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Abstract: Obstructive sleep apnea syndrome is a conceivably hazardous ailment. Most end up with
non-reversible surgical techniques, such as the maxillomandibular advancement (MMA) procedure.
MMA is an amazingly obtrusive treatment, regularly connected to complexities and facial change.
Computational fluid dynamic (CFD) is broadly utilized as an instrument to comprehend the stream
system inside the human upper airways (UA) completely. There are logical inconsistencies among
the investigations into the utilizations of CFD for OSAS study. Thus, to adequately understand the
requirement for OSAS CFD investigation, a systematic literature search was performed. This review
features the necessary recommendations to accurately model the UA to fill in as an ideal predictive
methodology before mandibular advancement surgery.

Keywords: OSA; mandibular advancement; CFD; sleep apnea

MSC: 92-08

1. Introduction

Obstructive sleep apnea syndrome (OSAS) is a potentially life-threatening illness [1–4].
Obstructive sleep apnea (OSA) is a traditional chronic syndrome implicating the adult
population, with the highest occurrence reported among middle-aged men [5]. The ailment
is characterized by repetitive episodes of a complete or incomplete collapse of the upper
airway during sleep, with a consequent decrease of the airflow [6]. Over the decade, several
OSA management methods have been developed [7,8], and among them by utilizing
positive airway pressure (PAP) treatment [4,9], an oral appliance [10] and several non-
reversible surgical methods such as mandibular advancement surgery (MAS) [11,12]. MMA
is a surgical treatment that involves cutting the upper and lower jaws to realign them [13].
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The improvement of the jaw structures passively persuades an anterior displacement of
the soft palate and the tongue, widening the pharyngeal space [12,14]. However, it is
noteworthy that MAS is a highly invasive treatment, often associated with complications
and aesthetic change [15–17].

Consequently, the treatment should apply to selected patients when all other ap-
proaches and first-level surgery have failed or patients with established craniofacial de-
formities [18,19]. CFD is widely used to fully understand the flow mechanism inside
the human airways [20–23]. However, there are contradictions among the studies of the
utilization of CFD for OSA study. Therefore, a systematic review is needed to understand
the fundamental requirement of OSA CFD analysis fully.

The formulation of this systematic review began with the following research question:
How can we properly model the upper airways (UA) as a prediction approach before MAS?
Table 1 presents the keyword search string used for this article—the review’s process flow,
as depicted in Figure 1.

Table 1. Keywords for the search string.

Database Keywords

WoS

ALL = ((maxillomandibular OR mandibular OR mandible* OR jaw*
OR maxilla) AND (advance$ OR improvement OR gain OR elevation)

AND (“obstructive sleep apnea” OR snoring OR “sleep* disorder
breath$” OR “pharyngeal airway resist$” OR “sleep apnea”))
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2. Review Outcome Introduction

This paper reviews previous studies of OSAS from a CFD perspective focusing on
MMA treatment. This review will detail previous CFD technology associated with OSA
cases. In this paper, the author will be detailing the rigorous needs of the image processing
technique, which is the essential pre-process of CFD modelling.

Furthermore, the UA boundary condition setup will be discussed in detail, starting
from the meshing technique of the UA model. The discussion will detail the turbulence
model used in the OSA literature, including the setup parameter of UA CFD modelling.
Towards the end, the author will discuss related experimental validating processes to
indicate the competency of CFD analysis as a tool for MMA treatment assessment.

2.1. Airways Imaging Technique

OSAS has become an interesting topic in research recently. Recent developments in
OSA treatment procedures have heightened the need for advanced image techniques [24,25].
The imaging technique available in modern technology has two types: computerized axial
tomography (CT) and magnetic resonance imaging (MRI).

One crucial theoretical topic that has engaged researchers for many years is how the
UA trigger snoring [22]. The introduction image technique based on acoustics has opened
a broad interest in the OSA prediction technique [26]. The MRI or CT approach is confined
to a 2D stacking image of the subject’s cross-section region, subjected to visualization,
essential length, and volume measurement, as shown in Figure 2 [27–29]. The CT or MRI
technique, however, has been widely used to evaluate the severity of OSA for surgery
determination from the early 90s until today [30–32].

