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Abstract: At present, deep learning has achieved excellent achievements in image processing and
computer vision and is widely used in the field of watermarking. Attention mechanism, as the
research hot spot of deep learning, has not yet been applied in the field of watermarking. In this
paper, we propose a deep learning and attention network for robust image watermarking (DARI-
Mark). The framework includes four parts: an attention network, a watermark embedding network,
a watermark extraction network, and an attack layer. The attention network used in this paper is
the channel and spatial attention network, which calculates attention weights along two dimensions,
channel and spatial, respectively, assigns different weights to pixels in different channels at different
positions and is applied in the watermark embedding and watermark extraction stages. Through
end-to-end training, the attention network can locate nonsignificant areas that are insensitive to the
human eye and assign greater weights during watermark embedding, and the watermark embedding
network selects this region to embed the watermark and improve the imperceptibility. In watermark
extraction, by setting the loss function, larger weights can be assigned to watermark-containing
features and small weights to noisy signals, so that the watermark extraction network focuses
on features about the watermark and suppresses noisy signals in the attacked image to improve
robustness. To avoid the phenomenon of gradient disappearance or explosion when the network
is deep, both the embedding network and the extraction network have added residual modules.
Experiments show that DARI-Mark can embed the watermark without affecting human subjective
perception and that it has good robustness. Compared with other state-of-the-art watermarking
methods, the proposed framework is more robust to JPEG compression, sharpening, cropping, and
noise attacks.

Keywords: image watermarking; deep learning; attention network; imperceptibility; robustness
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1. Introduction

In recent years, malicious image tampering has been a common phenomenon, and
effective copyright protection methods are urgently needed. Digital watermarking [1] is
used for ownership determination and intellectual property protection by hiding logos or
specific information in images, audios, or videos, and has become a research hot spot in the
field of information security [2]. Considering the practical application requirements, the
main performance evaluation metrics of image watermarking are embedding capacity, im-
perceptibility, and robustness [3]. According to the different embedding domains, existing
image watermarking methods are mainly divided into two categories: spatial-domain algo-
rithms and transform-domain algorithms [4]. Spatial-domain watermarking algorithms
embed the watermark by directly modifying the pixel values, such as the least significant
bit (LSB) [5], patchwork [6], etc. The algorithm complexity is low, but the robustness is poor.
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Transform-domain watermarking algorithms embed the watermark by modifying the im-
age transform-domain coefficients. The commonly used frequency-domain transformation
methods are discrete cosine transform (DCT) [7], discrete wavelet transform (DWT) [8],
discrete Fourier transform (DFT) [9], etc. The DCT-based watermarking algorithms are
simple, imperceptible, and robust, so they are the preferred frequency-domain transforma-
tion method. However, the performance of the conventional watermarking algorithms is
limited by the method itself, and the performance needs to be improved.

Currently, machine learning [10] has made remarkable achievements in the fields of
computer vision, pattern recognition, artificial intelligence, etc. Many machine learning
methods have also been introduced in the watermarking field, such as support vector
machines (SVM) [11], extreme learning machines (ELM) [12], Lagrangian support vector re-
gression (LSVR) [13], K-nearest neighbors (K-NN) [14], etc. To achieve better performance,
these machine learning methods are typically used with frequency-domain transformation
methods. Deep learning has also achieved remarkable results in the field of watermark-
ing [15]. The attention mechanism simulates the ability of human brain neurons to auto-
matically capture important information, to rationally allocate computational resources.
It can achieve a large performance improvement with a small computational overhead
and has become a hot spot in the field of deep learning [16], such as the squeeze-and-
excitation network (SENet) [17] and convolutional block attention module (CBAM) [18].
SENet can obtain the importance of different channels through a simple network structure
and achieve the enhancement or suppression of channel features. CBAM extracts attention
from both channel and spatial dimensions and is trained to focus on useful regions and
suppress irrelevant information. However, the application of attention mechanism to image
watermarking is still in its infancy and needs further research.

In this paper, a deep learning and attention network for robust image watermarking
(DARI-Mark) is proposed. The main novelties and contributions are as follows:

(1) We introduce the attention network, which makes watermark embedding focus on
the edge and other areas with complex texture, and the watermark extraction pays more
attention to watermarked features and suppresses noise signals. This greatly improves the
imperceptibility and robustness of DARI-Mark.

