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Abstract: The most popular algorithms used in unsupervised learning are clustering algorithms.
Clustering algorithms are used to group samples into a number of classes or clusters based on the
distances of the given sample features. Therefore, how to define the distance between samples is
important for the clustering algorithm. Traditional clustering algorithms are generally based on the
Mahalanobis distance and Minkowski distance, which have difficulty dealing with set-based data and
uncertain nonlinear data. To solve this problem, we propose the granular vectors relative distance
and granular vectors absolute distance based on the neighborhood granule operation. Further, the
neighborhood granular meanshift clustering algorithm is also proposed. Finally, the effectiveness of
neighborhood granular meanshift clustering is proved from two aspects of internal metrics (Accuracy
and Fowlkes–Mallows Index) and external metric (Silhouette Coeffificient) on multiple datasets
from UC Irvine Machine Learning Repository (UCI). We find that the granular meanshift clustering
algorithm has a better clustering effect than the traditional clustering algorithms, such as Kmeans,
Gaussian Mixture and so on.

Keywords: clustering; granular computing; neighborhood; granular clustering

MSC: 68T01

1. Introduction

The American scientist Zadeh proposed the theory of fuzzy sets in 1965 [1]. The theory
is an extension of classical set theory and describes uncertainty problems by using an
affiliation function. The rough set theory proposed by Polish mathematician Pawlak [2] is
likewise one of the widely adopted models for uncertain systems. In rough set theory, the
equivalence class is regarded as an elementary granule. For real-world widely available
real-type data, a discretization process is required, which is prone to loss of categorical
information. For this purpose, Yao [3] proposed a neighborhood rough set model. In 1999,
Lin, a Hong Kong scholar, proposed a novel data mining algorithm based on granular
computing [4], which laid the foundation for the application of granular computing to
various fields. Additionally, Yager [5] pointed out that the way humans think is also related
to granularity. After this, the field of granular computing has attracted a large number
of scholars, and considerable results have been achieved in all the given fields [6–10]. In
2008, Hu et al. proposed a neighborhood rough set-based attribute approximate reduction
algorithm to enhance the effectiveness of the nearest neighbor algorithm [11]. Qian et al.
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proposed a model for learning decisions under different granularity patterns [12]. In or-
der to improve the theory of rough grain calculation, Miao et al. [13] make a systematic
study of the granular computing using the logic language L. In 2014, Qian [14] designed a
parallelized attribute approximate subtraction algorithm to improve the efficiency of gran-
ular computing operations on attribute approximate subtraction problems. Chen [15,16]
applied rough sets to the swarm intelligence algorithm, which not only further extended
the application of granular computing, but also improved the effectiveness of the swarm
intelligence algorithm. Further, a novel variant of rough granules based on the neigh-
borhood system was also defined by Chen et al. [17]. With the development of granular
computing theory, granular computing has gradually penetrated into various fields, such
as image processing [18], clustering [19–21], classification [22–24], neural networks [25–27],
and human–robot interaction [28].

