Investment performance comparison; (b) Proportion of outperfor-
mance comparison.

(a)

Standardized Sharpe Ratio Mean Return Risk

Distance Inconsistency Consistency Inconsistency Consistency Inconsistency Consistency

Euclidean 0 4950 0 4950 0 4950
distance 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%

Manhattan 63 4887 144 4806 105 4845
distance 1.27% 98.73% 2.91% 97.09% 2.12% 97.88%
Cosine 26 4924 72 4878 29 4921

distance 0.53% 99.47% 1.45% 98.55% 0.59% 99.41%
Pearson 7 4943 51 4899 217 4733
distance 0.14% 99.86% 1.03% 98.97% 4.38% 95.62%

(b)

Standardized Sharpe Ratio Proportion of
Outperformance

Mean Return Proportion of
Outperformance

Risk Proportion of
Outperformance

Distance Inconsistency Consistency Inconsistency Consistency Inconsistency Consistency

Euclidean 0 4950 0 4950 0 4950
Distance 0.00% 100.00% 0.00% 100.00% 0.00% 100.00%

Manhattan 76 4874 134 4816 263 4687
distance 1.54% 98.46% 2.71% 97.29% 5.31% 94.69%
Cosine 24 4926 109 4841 61 4889

distance 0.48% 99.52% 2.20% 97.80% 1.23% 98.77%
Pearson 0 4950 75 4875 0 4950
distance 0.00% 100.00% 1.52% 98.48% 0.00% 100.00%

5. Further Justification of the Euclidean Distance as a New Performance Measure

In this section, we further justify the Euclidean distance as a new dimension for
portfolio analysis. To this end, we conduct a detailed analysis of why a shorter Euclidean
distance should be preferred by an investor who cares about portfolio returns. We first
investigate how the Euclidean distance can represent an investor’s preference implied by
the return-based utility theory (Section 5.1). We thereafter examine why a portfolio with
a large Euclidean distance is not desirable by studying how the reliability of investment
performance changes as the Euclidean distance increases (Section 5.2).

5.1. Relationship between the Euclidean Distance and the Utility Preference Implied by
Portfolio Returns

The utility function is often applied in portfolio theory [20,31], where investors are
usually assumed to show risk aversion. Specifically, the utility function is increasing in
portfolio returns and satisfies the law of diminishing marginal utility. Since it has been
argued that higher moments beyond the mean return and the risk should be considered to
represent an investor’s utility [32], we analyze how the Euclidean distance can represent the
preference implied by the first four moments of portfolio returns, including the skewness
and kurtosis of portfolio returns.

We denote R(w) as a return of portfolio w, µ(w) as the mean portfolio return, that
is E[R(w)]. Then, U(R(w)), the utility function of R(w), can be written as (8) through
the Taylor series expansion. The second moment of return E

[
(R(w)− µ(w))2

]
refers to

the variance of the portfolio return (σ(w)2), the third moment E
[
(R(w)− µ(w))3

]
to its
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skewness (s(w)3), and the fourth moment E
[
(R(w)− µ(w))4

]
to its kurtosis (k(w)4). The

skewness measures the asymmetry of a distribution of stock returns, and the kurtosis
measures the thickness of tails of the stock return distribution. Based on the Taylor series
expansion, the expected value of U(R(w)) can be approximated by (9) [29,33]:

The Taylor series expansion for U(R(w)):

U(µ(w)) + U′(µ(w))(R(w)− µ(w)) + 1
2! U

′′ (µ(w))(R(w)− µ(w))2

+ 1
3! U

′′′ (µ(w))(R(w)− µ(w))3 + 1
4! U

′′′′
(µ(w))(R(w)− µ(w))4 + O

(
R(w)4

) (8)

Equation for E[U(R(w))]:

E[U(µ(w))] +
1
2!

U′′ (µ(w))σ(w)2 +
1
3!

U′′′ (µ(w))s(w)3 +
1
4!