Until today, most of the clinical approaches to OSA treatment depended on the UA’s
generated cross-sectional image, which provides insight into the UA’s narrowing gap and
volume [33,34]. The medical decision is solely based on the judgment of the UA cross-
section due to time limitation and virtual modeling capabilities limitation [35–37]. These
results in non-responsive post-treatment occurred because not all OSA patients responded
to surgical treatment positively [38,39]. A more detailed evaluation is needed to properly
understand the behavior of OSA in the UA for a more accurate prediction of pretreatment.
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2.2. Modelling of Human UA

Previously, studies of OSAS depended on statistical reviews of MRI and CT images and
various clinical trials [40,41]. The introduction of CFD simulation has revolutionized OSA
studies [42]. The knowledge of fluid dynamics is applied to understand the mechanism of
OSA in the last decade [43]. The introduction of CFD has allowed studies of modelled UA
to explain OSA theoretically [44]. The UA model was first studied based on the teaching
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model (Model C12, Carolina Biological Supply Company, Burlington, NC, USA) for medical
school students [23] (Figure 3). This model assumes the human airways to be symmetrical.
The study by Ted B. Martonen [23] scanned the silicon model into the computer as a 3D
model. He then performed the simulation using different flow rates, demonstrating the
possibility of applying CFD to model UA.
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In 2003, Heenan et al. [45] developed a 3D model with realistic UA anatomy geometry
(Figure 4). This model is an adaptation of the Weibel A model. Their study introduced a
CFD method to study the airflow of the UA based on the model, which was less complicated
than the actual human UA. Since then, CFD has been an increasingly important area in
OSA study.
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More literature has emerged that offers contradictory findings of the Weibel A model.
Collins et al. [46] compared a geometrically accurate model sourced from the MRI model
with the Weibel A model. The result shows a dissimilar comparison flow pattern because
the Weibel A model has sharp edge geometry. In contrast, the accurate model has a smooth
geometry, as shown in Figure 5. Thus, the simplified model is insufficient to accurately
predict human UA’s flow behavior. Although the result represented by Collins et al. [46]
shows a significant variation in the flow pattern, the model developed by Heenan et al. [45]
is a helpful reference for the CFD modelling of UA.
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MRI and CT scan imaging techniques have revolutionized the human respiratory
system [47]. This technique enables the construction of accurate geometry of human
UA with the help of image processing software such as 3DVIEWNIX, AMIRA, MIMICS,
and 3-MATICS [48]. Recent advances in the research of UA flow have emphasized the
importance of anatomically accurate UA models. A significant volume of published
studies describes the role of MRI or CT in describing the UA flow [49,50]. The first serious
discussions and analyses of anatomically accurate UA models emerged during the early
2000s. Xu et al. [51] modelled three cases of OSAS in children aged three to five. The
MRI slice image of the children UA was transformed into a 3D model using 3DVIEWNIX
software. The study highlights a manual mask filtration technique applied to extract the
UA, which removes some of the detail and small voids to simplify the geometry. The
simple, clean geometry is necessary to have a good quality CAD model for CFD [52,53].

Most researchers report removing some details of voids and surface smoothing in the
UA. It adds complexity to the CAD model, limiting the excellent meshing capabilities and
weak CFD convergence [42,53]. Several studies that used MRI or CT show the potential of
a functional imaging source for the 3D construction of the UA [25]. However, there are no
published data on their sensitivity or specificity [41].

The excellent quality of CAD is a necessity for CFD application. However, the MRI or
CT imaging technique requires tremendous effort to construct a good-quality CAD model.
A specific technique for creating the UA geometry correct model has not yet been published.
The technique is essential because it contributed to the CFD application’s dependability
and precision in comprehending OSAS [54].