Clustering is a very common data processing method in unsupervised learning. It is
a method of dividing data into corresponding clusters according to certain attributes of
the data. The similarity of data in the same cluster should be as large as possible, while
the similarity between clusters should be as small as possible for clustering. It plays an
important role in data mining, pattern recognition, and other fields. Meanshift algorithm is
one of the research hotspots in the clustering algorithm. The general algorithm can only
solve the clustering problem of data sets whose data structure is similar to spherical or
clique, while ineffectively clustering edge points and outliers. However, the Meanshift
clustering algorithm can cluster correctly in the data set of the data structure type with
arbitrary shape distribution, and it has strong anti-noise. The Meanshift algorithm is a
gradient-based non-parametric density estimation algorithm. The maximum value of the
probability density distribution is in the upward direction of the probability distribution
of the gradient. After effective statistical iterative calculations, the data points are finally
clustered into the area with the largest local probability density to form different cluster
classes. In recent years, it has been widely used in target tracking, image segmentation, and
other fields. The Meanshift algorithm was proposed by Fukunaga and Hostetler in 1975,
and its basic idea is to use gradient climbing of the probability density to find a local opti-
mum [29]. Cheng [30] defines a kind of kernel function for the characteristics that the closer
the data are to the cluster center, the better the cluster center statistics are. Comaniciu [29,31]
introduced the bandwidth parameter for analyzing complex multimodal eigenspaces and
depicting arbitrarily shaped clusters in them. In [32], an Epanechnikov-meanshifit cluster-
ing algorithm based on the “optimal” Epanechnikov kernel density estimator was designed
to locate the centroids of the data clusters. However, the traditional Meanshift algorithm
uses the Mahalanobis distance or Minkowski distance for the metric between data points.
That makes the Meanshift algorithm ineffective in set data and uncertain nonlinear data.
In recent years, for the clustering process of uncertain nonlinear datasets, many scholars
have focused more on the dimension of nonlinear datasets. Lai [33] proposed two novel
methods, termed kernel competitive learning (KCL) and graph-based multi-prototype com-
petitive learning (GMPCL), to address the nonlinearly separable problem suffered by the
classical competitive learning clustering algorithms. Chen [34] proposed a new nonlinear
clustering method based on crowd movement and selection (CCMS) to focus on the data
points themselves and the data distribution of their neighborhood. Qin [35] proposed a
novel data model termed Hybrid K-Nearest-Neighbor (HKNN) graph, which combines the
advantages of mutual k-nearest-neighbor graph and k-nearest-neighbor graph, to represent
the nonlinear data sets. For the set-based data and uncertain nonlinear data, in this paper
the neighborhood granulation method is defined in terms of the neighborhood system,
starting from the distance metrics between data. Further, two new distance metrics meth-
ods (granular vector distance) between data are proposed, using the metric and operation
relations in the neighborhood system. Finally, a new neighborhood granular meanshift
clustering algorithm is constructed to provide an effective clustering method for uncertain
nonlinear data sets.
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This paper is organized into several sections. In the first section, we introduce the
development of granular computation and clustering algorithms in recent years. Then,
we introduce neighborhood granulation methods and granular vectors. In Section 3,
we propose the granular meanshift algorithm based on two granular vectors distance
metrics. After that, the experimental analysis of the granular meanshift algorithm is given
in Section 4. Finally, we conclude the whole paper in Section 5.

2. Granulation

Chen et al. [17] granulated the sample in the neighborhood system with the single
atomic feature.

2.1. Neighborhood Granulation

Definition 1. Let the clustering system be CS = (S, F). For the sample ∀x, y ∈ S, and single-
atom characteristics ∀a ∈ F. Define the distance function of the samples x, y on the single atomic
feature a as:

D(x, y) = |u(x, a)− u(y, a)|, (1)

where u(x, a) denotes the value of sample x on feature a.

Definition 2. Let the clustering system be CS = (S, F), and the neighborhood granular parameter
be δ. For a sample ∀x ∈ S, a single atomic feature ∀a ∈ F, the δ neighborhood granules of x on a is
defined as:

ga(x)δ = {y|x, y ∈ S, Da(x, y) ≤ δ}. (2)

rj is the distance between sample x and sample xj on feature c. It is easy to know from
Definition 1 that rj = sc

(
x, xj

)
∈ [0, 1]. We define gc(x) as the granule and gc(x)j as the jth

granule kernels of the granule gc(x), and the granule consists of the granule kernels.

Definition 3. Let the clustering system be CS = (S, F) and the neighborhood granular parameter
be δ. For a sample ∀x ∈ S, a single atomic feature ∀a ∈ F, the size of the neighborhood granules
ga(x)δ is defined as:

Size(ga(x)δ) = |ga(x)δ|. (3)

Definition 4. Let the clustering system be CS = (S, F) and the neighborhood granular parameter
be δ. For a sample ∀x ∈ S, the feature subset ∀P ⊆ F, let P = {a1, a2, . . . , am}, then the
δ-neighborhood granular vector of x on the characteristic subset P is defined as:

VP(x)δ = (ga1(x)δ, ga2(x)δ, . . . , gam(x)δ). (4)

ga(x)δ is a δ-neighborhood granule of sample x on characteristic a, in the form of a set.
It is called an element of the granular vector, referred to as the granular element. VP(x)δ

is a granular vector, consisting of granular elements. Thus, the elements of a granular
vector are sets, unlike a traditional vector, whose elements are real numbers. When the
elements of a granular vector are all 0, it is called a null granular vector and is denoted as
Vnull . When the elements of the granular vector are all 1, it is called a full granular vector,
denoted as Vf ull .

