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1. Introduction

Vertex algebras were defined by Borcherds in the study of the monstrous moonshine [1].
Vertex algebras, while the product map is allowed to have a meromorphic singularity, are
analogous to unital commutative associative algebras with a group action [2,3]. Such an
algebra of quantum fields, known as the operator product expansion, was first studied in
physics [4,5], and the notion of vertex algebras gives a mathematical formulation of the
chiral algebras in two-dimensional conformal field theories [6,7].

Field algebras were introduced by Bakalov and Kac as an associative analogue of
vertex algebras [8], and similar notions were studied [9,10]. Examples of field algebras
include quantum vertex operator algebras [11] and the smash product of a vertex algebra
and its finite automorphism group [8]; they give some noncommutative generalizations of
vertex algebras.

We first introduce some notation and give a definition of a field algebra. Let V be a
vector space over C. Let V[[x]] and V((x)) be the vector spaces of formal power series and
the formal Laurent series in x with coefficients in V, respectively. Consider a bilinear map
V xV — V((x)), denoted by (a,b) — a*b € V((x)). In other words, fora,b € V,

b= x “Magyb, withag b €V, 1)

nez

where each map () V x V — V isbilinear, and for each a,b € V, a(n)b = 0 eventually
n — oo. By abuse of notation, a linear map is understood to act on a formal series by acting
on the coefficients. For example,

“WYe) = Y My ag (bpne) € V(())((),

mmne”z

(@ ¥o)e=Y (x=y) "y T @gmb) e € V() (x = y)).

mmnez

Note V((x))((y)) and V((y))((x — y)) are both modules over C|[x, y]] and contain a com-
mon submodule V|[[x,y]]. If a*b € V[[x]] for some a,b € V; then a*b|,—¢ € V denotes the
evaluation at x = 0, namely, the constant term ac_y b.

Definition 1. A field algebra is a vector space V over C with an identity 1 € V and a bilinear
map V x V. — V((x)), (a,b) — a*b € V((x)), satisfying the following properties:
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(i) (identity) For every a € V,1*a = a, and a*1 € V|[[x]] with a*1|,—¢ = a.
(ii) (associativity) For every a,b,c € V, there exists N € N (depending on a,b,c), such that
the equality
(xy(x = y))Na*(B¥e) = (xy(x — y))N (a*¥b)Ve

holds in V[[x,y]].

The notation is chosen so that it expresses the analogy between field algebras and the unital
associative algebras with a group action a — a¥, as first suggested by Borcherds for vertex
algebras. The fact that Definition 1 is equivalent to the definition in [8] is explained in [12].
We use Definition 1 in order to make the present article self contained.

We now give one aspect of the associativity of field algebras that differs from the
usual associative algebras: it is the general associative law. For example, consider replacing
condition (ii) in Definition 1 by condition

(ii") (4-associativity) For every a,b,c,d € V, the following elements

a* (b (c*d)) € V((x))((¥))((2))
a*((0"%c)*d) € V((x))((2))((y —2))
(@ 7p)¥(c*d) € V((y)((x = y,2))

(@267 5c))*d € V((2))((x = 2))((y — 2))
((a*¥b)?%c)*d € V((2))((y — 2))((x —y)),

if multiplied by (xyz(x —y)(y — z)(x — z))Nfor sufficiently large N € N, belong to the
subspace V[[x,y,z]] and are equal.
More generally, we can define

(ii"") (n-associativity) For every ay, - - -
bracketings of aq, - - -

,ay € V, the formal expressions corresponding to all binary
, Ay satisfy the analogous condition.

We can define co-associativity” to mean that n-associativity holds for all n > 3. If we let F,
denote the class of field algebras that are n-associative, then we have

F3 2 F4 2 F5 2 - with Foo = () Fan. (2)

n>3

For the usual associative algebras as well as vertex algebras, 3-associativity automatically
implies co-associativity. A natural question that arises in the case of field algebras is
whether the higher-order associativity conditions are strictly stronger for higher n. With
the restrictions imposed by the formal calculus, one may wonder whether requiring n-
associativity for high enough n implies co-associativity. Although F,, is heuristically
stronger than J;,, no concrete example of field algebras showing their difference has been
rigorously written down.

The main result of this study is the formulation of n-associativity (Section 3) and the
construction of examples (Theorem 2) to show that unlike the ordinary associative algebras
or vertex algebras, we indeed have proper inclusions

2 -Fn+1
foralln > 3.

2. Prefield Algebras

In this section, we fix notations and introduce some terminology.

Lemma 1. Let V be a field algebra. Then, there exists a linear map T : V. — 'V, called the
translation operator, with the following properties for every a,b € V.