U
′′′′
(µ(w))k(w)4 (9)

It was shown in [20] that the portfolio utility function U(·) satisfies U′′ (µ(w)) < 0,
U′′′ (µ(w)) > 0, and U

′′
(µ(w)) < 0, and proved that the portfolio utility should increase

with the increase in µ(w),−σ(w)2, s(w)3, and−k(w)4. That is, a portfolio with a low mean
return, a high risk, a low skewness, and a high kurtosis will not be preferred by investors.
Therefore, if the Euclidean distance appropriately represents an investor’s preference, the
portfolio with a shorter Euclidean distance should show a higher (lower) mean return and
skewness (risk and kurtosis) of portfolio returns.

Figure 6 displays the scatter plots of the annualized mean return, the risk, the skew-
ness, and the kurtosis of the 30,000 random portfolios versus their Euclidean distances.
The solid black line is a linear regression line summarizing the patterns in each graphs.
Figure 6a,b show that, as the Euclidean distance increases, the mean portfolio return tends
to decrease, and the risk tends to increase, while Figure 6c,d show that the skewness tends
to decrease and the kurtosis to increase. Hence, we confirm from Figure 6 that the Euclidean
distance is consistent with the characteristics of a portfolio utility function. In conclusion,
it is reasonable to evaluate portfolio composition with the Euclidean distance since the
Euclidean distance is closely related to an investor’s preference implied by portfolio returns.
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5.2. Risk-Return Analysis of Portfolio Based on the Euclidean Distance

Recall that, in Section 4.2, we confirmed that the Euclidean distance showed a mono-
tone (and therefore consistent) relationship with the mean portfolio return and the risk. We
now further investigate, in addition to these monotone relationships, how the mean return
and the risk change with the Euclidean distance.

We categorize the 30,000 random portfolios into 10 groups based on the Euclidean
distance and draw the risk-return scatter diagram of each group. For example, 3000 port-
folios with the shortest Euclidean distance are classified as Group 1, and 3000 portfolios
with the longest Euclidean distance as Group 10. The risk-return scatter diagrams for all
10 groups are shown in Figure 7. The horizontal axis is the risk, and the vertical axis is
the excess mean return over the risk-free rate. Descriptive statistics for each group are
summarized in Table 6.
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Table 6. Summary statistics of the mean return and the risk according to the Euclidean distance groups.

Group
Average Standard Deviation

Mean Return Risk Mean Return Risk

1 0.1026 0.1365 0.0074 0.0128
2 0.0972 0.1484 0.0086 0.0176
3 0.0965 0.1583 0.0093 0.0195
4 0.0947 0.1649 0.0100 0.0209
5 0.0939 0.1705 0.0105 0.0221
6 0.0931 0.1744 0.0108 0.0241
7 0.0922 0.1791 0.0120 0.0273
8 0.0921 0.1846 0.0131 0.0294
9 0.0927 0.1885 0.0143 0.0328
10 0.0910 0.2015 0.0162 0.0387

The curved line in Figure 7 is the minimum-variance frontier, with the upper-right-
hand part of it being the efficient frontier [34,35]. N indicates the in-sample TP and © the
average risk and return for each group. The location of © for each group can be found in
detail in Table 6.

According to Figure 7 and Table 6, © moves southeast gradually from Group 1 to
Group 10. More importantly, while the portfolios in Group 1 compactly cluster around © in
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Figure 7, the portfolios in Group 10 tend to scatter out of ©. These results indicate that a
portfolio with a larger distance has not only worse average investment performance but
also higher variability in both return and risk. Hence, a portfolio with a large Euclidean dis-
tance is unreliable even if it achieves a higher mean return or a lower risk; these investment
performances are likely a result of accidental observations arising from the larger variabil-
ity. In this sense, the Euclidean distance can complement the return-based performance
measures by confirming the reliability of a portfolio in its investment performance.

6. Conclusions and Future Research

In this study, we developed a distance-based approach for portfolio analysis to directly
evaluate portfolio composition. To develop a novel distance-based performance measure,
we selected the four representative vector distances—Euclidean, Manhattan, Cosine, and
Pearson distances—and investigated their suitability as a portfolio performance measure.
Through extensive simulation and statistical analysis, we confirmed that the Euclidean
distance is the most proper distance-based performance measure since it enables the most
sophisticated and unbiased evaluation of randomly generated portfolios, and it shows
the most consistent relationship with the traditional return-based performance measures.
We further justified the Euclidean distance as a new dimension for portfolio analysis
by verifying that not only a portfolio with a large Euclidean distance provides a lower
utility implied by the traditional utility theory, but also its investment performance is
highly unreliable.