Definition 5. For a sample ∀x ∈ S, the feature subset ∀P ⊆ F, let P = {a1, a2, . . . , am}. the size
of the neighborhood granular vector VP(x)δ of x on the characteristic subset P is defined as:

|VP(x)δ| =
√

m

∑
i=1
|gai (x)δ|2. (5)

The size of the granular vector VP(x)δ is also called the norm of the granular vector.
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2.2. Granular Vector Operations

In this subsection, we give the granular vector operations.

Definition 6. There is a clustering system CS = (S, F). ∀x ∈ S. There exists a δ-neighborhood
of granular vectors VF(x)δ on F. The set of all granular vectors on F is called the set of granular
vectors and is defined as:

GroupVF(x)δ = {VF(x)δ|∀x ∈ S}. (6)

Definition 7. There is a clustering system CS = (S, F), where the feature set is F = (a1, a2, . . . , am).
For ∀x, y ∈ S, there exist 2 δ-neighborhood granular vectors on F as VF(x)δ = (ga1(x)δ, . . . , gam(x)δ),
VF(y)δ = (ga1(y)δ, . . . , gam(y)δ). The intersection, concatenation, addition, subtraction and dis-
similarity operations of the 2 granular vectors are defined as:

VF(x)δ ∧VF(y)δ = (ga1(x)δ ∧ ga1(y)δ, ga2(x)δ ∧ ga2(y)δ, . . . , gam(x)δ ∧ gam(y)δ), (7)

VF(x)δ ∨VF(y)δ = (ga1(x)δ ∨ ga1(y)δ, ga2(x)δ ∨ ga2(y)δ, . . . , gam(x)δ ∨ gam(y)δ), (8)

VF(x)δ + VF(y)δ = (ga1(x)δ + ga1(y)δ, ga2(x)δ + ga2(y)δ, . . . , gam(x)δ + gam(y)δ), (9)

VF(x)δ −VF(y)δ = (ga1(x)δ − ga1(y)δ, ga2(x)δ − ga2(y)δ, . . . , gam(x)δ − gam(y)δ), (10)

VF(x)δ ⊕VF(y)δ = (ga1(x)δ ⊕ ga1(y)δ, ga2(x)δ ⊕ ga2(y)δ, . . . , gam(x)δ ⊕ gam(y)δ). (11)

3. Granular Meanshift Based on Neighborhood Systems

The neighborhood granular meanshift algorithm is an unsupervised clustering algo-
rithm. Unlike the Meanshift algorithm, the granular meanshift algorithm uses the granular
vector as the minimum unit of operation. Because the granular vector contains global infor-
mation, which means the neighborhood granular meanshift algorithm has better clustering
performance compared to the Meanshift algorithm.

3.1. Granular Vector Metric

Defining the distance metric of the granular vectors is the basis for constructing a
clustering algorithm based on granular vectors. By defining the granular vector opera-
tions, we can next define the granular vectors relative distance and the granular vectors
absolute distance.

Definition 8. For ∀x, y ∈ S, there exist 2 δ-neighborhood granular vectors on F as VF(x)δ =
(ga1(x)δ, ga2(x)δ, . . . , gam(x)δ), VF(y)δ = (ga1(y)δ, ga2(y)δ, . . . , gam(y)δ), then the relative dis-
tance between VF(x)δ and VF(y)δ is defined as:

d1(VF(x)δ, VF(y)δ) =
1

|F| × |S|
|gai (x)δ ⊕ gai (y)δ|
|gai (x)δ ∨ gai (y)δ|

=
1
|F|

( |ga1(x)δ ⊕ ga1(y)δ|
|ga1(x)δ ∨ ga1(y)δ|

+ . . . +
|gam(x)δ ⊕ gam(y)δ|
|gam(x)δ ∨ gam(y)δ|

)
.