2.3. Exclusion of the Nasal Cavity

Excluding the oral and nasal cavities simplifies the UA model in a significant portion
of the UA research. This solved the issue of indefinitely characterizing the wall boundary of
the UA. The oral and nasal cavities have less impact on UA flow. Under no circumstances
does there seem to be evidence that the nasal cavity may fundamentally alter the pharyngeal
flow characteristics, such as the slightest pressure or maximum velocity. The investigation
by Zhao et al. [55] demonstrates that a missing nasal cavity will not radically fluctuate the
UA’s pressure drop and stream velocity profiles. This finding aligns with the examination
by Persak et al. [56] and Shah et al. [57]. Calmet et al. [58] conducted a complete study
of airways from the trachea up to the start of the nasal cavity (vestibule). In his study, he
shows turbulence behavior in the middle of the nasal cavity. This is understandable due
to the complexity of the nasal cavity funnel. It is hard to justify the influence of the nasal
cavity on UA air flow purely based on a single data sample without comparison with other
data in that investigation. Cheng et al. [59] also demonstrated full airways with a nasal
cavity comparing pre-surgery and post-surgery data. In his reporting, he did not describe
or demonstrate any changes within the nasal cavity, and the ensuing image on the pressure
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contour plot demonstrated no substantial change prior to entering the UA funnel. The same
study by Ito et al. [10] also showed no significant change in the airflow. Cheng et al. [59]
exhibited a full airways model study, including the nasal cavity. However, in that study,
the nasal cavity was superimposed. Both pre-surgery and post-surgery provided similar
inflow patterns. An investigation by other researchers also revealed the same result [60–62].
The finding clearly shows that excluding the nasal cavity is necessary, as it adds more
complexity to the investigation.

2.4. The Meshing of UA Geometry Accurate Model

As stressed, good-quality geometry is vital for CFD application. A CFD prepossessing
step meshing discretizes the geometry into a more distinctive element to make numerical
calculation possible. Currently, there are several options for mesh generation available
commercially. Typically, as documented in most publications on UA models, most of them use
the built-in mesh-generating capability of the widely known ANSYS CFD software [63–66].

Due to the complexity of the geometry, researchers tend to utilize auto mesh generation
for retaining the original geometry accurate model of the UA [20,67], resulting in the mesh
density concentration on the tight curve or small surfaces. Researchers applied more
exceptional mesh cells to solve the unevenly distributed mesh density issue, typically for
a UA model consisting of between 500 thousand to 1.6 million cells [55,68]. Typically, for
internal fluid flow assessments such as the UA model, a hybrid mesh with at least five
inflation layers is used, since it represents the near-wall effect better [20]. Figure 6 shows
the example of a hybrid meshing of the UA model.

A finer mesh does not necessarily result in solution convergence. Although conver-
gence is possible with more excellent meshing, it always comes with the high cost of
computing. It is undeniable that solution convergence relies on good quality meshing.
Most of the UA model research does not report the mesh quality of their model. They
depend on finer mesh due to geometry complexity for convergence, which costs unneces-
sary computing [43]. Researchers utilize the application of the smoothing technique in the
hope of achieving better mesh quality [42]. Some of the studies of the UA model utilize
third-party meshing software, such as MESHLAB [69], GAMBIT [70,71], and DEP MESH-
WORK [72]. Still, most of them only report basic auto mesh generation applications [42].
Recent advancements in the simulation of UA models have increased the demand for
improved meshing approaches that result in a higher mesh quality for UA models.
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Finer meshing increases the accuracy of the result, which theoretically makes sense as
it is close to the source model. However, finer meshing is computationally expensive [73].
In CFD, there is a well-adapted method to minimize unnecessary computing costs. The
technique is grid sensitivity analysis [74]. The process determines the optimum mesh
density while retaining the accuracy of the result. The study model simulates various
element sizes, starting from a coarse to a finer mesh [75]. This method has been well
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adopted in the UA model by multiple researchers. Zhao et al. [55] show a plot of axial
velocity along a vertical line from the inlet to the larynx wall, starting with a 200k mesh
to a most excellent 1.8 million mesh. The result shows that 1.3 million mesh has a similar
velocity profile as the 1.8 million mesh while saving 30% of the computing time.

Rahimi-Gorji et al. [73] demonstrate the execution of distinctive grid sizes comprising
around 2.4, 3.4, 4.2, and 5.1 million cells and acquire pivotal velocity profiles at two cross
areas. They have found that the expansion of grid size measure from 4.2 to 5.1 million cells
does not modify the outcomes as it shows an agreeable velocity profile. Subsequently, the
study uses a grid with a 4.2 million mesh size for the simulation. However, the author feels
that comparing the pressure or velocity profile against the number of cells does not justify
the acceptability of the boundary condition. A comparable validation test rig is necessary
as a reference to determine the appropriate cell number for the modelling, as shown by
Amatoury et al. [76]. A grid size agreeable with accurate experimental data is the ideal
mesh size for modelling the UA.