(2) We add the residual module to avoid gradient explosion or disappearance problems
in deep neural networks.

(3) We establish an end-to-end network framework and add the attack layer between
watermark embedding and extraction networks to improve the robustness against multiple
attacks (JPEG compression, sharpening, cropping, Gaussian noise, salt-and-pepper noise,
scaling) through iterative training.

The rest of this paper is organized as follows. Section 2 introduces related work.
Section 3 presents the proposed watermarking framework and training details. Experimen-
tal results and the analysis of the proposed framework are presented in Section 4. Finally,
Section 5 presents the conclusions and possible further work.

2. Related Work

Due to the rapid development of machine learning and deep learning, more and
more watermarking algorithms based on machine learning and deep learning are being
proposed. Many machine learning methods have been introduced to improve impercep-
tibility and robustness. For example, to improve the imperceptibility of the algorithm,
Rai et al. [11] used an SVM to classify medical images into regions of interest and regions of
noninterest. To improve robustness, Mehta et al. [13] trained an LSVR using low-frequency
wavelet sub-band coefficients and used the trained LSVR to extract the watermark. Ab-
delhakim et al. [14] used a K-NN regression algorithm to predict the optimal embedding
strength of the watermark, balancing imperceptibility and robustness.

Neural network frameworks for watermark embedding and extraction have also been
widely proposed. For example, Kandi et al. [19] were the first to apply convolutional
neural network technology to the field of watermarking. Zhu et al. [20] designed the first
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watermarking framework HiDDeN that could be trained end to end, which could be used
for steganography and watermarking. Mun et al. [21] used two watermark embedding
methods, backpropagation and autoencoder, and the embedding strength was adjusted us-
ing a visual mask. Liu et al. [22] divided the whole training process into two training stages:
training the encoder without considering the noise and adjusting the decoder parameters
according to the noise. Luo et al. [23] introduced the channel coding module in the deep
watermarking model to improve the robustness by increasing information redundancy.
Lee et al. [24] proposed a deep neural network suitable for multiresolution images and a
variety of practical application scenarios. Ahmadi et al. [25] added an attack layer between
the encoder and decoder to simulate multiple image distortion attacks for end-to-end
training. Jia et al. [26] randomly selected a real/simulated JPEG compression at the noise
layer to achieve high robustness against JPEG compression attacks. Zhong et al. [27] trained
the watermarking framework in an unsupervised way and achieved a better robustness
without any prior knowledge. Sun et al. [28] simulated image distortion operations on on-
line social platforms through deep neural networks and learned lossy channel information
to achieve a high robustness for the platforms. These methods improved robustness but
did not strike a good balance between imperceptibility and robustness.

To improve imperceptibility, the subjective feelings of people began to be considered
instead of only using objective evaluation criteria, so the human visual system (HVS) and
attention mechanisms began to be introduced into the image watermarking domain. For
example, Yang et al. [29] selected CIEDE2000, which is more in line with the HVS, as an
image quality evaluation index and proposed the B-R-G embedding principle. Yu [30]
learned attention masks through convolutional neural networks to embed the watermark
in locations that are insensitive to human vision. Jia et al. [26] introduced the channel
attention network in the watermark embedding and extraction process. Bhowmik et al. [31]
combined wavelet decomposition and the HVS for significance modeling and adaptively
embedding watermarks based on saliency. However, the attention mechanism in deep
learning has not really been applied to watermarking algorithms.

In this paper, we propose a deep learning and attention network for robust image
watermarking: DARI-Mark. The channel and spatial attention network is introduced into
the existing end-to-end watermarking framework, and through correct loss function set-
tings and multiple training iterations, the network automatically finds human-insensitive
texturally complex regions of the cover image to embed the watermark during watermark
embedding, suppress noise signals and improve the extraction of watermark-related fea-
tures during watermark extraction, improving imperceptibility and robustness. The DCT
is also applied to the image features before embedding the watermark, which adaptively
embeds the watermark features in the frequency-domain features, which has less impact
on the visual perception and a better imperceptibility.