(12)

Definition 9. For ∀x, y ∈ S, there exist 2 δ-neighborhood granular vectors on F as VF(x)δ =
(ga1(x)δ, ga2(x)δ, . . . , gam(x)δ), VF(y)δ = (ga1(y)δ, ga2(y)δ, . . . , gam(y)δ), then the absolute dis-
tance between VF(x)δ and VF(y)δ is defined as:

d2(VF(x)δ, VF(y)δ) =
1

|F| × |S|
m

∑
i=1
|gai (x)δ ⊕ gai (y)δ|

=
1

|F| × |S| (|gai (x)δ ⊕ gai (y)δ|+ . . . + |gam(x)δ ⊕ gam(y)δ|).
(13)

It is easy to see from Definitions 8 and 9 that 0 ≤ d1(VF(x)δ, (y)δ) ≤ 1, and 0 ≤
d2(VF(x)δ, VF(y)δ) ≤ 1. We give the proof below.
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Proof 1. From |gai (x)δ ⊕ gai (y)δ| = |gai (x)δ ∨ gai (y)δ − gai (x)δ ∧ gai (y)δ|, it follows that

|gai (x)δ ⊕ gai (y)δ| = |gai (x)δ ∨ gai (y)δ − gai (x)δ ∧ gai (y)δ|, then 0 ≤ |gai (x)δ⊕gai (y)δ |
|gai (x)δ∨gai (y)δ |

≤ 1.

Given that F = (a1, a2, . . . , am), we know that |F| = m.

Thus, 0 ≤ ∑m
i=1

|gai (x)δ⊕gai (y)δ |
|gai (x)δ∨gai (y)δ |

≤ |F|, which makes 0 ≤ 1
|F| ∑m

i=1
|gai (x)δ⊕gai (y)δ |
|gai (x)δ∨gai (y)δ |

≤ 1.

By Definition 8, it holds that 0 ≤ d1(VF(x)δ, (y)δ) ≤ 1.

Proof 2. From |gai (x)δ ⊕ gai (y)δ| = |gai (x)δ ∨ gai (y)δ − gai (x)δ ∧ gai (y)δ|, it is clear that
0 ≤ |gai (x)δ ⊕ gai (y)δ| ≤ |S|.
By F = (a1, a2, . . . , am), we know that |F| = m, then 0 ≤ ∑m

i=1 |gai (x)δ ⊕ gai (y)δ| ≤ |F| × |S|.
Since d2(VF(x)δ, VF(y)δ) =

1
|F|×|S| ∑m

i=1 |gai (x)δ ⊕ gai (y)δ|, the 0 ≤ d2(VF(x)δ, VF(y)δ) ≤ 1
holds.

3.2. Neighborhood Granular Meanshift Clustering Theory

In the following, we give the basic principles of the granular meanshift clustering
algorithm. Granular meanshift clustering is an iterative algorithm. First, a granular vector
is randomly selected as the barycenter granular vector. After that, we calculate the average
of all granular vectors with distance less than h from the barycenter granular vector. This
average is then added to the barycenter granular vector to form the new barycenter granular
vector. By iterating continuously, when the change of barycenter granular vector is less
than a threshold, this iteration process is ended, and all the granular vectors in this iteration
are added to the cluster c. After all the granular vectors have been visited, we start merging
the subclusters of the cluster C. If the distance between two clusters’ barycenter granular
vectors is less than a threshold, the two sub-clusters are merged into one sub-cluster.

Neighborhood granular meanshift is an algorithm based on the barycenter granular
vector, which we define as the average of the sum of all granular vectors in the same cluster.
In the following, we give the formula for the barycenter granular vector.

Definition 10. Let the clustering system be CS = (S, F), where the feature set is F = (a1, a2, . . . ,
am). For x1, x2, . . . , xn ⊆ S, there are n neighborhood granular vectors as {VF(x1)δ, VF(x2)δ, . . . ,
VF(xn)δ}. Its barycenter granular vector is given by:

GVFC(x) = ∑n
i=1 VF(xi)δ

n
. (14)

The general Meanshift algorithm can use the RBF kernel function to enhance the
clustering effect, and similarly we define the granular RBF function on the granular vec-
tor space.