2.5. Boundary Conditions

More literature has emerged that offers contradictory findings of the appropriate
boundary condition for UA simulation. The boundary conditions used in UA CFD simu-
lations should characterize and replicate those seen in human respiratory flow. The UA
inspiratory flow originates from the nasal cavity and ends at the trachea. In a perfect
situation, encompassing static pressure should be characterized at the nostrils and, cor-
respondingly, release airflow at the lower larynx. Numerous published studies define
human inspiratory airflow rates differently, as summarized in Table 2. A few examinations
determined a time-dependent flow to copy the respiratory cycle.

Table 2. Compilation of methods used for CFD modelling of the UA.

Author Geometry Turbulence
Model Flowrate Lmin Remarks

Rahimi-Gorji, Gorji and
Gorji-Bandpy [73] CT-scan k-ω 10, 15, 30, 60 Particle deposition study

Xi, April Si, Dong and Zhong [77] CT-scan LES 15 Effects of glottis motion on airflow

Collins, Tabor and Young [46] MRI k-ω 72 Comparison of the idealized
vs. accurate geometry model

Zubair, Riazuddin, Abdullah, Ismail,
Shuaib and Ahmad [71] CT-scan laminar 15 Study of the effect of posture

Zhao, Barber, Cistulli, Sutherland and
Rosengarten [43] MRI SST k-ω 10 Study of upper airway response to

oral appliance treatment
Cheng, Koomullil, Ito, Shih,

Sittitavornwong and Waite [59] CT-scan K-ε 42 Surgical assessment

Heenan, Pollard and Finlay [45] reconstruct
model k–ε 15, 30, and 90 Study of the idealized airways

Suga, et al. [78] CT-scan k-ε 30 Study of the effect of oral
appliance treatment

Gutmark, et al. [79] MRI SST k-ω 10 Biomechanics of the soft palate
Srivastav, Paul and Jain [63] CT-scan k-ε, k-ω 60 Capturing the wall turbulence

Bates, Schuh, McConnell, Williams,
Lanier, Willmering, Woods, Fleck,

Dumoulin and Amin [69]
MRI LES time-dependent

0–3 Ls
New method to generate dynamic

boundary conditions for airway

Fletcher et al. [80] CT-scan LES 9.06 and 20.52 Genioglossal advancement (GGA)
De Backer, Vos, Gorlé, Germonpré,
Partoens, Wuyts and Parizel [64] CT-scan Laminar and

k-ε 23 Analyses in the lower airways

Srivastav, Paul and Jain [63] CT-scan K-ω and k-ε 60 Simulation of the human
respiratory tract

Patel, Li, Krebs, Zhao and Malhotra [65] CT-scan laminar 4.67 Congenital nasal pyriform
aperture stenosis (CNPAS)

MRI k-ε



Mathematics 2023, 11, 219 8 of 16

Table 2. Cont.

Author Geometry Turbulence
Model Flowrate Lmin Remarks

Zhao, Barber, Cistulli, Sutherland and
Rosengarten [55] MRI K-ω 10 MAS

Premaraj, Ju, Premaraj, Kim and Gu [31] CT-scan K-ω 18 Maxillary anterior guided
orthotics (MAGO)

Cheng, Koomullil, Ito, Shih,
Sittitavornwong and Waite [59] CT-scan k-ε 42 Full airways with the nasal cavity

Liu, Yan, Liu, Choy and Wei [60] CT-scan LES 16.8, 30, 60 Including the nasal cavity with an
extension funnel

Powell et al. [81] CT-scan LES, K-ω
SST 30 Patterns in pharyngeal

airflow study

In contrast, others described a mean airflow stream rate [71,73,77]. Table 2 shows
considerable variation in the airflow rate used in UA simulation. The variation is under-
standable because, ethically, it is difficult to have a human subject measure the actual
patient breathing airflow rate. It is also because the human actual breathing flow rate varies
from one person to another. Other boundary conditions were customary settings for all the
reviewed studies, like a smooth and non-slip wall and a five percent turbulence intensity
of the inlet flow [71].