For future research, we are working on constructing a portfolio with a shorter Eu-
clidean distance using a statistical learning technique based on [21]. Specifically, we aim
to generate an investment portfolio by making a convex combination of various out-of-
sample portfolios and calibrating the combination level based on the Euclidean distance.
Additionally, another study is underway to predict future in-sample TPs directly through
time-series prediction models [36]. It collects the past in-sample TPs as time-series data
and directly uses those portfolios instead of the historical rate of return to predict future
investment portfolios through time-series forecasting methods.

It would also be meaningful to investigate the impact of estimated inputs on the
portfolio selection model in terms of portfolio composition through prediction methods
such as index smoothing and moving averaging with real stock data such as the S&P
500, and such data can be harvested mechanically by previously studied algorithms [37].
Lastly, verifying our result by constructing mathematical models and proving theorems
will greatly enhance the applicability of the insight we provided in this paper and will be
an interesting future research topic.
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Appendix A

Figure A1 shows time-series graphs of the 17 industry portfolios used in this paper
from the Kenneth French’s database. The horizontal axis refers to the timeline from October
1992 to September 2017, and the vertical axis refers to the monthly rate of return in each
industry. In addition, simple statistics such as the average, the standard deviation, the
skewness, and the kurtosis of returns by industry can be found in Table A1.
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Figure A1. Time-series graphs of returns by 17 industry portfolios from October 1992 to September
2017. (a) Food; (b) Mining and Mineral (Mines); (c) Oil and Petroleum Products (Oil); (d) Textiles,
Apparel & Footwea (Clths); (e) Consumer Durables (Durbl); (f) Chemicals (Chems); (g) Drugs,
Soap, Perfumes, Tobacco (Cnsum); (h) Construction and Construction Materials (Cnstr); (i) Steel
Works Etc (Steel); (j) Fabricated Products (FabPr); (k) Machinery and Business Equipment (Machn);
(l) Automobiles (Cars); (m) Trans Transportation (Trans); (n) Utilities (Utils); (o) Retail Stores (Rtail);
(p) Banks, Insurance Companies, and Other Financials (Finan); (q) Other.
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Table A1. Summary statistics about 17 industry portfolios from October 1992 to September 2017.

Industry Mean Standard
Deviation Skewness Kurtosis

a. Food 0.008 0.037 −0.457 4.849
b. Mining and Mineral (Mines) 0.009 0.082 −0.310 4.105

c. Oil and Petroleum Products (Oil) 0.009 0.055 0.031 3.584
d. Textiles, Apparel & Footwea (Clths) 0.009 0.058 −0.153 5.261

e. Consumer Durables (Durbl) 0.007 0.056 −0.237 6.907
f. Chemicals (Chems) 0.010 0.057 −0.119 5.330

g. Drugs, Soap, Perfumes, Tobacco (Cnsum) 0.010 0.040 −0.374 3.138
h. Construction and Construction Materials (Cnstr) 0.010 0.056 −0.216 4.032

i. Steel Works Etc (Steel) 0.008 0.084 −0.225 4.893
j. Fabricated Products (FabPr) 0.010 0.053 −0.493 5.267

k. Machinery and Business Equipment (Machn) 0.012 0.072 −0.562 4.893
l. Automobiles (Cars) 0.009 0.065 −0.018 5.849

m. Trans Transportation (Trans) 0.011 0.048 −0.621 4.668
n. Utilities (Utils) 0.008 0.040 −0.557 3.786

o. Retail Stores (Rtail) 0.009 0.045 −0.265 3.873
p. Banks, Insurance Companies, and Other

Financials (Finan) 0.010 0.055 −0.700 5.480

q. Other 0.009 0.049 −0.565 4.125
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