Definition 11. Let the clustering system be CS = (S, F), where the feature set is F = (a1, a2, . . . ,
am). For ∀x, y ∈ S, there exist 2 δ neighborhood granular vectors as VF(x)δ = (ga1(x)δ, ga2(x)δ,
. . . , gam(x)δ), VF(x)δ = (ga1(x)δ, ga2(x)δ, . . . , gam(x)δ). The granular RBF function of the
distance is

k(VF(x)δ, VF(y)δ) =
1

h
√

2π
e−

d2(VF(x)δ ,VF(y)δ)
2h2 . (15)

3.3. Neighborhood Granular Meanshift Clustering Algorithm Implementation

After defining the barycenter granular vector and the granular RBF function, we
propose the neighborhood granular meanshift clustering algorithm based on the granular
vectors absolute distance and granular vectors relative distance in Algorithm 1.
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Algorithm 1 Granular meanshift clustering algorithm
Input: The data set is CS = (S, F), where the sample set is S = x1, x2, . . . , xn the set of
attributes is F = a1, a2, . . . , am; the neighborhood parameter δ, the maximum number of
iterations N; the bandwidth parameter h, granular vectors distance threshold dthre.
Output: Cluster division C = (C1, C2, . . . , CK).

1: The sample set U is granularized as GT = {VF(x1), VF(x2), . . . , VF(xn)}
2: while do
3: Select an unlabeled neighborhood granular vector from the GT as the barycenter,

denoted as GVFC(xj) (j = 1, 2, . . . , n).
4: for i to N do
5: With GFC(xj) as the center and h as the radius, the set is obtained M = S(xj) ∪ xj :

S(xj) = xi : dij(GFC(xj), GF(xi)) ≤ h2(i = 1, 2, . . . , n). The set M belongs to the
cluster Cj, update the sample probability pCj(x) = pCj(x)+ 1; x ∈ M within cluster
Cj.

6: Calculate the granular vectors distance dij of the granular barycenter vector
GVFC(xj) to each neighboring granular vector VF(xi) of the elements in the set
M. For xi ∈ M, use all dij for recomputing the new granular barycenter vector
GVFCnew(xj) = [∑xi∈M k(dij)]

−1 •∑xi∈M k(dij) •VF(xi).
7: If the granular barycenter vector GFC

(
xj
)

is no longer changing, go to step (9)
8: end for
9: If all points in GT are visited, go to step (11).

10: end while
11: For GVFC(xj) with GVFC(xi), if it satisfies dij(GVFC(xi), GVFC(xj)) ≤ dthre. Merge the

cluster classes Cj and Ci, and update pCj(x) and pCi (x).
12: Output clusters C = (C1, C2, . . . , CK).

4. Experimental Analysis

All the experimental results in this paper are conducted by Python 3.8 under the Mi-
crosoft Windows 10 system based on the Intel Core i5-12600K high-performance processor
hardware platform. Five UCI public data sets of Cintraceptive-Method-Choice (CMC), Iris,
Heart Disease, Wine, and Pima-Indians-diabetes (Pim) are used to verify the effectiveness
of the proposed algorithm, including linearly separable and non-linearly separable data
sets, as shown in Table 1. Since the feature amplitude of each data is different, the data is
normalized by the maximum and minimum values, and the value range of each feature is
converted to [0, 1].

Table 1. Descriptions of datasets.

Datasets Samples Features Categories

CMC 1473 9 3
Iris 150 4 3

Heart Disease 303 13 2
Wine 178 13 3
Pim 768 8 2

After data preprocessing, the data is granulated according to the neighborhood param-
eters to generate granular vectors. Since there are relative distance and absolute distance
formulas for estimating the distance between granular vectors, this experiment proposes a
granular meanshift clustering algorithm based on granular vectors relative distance and
granular vectors relative distance. At the same time, to verify the performance of the
algorithm, it will be compared with Meanshift and the other 5 classic clustering algorithms.

In this experiment, the performance of granular meanshift clustering algorithm is
optimized by adjusting the Neighborhood Granular Parameter (NGP), then three clustering
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performance evaluation indicators: Accuracy, Silhouette Coefficient (SC), and Fowlkes–
Mallows Index (FMI) are used for clustering performance comparison. Accuracy is defined
as follows:

Accuracy =
∑N

i=1 ϕ(si, map(ri))

N
. (16)

Among them, ri is the label after clustering, si is the real label, and N is the total number of
data samples. ϕ represents the indicator function, as follows:

ϕ(x, y) =

{
1, x = y
0, x 6= y

. (17)

To express SC, the silhouette coefficient s(i) of a single sample is:

s(i) =
b(i)− a(i)

max{a(i), b(i)} . (18)

Among them, a(i) : i ∈ A, a(i) = averagej∈A,j 6=i(dist(i, j)) ; b(i) : i ∈ A, C 6= A, dist(i, C) =
averagej∈C(dist(i, j)); b(i) = minC 6=Adist(i, C). Both A and C are clusters of sample i. Then,
the SC is defined as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)} . (19)

The FMI is defined as follows:

FMI =
TP√

(TP + FP)(TP + FN)
. (20)

TP is the number of True Positives; FP is the number of False Positives; and FN is the
number of False Negatives.