2.6. Turbulence Modelling of UA Flow

The turbulence model adopted in UA modelling varied among these four commonly
adapted models: k-epsilon, k-omega, k-omega SST, and large eddy simulation (LES) [63,81].
Turbulent flow features are modelled by solving the variables for kinetic energy (k) and
dissipation rate (ε) or specific dissipation rate (ω)—a literature finding of the adopted
turbulence model for UA modelling, as in Table 2. The decision to model a fluid dynamics
problem, either laminar or turbulent, is one of the most challenging decisions a fluid
dynamicist must take [82]. Therefore, a thorough understanding of the predicted flow field
is critical for obtaining the desired outcomes. The estimated Reynolds numbers (Re) range
indicates the UA flow to be laminar or transitional. The standard k–ω shear stress transport
(k–ω SST) model was proven to be appropriate to simulate this complex flow.

The SST k–ωmodel has advantages in solving complex transitional flow, including
the UA transitional flow [43,83]. The employment of the k–ω shear stress transport (SST)
turbulence model provides an enhanced description of flows involving adverse pressure
gradients and curved boundary layers [79].

The k–εmodel with enhanced wall treatment is suitable for monitoring flow separation
with a strong pressure gradient and flow recirculation. These are suitable to determine the
flow parameters near the wall of running airflow [63].

Shown by literature, LES has become the preeminent turbulence model for the UA
model simulation, as most of the studies show good agreement with the experimental
result [81]. However, a fundamental disadvantage of this turbulence model application is
that it demands a high computing expense incurred due to the length of time necessary to
solve it. As a result, LES is unsuitable for time-demanding clinical applications. The K–ω
SST model also agreed well with the experimental result and is almost comparable with
the LES model [43,80]. This turbulence model offers much cheaper computing costs and is
suitable for clinical application. Again, the author stressed that an excellent comparison
with the physical model provides a justification of the ideal turbulence model for the
UA study.

2.7. Location of the Inlet

The velocity profile of many studies demonstrates a brisk airstream at the smallest
cross-sectional area at the velopharynx. This flow feature is identified as the ‘pharyngeal
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jet’ [46,78,81,83]. Hence, it may be coincidental that the degree of structural difference in
UA anatomy systems is virtually tremendous, resulting in a diversity of UA flow patterns.

Before surgery, the highest increase in airflow velocity is observed at the pharyngeal
airway when inhaling, and the biggest decrease in pressure is observed downstream,
according to Liu’s study. Negative pressure and airflow velocity in the whole airway
equalized postoperatively. They discovered that velocity reduction at the most constricted
portion of the pharyngeal airway correlates most strongly with surgical outcome. However,
they emphasized that measurements of non-theoretical dynamic airflow during sleep
would be excellent for further validating CFD models [62].

The study by Zhao et al. [55] of flow profiles for both inhaling and exhaling situations
indicate that inhaling results in a 30% greater pressure loss and a higher flow velocity than
exhaling. The airflow enters the UA stream with higher turbulent kinetic energy and lower
total pressure, which expands the likelihood of UA collapse. In short, narrowing the UA
increases the velocity of the territorial flow and decreases the pressure. This low-pressure
peak may be associated with the severity of OSA, as a high-pressure gradient across the
wall border would cause the UA structure to collapse [46,78,81,83]. Furthermore, 10 L/min,
15 L/min, and 30 L/min are the most prevalent input flowrate settings, according to our
review [45,73,77–79,81,82].

2.8. Experimental Validation

Experimental validation in the UA model based on recent studies focused on verifi-
cation checking for numerical studies [43,45,55,64,83,84]. Rapid prototyping is the most
common method to create an identically exact UA model. [85]. Heenan et al. [45] have
constructed an idealized Weibel A model representing the human oropharynx. The design
slightly differs from the one described by Stapleton et al. [86]. The model is two times
larger than the original, which describes double the adequate accuracy in setting up using
the particle image velocity (PIV) method described in Figure 7. The flow rate of the double
scale model was doubled to maintain the full-scale Reynolds number. The construction
of the physical model uses the fused deposition modelling (FDM) method with surface
smoothing using dichloromethane and an epoxy coating. The result shows a discrepancy
between the experimental and CFD. Heenan et al., assume the differences is because of the
error in the CFD simulation due to the weak boundary layer of the CFD model [45].
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Collins, Tabor and Young [46] argue that the flow character in the idealized geometry
is affected by the shape of the geometries used. The absence of air curvature and surface
irregularities in the Weibel A model makes it unusable for predicting the flow pattern. Thus
Collins, Tabor and Young [46] developed a hybrid geometry based on the one described by
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Stapleton, Guentsch, Hoskinson and Finlay [86] and Heenan, Pollard and Finlay [45], as
shown in Figure 8. The result are compared with an MRI based model of a 21 years old
male. Both were simulated using the CFD method.