3. Proposed Framework

This section presents the DARI-Mark in detail, and its flow chart is shown in Figure 1.
The framework is mainly divided into four networks:

(1) An attention network, which finds complex regions of texture that are insensitive
to the human eye to embed the watermark during watermark embedding, focuses on
watermark-related features, and suppresses noise signals during watermark extraction.

(2) A watermark embedding network, which is responsible for embedding the water-
mark.

(3) An attack layer, which simulates attacks that are commonly encountered in the
actual communication process and improves the robustness of the framework through
end-to-end training.

(4) A watermark extraction network, which is responsible for the extraction of water-
mark information.
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Figure 1. Flow chart of DARI-Mark.

The structure and working details of each subnetwork are as follows.

3.1. Attention Network

In practical applications, watermarking algorithms are required to have good imper-
ceptibility and robustness. To achieve this goal, we wanted to find regions for watermark
embedding that had little impact on the HVS and focus on watermark features during
watermark extraction, so an attention network was introduced. This intuition was derived
from the classic attention mechanism CBAM [18], which sequentially infers attention values
along both channel and spatial dimensions and generates an attention feature map.

Figure 2 shows the flow chart of the attention network. The input is the cover image
with a size of M× N; through a 3× 3 convolution, the cover feature with 64 channels is
generated. Then, features are extracted by max-pooling and average pooling operations
on the cover feature map respectively, and then they are input into a fully connected (FC)
layer to generate attention eigenvalue vectors. The two vectors are summed element by
element to obtain the channel attention weight parameters, which are multiplied by the
cover feature map to obtain the channel attention feature map. The spatial relationship of
the channel attention feature map is extracted by max-pooling and average pooling layers.
Then, the features are connected by a 3× 3 standard convolution layers to generate spatial
attention weights. Multiply the spatial attention weights with the channel attention feature
map to generate an attention feature map with a size of M× N × 64.

Figure 2. Attention network: preprocessing of the cover image.

Although the network structure is only slightly different from CBAM, the purpose of
the implementation is very different. CBAM is used to locate salient regions of an image.
In contrast, the proposed attention network is used to locate nonsignificant regions that are
insensitive to the human eye during watermark embedding and to assign greater weight to
them, selecting such regions to embed the watermark to improve imperceptibility. When
extracting the watermark, this attention network is used to focus on the features of the
watermark and suppress noise signals in the attacked image to improve robustness.
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3.2. Embedding Network

Figure 3 shows the flow chart of the watermark embedding network, the detailed
process is as follows:

(1) DCT layer: A DCT is performed on the attention feature map generated by the
attention network. This is because embedding the watermark in the DCT is consistent with
the frequency-masking effect of the HVS, and the human eye has a large acceptable range
of changes.

(2) Watermark embedding: The network structure is a 1× 1 Conv and four 2× 2 Conv.
Each Conv includes convolution, batch normalization, and ReLU activation functions, and
the number of convolution kernels is 64. The input is the frequency-domain information
after the DCT transformation and watermark information, and the output is the information
after the feature fusion. The 1 × 1 convolutional layer is to change the dimension of the
tensor. The 2 × 2 convolutional layers embed the watermark data into bottom features. The
2× 2 convolutional layers are designed as residual structures, with each residual structure
corresponding to two convolutional layers, that is, a shortcut connection is added every
two layers.

(3) Inverse DCT (IDCT): an inverse DCT is performed on the tensor generated by the
watermark embedding network to transform it from the frequency domain back to the
spatial domain.

(4) Embedding strength factor α: The embedding strength factor α controls the em-
bedding strength of the watermark, achieving the balance between imperceptibility and
robustness. The tensor generated in step (3) is multiplied by α and then added to the atten-
tion feature map to generate the watermarked tensor. The experimental results showed
that with the increase of α, the robustness was enhanced. To enhance the robustness of the
algorithm, α was taken as 1.0 in the training phase. In the actual application phase, α can
be appropriately adjusted according to application requirements.

(5) A 3× 3 Conv: The number of convolution kernels is 1. The input is the output of
step (4), and the output is the watermarked image with a size of M× N, the same as that of
the cover image.

Figure 3. Embedding network: responsible for watermark embedding.