Accuracy directly represents the performance of the clustering algorithm, the value
range is [0, 1], and the larger the value, the better the clustering effect. SC represents the
similarity of samples within a cluster and the difference between clusters, and the value
range is [−1, 1]. The smaller the difference within a cluster and the larger the difference
between clusters, the better the clustering effect. The FMI indicator is the geometric mean
of precision and recall and is used to determine the similarity between two data sets. The
larger the FMI value, the higher the similarity between the real data set and the predicted
data set, and its value range is [0, 1].

4.1. Effect of Neighborhood Granular Parameters

In the experiment, firstly the UCI datasets is granulated according to different NGP,
then different neighborhood granular vectors are constructed, and finally the values of the
granular meanshift clustering algorithm based on the granular vectors absolute and relative
distances are, respectively, calculated by the granular meanshift in Section 3.3 above. Dif-
ferent granulation processes of neighborhood parameters construct different neighborhood
granule vectors, which affect the final clustering results. To further explore the effect of the
Neighborhood Granular Parameter (NGP) in the granular meanshift clustering algorithm,
validation is performed on datasets with different NGPs. The Accuracy rate and SC are
used as clustering performance evaluation indicators, and the clustered label results are
compared with the actual labels. The experiments are conducted with an NGP of 0 to 1
interval of 0.05, and the experimental results for each UCI dataset with different NGPs are
shown in Figures 1–10.

As can be seen from Figure 1, the accuracy of the traditional Meanshift clustering
algorithm is 0.54, and the highest accuracy of the granular meanshift clustering algorithm
based the granular vectors absolute and relative distance is 0.73 and 0.78, respectively, in
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the Heart Disease dataset. The granular meanshift is poor when the NGP is in the 0.20 to
0.65, but is still larger than the corresponding accuracy value of traditional meanshift.

Figure 1. Effect of NGP with Accuracy on Heart Disease dataset.

Figure 2. Effect of NGP with Accuracy on Iris dataset.

Figure 3. Effect of NGP with Accuracy on Wine dataset.
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Figure 4. Effect of NGP with Accuracy on CMC dataset.

Figure 5. Effect of NGP onwith Accuracy on Pim dataset.

As can be seen from Figures 2–5, when NGP changes in Iris, Wine, CMC, and Pim
datasets, the trend in Accuracy values for granular meanshift based on the granular vectors
absolute and relative distances is consistent. When NGP is too large or too small, the
granular meanshift clustering algorithm has a large variation in clustering performance.
The highest Accuracy index values for the Iris datasets are 0.96 and 0.96, respectively, when
NGP is taken to be 0.55, to the granular meanshift based on both granular vectors distance.
However, when NGP is larger than 0.70, the Accuracy index value of granular meanshift
clustering algorithm drops precipitously, degrading the clustering performance of the algo-
rithm. The values of NGP for the Wine dataset are 0.15 and 0.25; the maximum Accuracy
for granular meanshift clustering algorithm based on the granular vectors absolute and
relative distances is 0.97 and 0.88, respectively. When the NGP is below 0.20 or above 0.30,
the Accuracy of granular meanshift declines, but it remained higher than that of traditional
meanshift. If the value of NGP is greater than 0.65, then the granular meanshift cannot be
used in the Wine dataset.

When we take NGP to be 0.20 and 0.10 in the CMC dataset, the corresponding largest
Accuracy values of granular meanshift based on the granular vectors absolute and relative
distances are 0.44 and 0.57, respectively. However, when the NGP is taken to be 0.15 and
0.20 for the Pim dataset, the corresponding Accuracy of granular meanshift based on the
granular vectors absolute and relative distance are 0.75 and 0.74, respectively, which is
better than the Accuracy values from the traditional meanshift. The experimental results
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for granular meanshift in the above datasets show that the granular meanshift outperforms
traditional meanshift concerning the proper neighborhood metrics.