Mathematics 2023, 11, 219 10 of 17 
 

 

 
Figure 7. PIV experimental setup Reprinted with permission from Ref. [45]. 2003, A. F. Heenan et 
al. 

Collins, Tabor and Young [46] argue that the flow character in the idealized geometry 
is affected by the shape of the geometries used. The absence of air curvature and surface 
irregularities in the Weibel A model makes it unusable for predicting the flow pattern. 
Thus Collins, Tabor and Young [46] developed a hybrid geometry based on the one de-
scribed by Stapleton, Guentsch, Hoskinson and Finlay [86] and Heenan, Pollard and 
Finlay [45], as shown in Figure 8. The result are compared with an MRI based model of a 
21 years old male. Both were simulated using the CFD method. 

 
Figure 8. Hybrid idealized geometry. Reprinted with permission from Ref. [46] 2007, T. P. Collins 
et al.  

The idealized hybrid model shows good agreement with the one represented by 
Heenan, Pollard and Finlay [45], as it is a similar geometry. However, the idealized geom-
etry offers a slight advantage over the MRI geometry due to the recirculation zone created 
by the sharp edge or steps in the idealized geometry. Thus, it is concluded that the ideal-
ized geometry is inadequate at predicting the features of the flow of human UA. 

Xu, et al. [87] cast a ¾ scale of a geometrically accurate model of UA using a silicon 
cast for result validation (Figure 9). The reason for using a scaled model is unknown. The 
study placed eight pressure sensors along the surface of the silicon UA model. The study 
also placed the same pressure point positions in the CFD model. However, the CFD model 
did not scale to the cast model. The results agreed to within 2.0 Pa in both inspiration and 
expiration phases at almost all locations. However, the maximum pressure drop that CFD 
predicted was 20 Pa higher than in the experiment. The scale difference might play an 
essential role in pressure distribution; thus, a comparable 1:1 scale model is desirable. 

Figure 8. Hybrid idealized geometry. Reprinted with permission from Ref. [46] 2007, T. P. Collins et al.

The idealized hybrid model shows good agreement with the one represented by
Heenan, Pollard and Finlay [45], as it is a similar geometry. However, the idealized
geometry offers a slight advantage over the MRI geometry due to the recirculation zone
created by the sharp edge or steps in the idealized geometry. Thus, it is concluded that the
idealized geometry is inadequate at predicting the features of the flow of human UA.

Xu, et al. [87] cast a 3⁄4 scale of a geometrically accurate model of UA using a silicon
cast for result validation (Figure 9). The reason for using a scaled model is unknown. The
study placed eight pressure sensors along the surface of the silicon UA model. The study
also placed the same pressure point positions in the CFD model. However, the CFD model
did not scale to the cast model. The results agreed to within 2.0 Pa in both inspiration and
expiration phases at almost all locations. However, the maximum pressure drop that CFD
predicted was 20 Pa higher than in the experiment. The scale difference might play an
essential role in pressure distribution; thus, a comparable 1:1 scale model is desirable.
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Latter, Zhao, Barber, Cistulli, Sutherland and Rosengarten [43] developed a 1:1 scale
model of a geometry-accurate physical model. The model uses the rapid prototyping (RP)
method using a transparent polymer. A comparison of pressure distribution along the
surface of the UA model is shown in Figure 10. The finding shows good agreement between
the CFD and the experimental result. This finding is significant as it can be used as a base
model to verify one’s UA model CFD result by following the exact boundary condition and
turbulence model.
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Due to the complexity and individuality of the geometrically accurate MRI or CT
scan model, it is not easy to adjust the geometry to understand the geometrical influence
on UA flow better. An idealized geometry should have a better shape agreement than
the average-person UA and not generalize as the Weibel model. The model should have
detailed geometry that another researcher efficiently replicates.