3.3. Attack Layer

To enhance the algorithm’s robustness to distortion attacks, DARI-Mark adds an
attack layer between the watermark embedding network and the watermark extraction
network. It simulates attacks that are commonly encountered in actual communications.
Figure 4 shows the flow chart of the attack layer, which simulates four common attacks:
JPEG compression (quality factor Q = 50), salt-and-pepper noise (noise density s = 0.04),
Gaussian noise (standard deviation σ= 0.1), and sharpening (sharpening radius RS = 10),
forming a distinguishable attack layer.
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Figure 4. Attack layer: simulate four common attacks.

The probability of each attack is randomly assigned in each iteration to improve the
generalization ability while satisfying the condition that the total probability must be 1.0.
In each round of iterative training, attack methods are randomly selected. The network
parameters are continuously updated by the loss function and optimization algorithm to
generate a robust watermark extraction network.

3.4. Extraction Network

The extraction network is the inverse process of the embedding network, as shown in
Figure 5.

Figure 5. Extraction network: responsible for watermark extraction.

The detailed process is as follows:
(1) A 3× 3 Conv: change the attacked image from M× N × 1 to M× N × 64.
(2) Attention network: The tensor with 64 channels is fed into the attention network

to obtain the attention feature map. The attention feature map is used to provide the
watermark feature extraction network with areas to focus on and to suppress.

(3) DCT: This is the same as step (1) of the embedding network. Because the watermark
information is embedded in the frequency domain, the image features are first changed
from the spatial domain to the frequency domain.

(4) Watermark feature extraction: The input is the DCT transformed tensor, and the
output is the extracted watermark. The convolutional network parameters setting are
basically consistent with the embedded network. Each Conv includes convolution, batch
normalization, and ReLU activation functions. Since the final output is a watermark image
with the channel number of 1, the number of convolution kernels in the last layer is set to
1. As with the watermark embedding, the 2× 2 convolutional layers are also designed as
residual structures, and since there are only three layers of 2× 2 convolution, two residual
structures are designed, corresponding to two and three convolutional layers, respectively.

3.5. Training Details

The above four networks were encapsulated into an overall framework for end-to-end
training. The watermark used in the training phase was randomly generated, and the
optimizer used was a stochastic gradient descent (SGD). The specific network training
parameters are shown in Table 1.
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Table 1. The parameters setting in the training stage of the proposed framework.

Parameters Setting

Learning rate 0.0001
Momentum 0.98
Batch size 32
Iteration 10,000
Epoch 100

The optimization goal of the framework was to minimize the difference between the
cover image and the watermarked image and maximize the correct rate of watermarking
extraction. Here, structural similarity (SSIM) and binary cross-entropy (BCE) were used
as loss functions of the embedding network and the extraction network. Although mean
squared error (MSE) and peak signal-to-noise ratio (PSNR) can also represent the difference
between two images, they only represent the difference in pixel points at the same location,
ignoring information such as the local structure of images. SSIM is a perceptual model
that evaluates the difference between images from three aspects: brightness, contrast, and
structure, which is more in line with the HVS. The purpose of introducing the attention
network in this paper was to generate watermarked images that were more in line with
human subjective perception, so SSIM was chosen as the loss function of the embedding
network, denoted by Lemb:

Lemb = SSIM(I, IW) =
(2µIµIW + c1)(2σI,IW + c2)

(µ2
Iµ2

IW
+ c1)(σ

2
I σ2

IW
+ c2)

(1)

where I is the cover image; IW is the watermarked image; µI is the average value of I; σI is
the standard deviation of I; µIW is the average value of IW; σIW is the standard deviation of
IW; σI,IW is the covariance of (I, IW); and c1 and c2 are two metric constants, which were
set to 10−4 and 9× 10−4 in this paper, respectively.

The loss function of the extraction network was represented by Lext, which was defined
as:

Lext = − ∑
i∈Ω

[yilog(ŷi) + (1− yi)log(1− ŷi)] (2)

where Ω is the image domain; yi is the pixel value of the real watermark at position i; and
ŷi is the pixel value of the extracted watermark at position i.

The loss function L of the overall framework was defined as:

L = λLemb + (1− λ)Lext (3)

where λ is the weight between the two loss functions, which was set to 0.5 in this paper.