Figure 6. Effect of NGP with Silhouette Coefficient on Heart dataset.

Figure 7. Effect of NGP with Silhouette Coefficient on Iris dataset.

Figure 8. Effect of NGP with Silhouette Coefficient on Wine dataset.
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Figure 9. Effect of NGP with Silhouette Coefficient on CMC dataset.

Figure 10. Effect of NGP with Silhouette Coefficient on Pim dataset.

Figures 6 and 10 show that in the Heart Disease and Pim datasets, the SC in granular
meanshift is lower than the corresponding SC in traditional meanshift when the NGP is low,
and when NGP is larger, the SC in granular meanshift remained largely unchanged, but is
larger than the corresponding SC in traditional meanshift. In the Heart Disease dataset, the
largest SC for granular meanshift at both granular vectors distances is 0.27 when the NGP
value is taken to be 0.35. The highest SC for granular meanshift on the Pim dataset at both
granular vector distances is 0.42 when the NGP value is taken to be 0.45.

In experiments with Iris, Wine, and CMC datasets, clustering performed poorly when
neighborhood parameters are small or large from Figures 7–9. For the Iris dataset, the SC
value of traditional meanshift is 0.47, and the maximum SC values of granular meanshift
based on granular vectors absolute and relative distance are 0.55 and 0.54, respectively,
and the clustering performance of granular meanshift is better than that of the traditional
meanshift for an NGP that is well suited to the task at hand. The value of SC in traditional
meanshift for the Wine dataset is 0.11, and the maximum SC values of granular meanshift
based on the granular vectors absolute and relative distance are 0.23 and 0.28, respectively,
and the SC performs better than traditional meanshift. However, when NGP is greater, the
granular meanshift is no longer fit to the Wine dataset. The traditional Meanshift has an SC
value of 0.23 for the CMC dataset, while the granular meanshift based on granular vectors
absolute and relative distance has a maximum SC of 0.285 and 0.288, respectively, when
the value of NGP is taken to be 0.55.
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As can be seen from Figures 1–10, for different datasets with different data distribu-
tions, different NGPs affect the final clustering performance from the NGP perspective. In
general, the Accuracy of granular meanshift is higher than the Accuracy of traditional Mean-
shift, which means that the Accuracy of granular meanshift is always greater than the Ac-
curacy of traditional Meanshift by finding the appropriate neighborhood parameters. Com-
pared to the traditional Meanshift, the granular meanshift can pre-granulate data before the
algorithm starts. Using neighborhood granular vectors, the granular meanshift converges
more quickly on linear and nonlinear datasets and has a high clustering performance.

4.2. Comparison Experiment with Traditional Clustering Algorithms

In this experiment, the granular meanshift based on relative distance and the granular
meanshift clustering algorithm based on absolute distance will be verified with the K-
means, Meanshift, Gaussian Mixture, Birch, and Agglomerative Clustering algorithms
in the above five data sets. The three indicators of Accuracy, SC and FMI are used for
comparison, the closer the value is to 1, the better the clustering performance. The results
are shown in Tables 2–4.

Table 2. Comparison of algorithms on different datasets with Accuracy.

Dataset
Granular

Meanshift
Relative

Granular
Meanshift
Absolute

Meanshift Kmeans Gaussian
Mixture Birch Agglomerative

Clustering

CMC 0.576 0.455 0.4270 0.4372 0.4270 0.4276 0.4297
Iris 0.9667 0.96 0.7933 0.9666 0.9666 0.8666 0.8866

Heart
Disease 0.782 0.739 0.547 0.719 0.719 0.544 0.679

Pim 0.74 0.75 0.645 0.625 0.675 0.645 0.64
Wine 0.97191 0.882 0.3988 0.9494 0.9606 0.6067 0.9775

Table 3. Comparison of algorithms on different datasets with Silhouette Coefficient.

Dataset
Granular

Meanshift
Relative

Granular
Meanshift
Absolute

Meanshift Kmeans Gaussian
Mixture Birch Agglomerative

Clustering

CMC 0.2889 0.2857 0.2316 0.2345 0.2959 0.2776 0.2963
Iris 0.5494 0.5578 0.4764 0.4507 0.4507 0.5061 0.5043

Heart
Disease 0.278 0.278 0.2 0.251 0.251 0.215 0.213

Pim 0.4297 0.4297 0.2455 0.2268 0.1778 0.1765 0.1956
Wine 0.2891 0.2332 0.1194 0.3008 0.2993 0.281 0.2948

Table 4. Comparison of algorithms on different datasets with Fowlkes–Mallows Index.