2.9. Numerical Modelling Issues of UA

A previous study by Collins has indicated the disadvantage and limitations of the
Weibel model. In term of shape based on his study, it is impossible to mimic the organic
shape of UA by mean of 3D CAD construction (Idealize model) [46]. The model is oversim-
plified and has a sharp edge that is not present in the actual human UA. In addition, the
model’s nasal cavity does not accurately represent the upper airways since it comprises
a single large chamber rather than multiple layers of the air passage. The flow mecha-
nism of such a design differs significantly from or completely contradicts the actual UA
and specifies the flow characteristic entering the trachea, influencing the UA study’s total
flow [46]. The authors suggest that the 3D model is the most appropriate geometrical model
for comprehending the fundamental flow behavior within the UA. In terms of CAD and
meshing, the 3D model is simple to configure for numerical simulation due to its simple
shape [45]. CT scans offer an actual or geometry-accurate model of the UA, which can be
converted into a CAD model using specialized software [59,63,81]. In numerical modelling,
this precise model provides real-world information regarding air movement within the UA.
Due to the organic nature of this model, preparing the CAD for CFD analysis necessitated
extensive attention to detail [52,53].

Using CT scans to represent UA has advanced the study of UA. However, it is not
without flaws. The geometry accuracy can vary depending on the image quality or res-
olution of the CT scan. This image is difficult to comprehend. Most researchers employ
MIMICS to produce the 3D mask of the UA. The masking process requires additional
treatment, detailing, or processing, such as filling the unneeded void or removing the
surface spike. Poorly processed masks could result in poor meshing and compromise the
CFD output [70,71].

The laminar model is unsuitable for UA research because, according to Barber’s
research, the UA’s Reynolds number (Re) ranges from 400 to 3000, indicating that the flow is
either laminar or transitional [45,73]. The flow turbulence was modelled using the standard
shear stress transfer (SST) k–ωmodel. Their early sensitivity research applying multiple
turbulence models to the physical experimental results demonstrated the suitability of the
SST k–ωmodel in solving the complex UA flow [43]. Therefore, only a few studies have
reported the UA utilizing laminar flow [65,71,88]. Compared to experimental results, LES
provides the most accurate model of UA due to its superior observation at the wall and
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in the center. However, LES simulations require powerful computing capabilities. Other
turbulence models, such as k–ε, are utilized extensively for external flow but infrequently
for inside flow [78]. The researcher’s findings also indicate that k–ε has low precision for
the UA investigation [88]. The most acceptable and cost-effective turbulence model is k–ω,
which offers comparable accuracy to the LES model [81].

Meshing of UA requires hybrid meshing for internal flow so that flow mechanisms
close to the wall can be captured accurately. This hybrid meshing requires a high-quality
CAD without elements that degrade mesh quality. For the solution to converge, high-
quality mesh is required [73].

3. Conclusions

A complete evaluation is required to fully understand OSA’s UA behavior and make
more accurate pretreatment predictions. The simplified model is insufficient for effectively
predicting the flow behavior of the human UA. It is also agreeable that the inhalation airflow
shows higher airflow, which defines the air inlet’s location in the upper airway model.
The nasal cavity adds more complexity to the investigation; thus, removing it is necessary.
The highlighted technique of removing some details of voids and surface smoothing in
the modelling of the upper airway reduces the complexity of the CAD model. Complex
geometry limits excellent meshing capabilities and results in weak CFD convergence. This
technique is a good reference; however, it needs more published data on sensitivity or
specificity. Additionally, this article emphasized the importance of a precise geometry
construction technique for the UA geometry-accurate model, which is critical for the CFD
application’s reliability and accuracy in comprehending OSAS. It is undeniable that good
quality meshing is required for solution convergence, which has increased the demand for
detailed advanced meshing approaches.

A comparable 1:1 scale physical model is necessary to determine the appropriate cell
number or element size for CFD modelling. Through grid sensitivity analysis, a grid size
agreeable with accurate experimental data is the ideal mesh size reference for modelling
the UA. However, the data reading in the physical validation should be pressure-based, as
it shows good agreement with the CFD validation.

The k–ω SST model is the most economical, as it has advantages in solving complex
transitional flow and provides an enhanced description of flows involving adverse pressure
gradients and curved boundary layers. However, it is vital to have an excellent comparison
with the physical model to justify the ideal turbulence model for the UA study.

An idealized geometry focused on the UA from the pharynx until the larynx was
greatly needed. It should have a better shape agreement than the average-person UA
and not be as oversimplified as the Weibel model. The idealized model should have
detailed geometry that another researcher efficiently replicates. Thus, it is concluded that
the idealized geometry is inadequate at predicting the features of the flow of human UA.
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