4. Experimental Results and Analysis

In this section, we conducted a series of experiments and verified and analyzed the ex-
perimental results. Section 4.1 introduces the dataset used in these experiments, Section 4.2
introduces the performance evaluation indexes, Section 4.3 shows the experimental results
of the proposed framework, and Section 4.4 compares the proposed framework with the
state-of-the-art methods.

The hardware configuration was a Window 10 PC with an Intel (R) Core (TM) i9-9920X
CPU @ 3.50GHz and two NVIDIA GeForce RTX 2080 Ti GPUs.

4.1. Dataset

We use the BOSSbase 1.01 dataset [32] and CIFAR 10 dataset [33] as training samples
in the training stage. The BOSSbase 1.01 dataset consists of 1000 grayscale images with a
size of 512 × 512, and the CIFAR 10 dataset consists of 60,000 32 × 32 color images in 10
categories. Since the image sizes of the two datasets are different, the BOSSbase 1.01 dataset



Mathematics 2023, 11, 209 8 of 16

was preprocessed before training to generate 32 × 32 image blocks and then combined with
the CIFAR 10 dataset as the training set.

We use the Granada dataset [34] (standard grayscale images with a size of 512 × 512)
as the test set in the testing stage. The Granada dataset covers a variety of image types,
which can avoid the unreliability of the experimental data due to the proposed algorithm’s
certain bias for specific images.

4.2. Evaluation Metrics

For the quantitative evaluation of the imperceptibility of DARI-Mark, we used the
classic objective standard PSNR and SSIM to measure the degree of image distortion. PSNR
is defined as:

VPSNR(I, IW) = 10log10
W × H × P2

MAX
W−1

∑
i=0

H−1
∑

j=0
[I(i, j)− IW(i, j)]2

(4)

where W is the width of the image; H is the height of the image; PMAX is the maximum
value of image pixels; and i, j are the x, y coordinates of each pixel, respectively. The higher
the value of VPSNR, the better the imperceptibility of DARI-Mark.

For the quantitative evaluation of robustness, we used the bit error rate (BER) and
normalized cross-correlation (NCC) as the evaluation index. The BER was used to evaluate
the error rate of the original watermark and the extracted watermark, defined as:

VBER(w, w′) =
1

LW

L

∑
i=1
|wi − w′ i| (5)

where w is the original watermark; w′ is the extracted watermark; wi and w′ i, respectively,
represent the information of the original watermark and the extracted watermark at position
i; and LW is the length of the watermark information. The NCC was used to evaluate the
similarity between the original watermark and the extracted watermark, defined as:

VNCC(w, w′) =

L
∑

i=1
|wi × w′ i|√

L
∑

i=1
wi

2 ×
√

L
∑

i=1
w′ i

2

(6)

VBER ∈ [0, 1], VNCC ∈ [0, 1]. The lower the BER, the larger the NCC value, the better the
robustness of DARI-Mark.

4.3. Results

We used all images in the Granada dataset as cover images to test the performance
of DARI-Mark. To test imperceptibility, we embedded a watermark in each image, then
computed the values of PSNR and SSIM, and averageed the results as the final result. To
show the impact on the imperceptibility of α, we used a variety of embedding intensities
(α ∈ [0.2, 0.4, 0.6, 0.8, 1.0]) in the test stage.

Figure 6 takes the gray-scale images Lena and Cameraman as examples, and visually
shows watermarked images generated under different strength factors α and the difference
from cover images. The PSNR of watermarked images generated by the Lena image under
different strength factors α were: 48.24 dB, 44.40 dB, 42.43 dB, 40.14 dB, and 38.30 dB; the
SSIM values were 0.9957, 0.9899, 0.9807, 0.9692, and 0.956. The PSNR of watermarked
images generated by the cameraman image under different strength factors α were 48.29
dB, 44.10 dB, 42.89 dB, 40.61 dB, and 38.77 dB; the SSIM values were 0.9981, 0.9938, 0.9868,
0.9773, and 0.9656. Since the difference between the cover image and the watermarked
image was not obvious, to facilitate observation, the pixel value of the local block of the
difference image was multiplied by 30 and placed in the lower right corner. It can be seen
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that DARI-Mark adaptively selected pixel points to embed the watermarking according to
the attention network during watermark embedding.

Figure 6. The watermarked images generated under different cases of strength factors α and the
difference with the cover images: (a) α = 0.2, (b) α = 0.4, (c) α = 0.6, (d) α = 0.8, and (e) α = 1.0.