Dataset
Granular

Meanshift
Relative

Granular
Meanshift
Absolute

Meanshift Kmeans Gaussian
Mixture Birch Agglomerative

Clustering

CMC 0.5685 0.5685 0.5171 0.3635 0.4356 0.4780 0.4303
Iris 0.9364 0.9232 0.7476 0.9355 0.9355 0.7946 0.8158

Heart
Disease 0.7069 0.7069 0.7069 0.6191 0.6191 0.6127 0.6065

Pim 0.7257 0.7257 0.6800 0.5202 0.6086 0.5602 0.5526
Wine 0.9448 0.7937 0.5605 0.9026 0.9215 0.6799 0.9542

Tables 2–4 show the optimal test results of different clustering algorithms in the
corresponding data sets and are marked in bold. Table 2 shows that when Accuracy is
used as the performance evaluation index, the absolute distance-based granular meanshift
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clustering algorithm scores better than the other six clustering algorithms in the CMC,
Iris, and Heart Disease datasets. In the Pim dataset, the scores of the relative distance-
based granular meanshift clustering algorithm are better than the test results of the other
six clustering algorithms. In addition, in the Wine dataset, the score of the granular
meanshift clustering algorithm based on the absolute distance is better than that of the
other five algorithms except for the Agglomerative Clustering algorithm; while the score
of the granular meanshift clustering algorithm based on the relative distance is better
than the Meanshift and Birch algorithms, but less than K-means, Gaussian Mixture and
Agglomerative Clustering algorithms.

Table 3 shows that when SC is used as a performance evaluation index, the perfor-
mance of the granular meanshift clustering algorithm based on absolute distance in the
Heart Disease and Pim datasets is better than that of the other six clustering algorithms.
In the Iris dataset, the scores of the relative distance-based granular meanshift clustering
algorithm are better than those of the other six clustering algorithms. In the Wine dataset,
the score of the granular meanshift clustering algorithm based on absolute distance is better
than the other three clustering algorithms, but lower than that of Agglomerative Cluster-
ing, Gaussian Mixture, and K-means algorithm; while the performance of the granular
meanshift clustering algorithm based on relative distance is only better than the Meanshift
clustering algorithm. In the CMC dataset, the granular meanshift clustering algorithm
based on two distances scores better than the other four clustering algorithms except for
Gaussian Mixture and Agglomerative Clustering algorithms. It can be seen from Table 4
that in the above data sets, the granular meanshift algorithm also has superior performance
in terms of FMI indicators.

4.3. Discussions

The clustering performance of granular meanshift is better than Meanshift and other
clustering algorithms on multiple data sets in conclusion. In the Wine dataset, although the
performance of granular meanshift is slightly lower than that of the Gaussian Mixture and
Agglomerative Clustering algorithms, the gap is not large. Different from the traditional
clustering algorithm, the granular meanshift uses neighborhood granulation technology to
seek structural breakthroughs, which improves the clustering performance of the algorithm
and makes the algorithm have better results in different types of datasets.

5. Conclusions

To address the problem that the traditional clustering algorithms have difficulty deal-
ing with the set-based data and nonlinear data based on the Mahalanobis distance and
Minkowski distance, we bring the theory of neighborhood granular computing into the
clustering algorithm. First, we define the granular vectors according to the neighborhood
granulation theory and propose two novel distance metrics for granular vectors. After that,
we propose the neighborhood granular meanshift algorithm based on the granular vectors
relative distance and the granular vectors absolute distance. Finally, the experiments illus-
trate that the granular meanshift clustering algorithm our proposed has better clustering
performance than traditional clustering algorithms, with an average improvement of 10.4%,
7.5%, and 9.8% in the Accuracy, SC and FMI, respectively.

In future work, we will define more advanced granular vectors distance metrics to
improve the performance of the clustering algorithm. Moreover, it is an interesting work to
apply the proposed granular vectors relative metric and granular vectors absolute metric
to other clustering algorithms.
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