Figure 7 intuitively shows the distribution of PSNR and SSIM values of the watermark
images generated under different strength factors α in all images of the test set in the form
of boxplots. The experimental results show that with the increase of α, the PSNR and
SSIM of watermarked images decreased, that is, the quality of the watermarked images
decreased. However, even in the case of α = 1.0, the PSNR was greater than 35 dB and
the normal viewing was not affected. Therefore, in this paper, we selected α = 1.0 when
testing robustness.

(a) (b)

Figure 7. Boxplots for quality evaluation of watermarked images generated under different strength
factors α: (a) PSNR and (b) SSIM.
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To assess DARI-Mark’s robustness, we conducted six attacks on watermarked images:
JPEG compression, sharpening, cropping (cropping ratio c), Gaussian noise, scaling (scaling
ratio r), and salt-and-pepper noise. The BER and NCC of the extracted watermark are
shown in Figures 8 and 9, respectively. It can be seen from the graph that as the value of
α increased, the BER of the watermark extraction decreased and the NCC increased, that
is, the robustness of DARI-Mark increased. When α = 1.0, DARI-Mark was very robust
against sharpening, salt-and-pepper noise, and image upscaling in the scaling attack. When
Q was 90, 70, 60, and 50, the BER of the watermark extraction was about 0.00, and the
NCC was about 1.0000, which shows that the robustness was very good. When Q = 30,
that is, the image was overcompressed, the BER of the watermark was 0.11, the NCC of
the watermark was 0.8632, and the watermark information was partially damaged. The
robustness was good when the cropping ratio c of the cropping attack was between 0.05
and 0.10. As c increased, the BER increased, but it was still within the acceptable range for
the human eye to be able to see the watermark information. When the standard deviation
σ was less than 0.10 in the Gaussian noise attack, the BER was approximately equal to 0.00
and the NCC is approximately equal to 1.0000, and as σ increased, the BER increased, and
the NCC decreased.

Figure 8. Cont.



Mathematics 2023, 11, 209 11 of 16

Figure 8. BER curves under different attacks: (a) JPEG compression, (b) sharpening, (c) cropping, (d)
Gaussian noise, (e) scaling, and (f) salt-and-pepper noise.

Figure 9. Cont.
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Figure 9. NCC curves under different attacks: (a) JPEG compression, (b) sharpening, (c) cropping, (d)
Gaussian noise, (e) scaling, and (f) salt-and-pepper noise.

To observe the subjective effect, we took the Lena image as an example to visually show
the generated attacked images and watermark extraction results under different attacks
when α = 1.0, as shown in Figure 10. It can be seen that even if the watermarked image was
attacked and the image quality was damaged, the BER of the extracted watermark was less
than 8%, indicating that the effect of extracting the watermark could still meet the demand
of copyright protection. For example, the attack network did not include a cropping attack,
that is, it was not trained on cropping attacks. However, in the testing phase, when any 40%
area of the watermarked image was cropped, the BER value was 0.0586 and the NCC was
0.9457. The subjective effect of the attacked image and extracted watermark are shown in
the third row and the fourth column of Figure 10, and the watermark information can still
be obtained. This shows that DARI-Mark had good robustness and generalization ability.

4.4. Comparison with the State-of-the-Art Methods

Lee et al. [24] and ReDMark [25] used standard grayscale images and binary water-
marks in training and testing, and to improve robustness, the same method was used to
simulate an attack method in the training phase, which was consistent with DARI-Mark.
Therefore, to evaluate and discuss the performance of DARI-Mark, the proposed method
was compared with the state-of-the-art methods: Lee et al.’s method [24] and ReDMark [25].
In the original paper, Lee et al. [24] embedded the watermark in the Y channel (luminance)
of the color image. When replicating, we changed it to embed the watermark directly in
the grayscale image. To ensure the reliability of the comparison results, the same training
set, validation set, test set, and randomly generated binary watermarks were used when
replicating [24,25]. During training, the attack layers of the three methods were the same,
including JPEG compression (Q = 50), Gaussian noise (σ= 0.1), salt-and-pepper noise (s =
0.04), and sharpening (RS = 10). The rest is consistent with the network structure of the
original paper.
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Figure 10. Visualization of attacked images and extracted watermarks.
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It is known from Section 4.3 that as the α increases, DARI-Mark’s imperceptibility
decreases and its robustness increases. Since the focus of this paper was on robust water-
marking, we selected α = 1.0 for comparison. The PSNR of the three methods are shown in
Table 2. It can be seen that the PSNR of the watermarked image generated by DARI-Mark
was improved, and it had better imperceptibility. To compare the robustness, the imper-
ceptibility of the three methods was the same by modifying the watermark embedding
strength α, that is, the PSNR of the generated watermarked image was the same. The robust
performance comparison results are shown in Table 3 (the BER values are presented as
percentages). The data with the lowest BER and highest NCC of the three methods under
each attack are bolded to indicate which method was more robust under that attack. It
can be seen that DARI-Mark was more robust to JPEG compression, sharpening, cropping,
Gaussian noise, and salt-and-pepper noise. However, the robustness to geometric attacks
such as scaling attacks needs to be improved, which is a limitation of DARI-Mark.

Table 2. PSNR values of three methods.

Methods PSNR (dB)

Lee et al. [24] 35.46
ReDMark [25] 35.93
DARI-Mark 37.38

Table 3. BER and NCC comparison results of three methods under multiple attacks.

Attack Lee et al. [24] ReDMark [25] DARI-Mark

BER (%) NCC BER (%) NCC BER (%) NCC

JPEG Q = 50 8.06 0.9055 3.03 0.9698 1.36 0.9832
com- Q = 70 4.24 0.9601 1.60 0.9799 0.00 1.0000

pression Q = 90 0.96 0.9988 0.00 1.0000 0.00 1.0000

RS = 1 0.98 0.9894 0.95 0.9892 0.00 1.0000
Sharp- RS = 5 1.72 0.9799 1.47 0.9823 0.00 1.0000
ening RS = 10 2.01 0.9763 3.42 0.9599 0.00 1.0000

RS = 20 3.51 0.9575 4.98 0.9457 0.19 0.9998

Cropping
c = 0.10 4 0.954 2.14 0.974 0.68 0.9917
c = 0.20 5.46 0.9386 5.33 0.9321 3.81 0.9499
c = 0.30 17.10 0.8216 8.67 0.9008 4.05 0.9567

Gau- σ = 0.05 5.99 0.9706 0.30 0.9943 0.09 0.9988
ssian σ = 0.15 27.00 0.6802 5.08 0.9399 3.71 0.9563
noise σ = 0.25 38.17 0.5702 12.73 0.8571 10.30 0.9088

Scaling
r = 0.50 10.98 0.8796 5.92 0.9711 14.47 0.8343
r = 0.75 3.36 0.9599 0.00 1.0000 5.56 0.9399
r = 1.50 1.53 0.9832 0.00 1.0000 0.48 0.9953

Salt-and- s = 0.04 0.29 0.9965 1.45 0.9802 0.00 1.0000
pepper s = 0.06 1.53 0.9832 1.17 0.9858 0.00 1.0000
noise s = 0.10 3.19 0.9621 3.51 0.9600 0.00 1.0000

5. Conclusions

In this paper, we proposed a robust image watermarking framework called DARI-
Mark. Considering the masking effect of the HVS, an attention network was introduced
in the end-to-end watermarking framework. Through the setting of the loss function, the
attention network in the watermark embedding network helped the network automatically
select texturally complex regions to embed the watermark for improving imperceptibility.
During watermark extraction, the attention module assigns larger attention weights to fea-
tures containing watermarks and smaller weights to noisy signals, increasing the robustness
of watermark extraction. In addition, to avoid the phenomenon of gradient disappearance
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or explosion when the network is deep, DARI-Mark added residual modules. Experiments
showed that DARI-Mark had a good imperceptibility and robustness to multiple attacks.
Compared with other state-of-the-art watermarking methods, DARI-Mark was more robust
to JPEG compression, sharpening, cropping, Gaussian noise, and salt-and-pepper noise
attacks.

However, the robustness of DARI-Mark against geometric attacks (such as scaling,
rotation, etc.) was not ideal. In future research work, we will improve the framework to
make it robust against more types of image distortion attacks.
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