(i) a1=eTyp= Yk>0 x*T®) g, with the notation T®) = Tk /k!.
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(ii)

(Ta)*b = 9, (a*b).
(iii) T(a*b) = (

b) = (Ta)*b + a™(TD).
Proof. We define themap T: V — V by
Ta = ax([lxl)|x:0 = ﬂ(fz)l

when a,)b is given by (1). In particular, T1 = 0. If (ii) and (iii) hold, then a*1 € V|[[x]]
should satisfy T(a*1) = 9x(a*1) with a*1|,—o = a, and thus (i) follows. Hence, it suffices to
show (ii) and (iii). Let a,b € V. By Definition 1, there exists N € N, such that

(tx(t+x))N(a'1)*b = (tx(t + x))Na'T*(1%b) = (tx(t + x))Na' b (3)
in V[[t, x]] with (t + x)Na'**b € V[[t + x]]. Hence, both sides of (3) belong to (tx)NV[[t, x]],

and we must have
(t4 x)N(a'1)*b = (t + x)Na'Tb (4)

in V[[t, x]]. By applying (¢ + x)0; to (4), we obtain
N(t+x)N(@'1)*b + (t + x)N 104 (a'1)*b = N(t + x)Na b + (¢ + x)N 10 (a' D),
where the first terms cancel by (4). Hence,
(t 4+ x)N 19, (a'1)%b = (¢ + x)N 10, (a' T¥),

and setting ¢ = 0, we obtain xN*1(Ta)*b = xN+19;(a'**b)|;—0 = x*N*19,(a*b), and, there-
fore, (Ta)*b = dx(a*b). Similarly, we have M € N, such that

(tx(t+x))M(a*0)1 = (tx(t + x))Ma"*¥(0'1)
in V[[t, x]] with xMa*b € V[[x]], and, thus, xM (a*b)*1 € V[[t, x]]. Hence,
M@ b)1 = xMal ¥ (b'1)
in V([[t, x]], and applying 9; to both sides, we obtain
Moy ((a*b)'1) = xMay(a™ (b1)) = xM (0, (a' T (0'1)) + a' 794 (b'1)).
Setting t = 0, we have T(a*b) = dy(a*b) + a*(Tb) = (Ta)*b + a*(Tb). O
We define the following notion for later convenience:

Definition 2. A prefield algebra is a vector space V over C with an identity 1 € V, a translation
operator T : V — V, and a bilinear map -*- : V x V. — V((x)) satisfying the following properties.

(i) (identity) For everya € V,1%a = a, and a*1 = " a.
(ii) (translation covariance) For every a,b € V,

(Ta)*b = T(a*b) — a*(Tb) = 9+ (a*b).

By Lemma 1, a field algebra is a prefield algebra. A prefield algebra is a field algebra if it
satisfies the associativity axiom in Definition 1.

3. n-Associativity

The associative axiom in Definition 1 can be generalized to the associativity of n
vectors. We define some notations that are used throughout the paper.
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3.1. Notation B,

We denote by B;, the set of all binary bracketings of length n, for n > 1. For example,
for n = 4, we have

o(e(ee)),0((00)e), (e0)(0e), (o(0e))e, ((ee)e)e.

It is well known that the cardinality of B, is given by the Catalan number C,,_; [13]. For
B € By, let B(xy,- - -, x,) denote the corresponding bracketing of the n letters xy, - - -, x,. For
example, if B = o((ee)e), then B(xy, xp, x3,x4) = x1((x2x3)x4). We denote by By, (x1, - -, x)
the set of B(x1,- -+, x,) forall B € B,,.

If B(x1, -+ ,%n) € Bu(xy,---,xn), it can be represented by an ordered full binary
tree [14], which has n nodes (leaves) x1, - - - , x;, having no children, and every other node
has both a left child and a right child. There exists a unique node (the root) that has no
parent, having the rest of the nodes as its descendants. (When n = 1, the single node is
both the root and a leaf.) We label the nodes as follows: When a node w has the left child u
and the right child v, we write

w = uv (5)

and say that # and v are siblings. Hence, every node is expressed as a product of leaves,
and this notation for a node coincides with the subtree spanned by the node and its
descendants. We identify the two concepts. For example, in x1((x2x3)x4) € Bg(xq, -+, x4),
the node (x2x3)x4 having descendants x,x3, x2, x3, x4 can be considered as the subtree
(x2x3)x4 € B3(x2, x3,x4). In particular, the root of a tree is considered to be the tree itself,
and we can regard (5) as defining the product w of two trees u and v having disjointed sets
of leaves.

Let B(xq,- -+ ,xn) € Bu(x1,---,xn). Suppose we have a set of nodes uy,- - -, iy, in
B(xq,- - ,x,) that are disjoint as subtrees. The contraction of B(xy,- - -, x,) by the nodes
uy, - -+, Um is the tree obtained by replacing each subtree u; by the last leaf x;; of u;. For
example, the contraction of (x1x,)(x3(x4x5)) by the nodes x1x; and x3(x4x5) is the tree
x2x5 € Ba(xp, x5). In defining the contraction, we do not lose any generality if we assume
that the leaves corresponding to uy, - - - , u,, give a partition of the set {x1,--- ,x,}, as we
can assume some of the u; are leaves themselves without affecting the contraction.

3.2. Maps Xp and Vg

Let V be a prefield algebra, and let B € B,,. We now consider xy, - - -, x,; as formal
variables, and define Xp(,, ... r.) and Vp(y, ... x,) as multilinear maps on V" depending on
the formal variables x1, - - - , x,,, with the following properties:

(i) Forxy € By(x1),
Xy () = ay

foralla; € V.

(ii) When the trees u and v have disjoint sets of leaves x1, - - - , x;; and x,41, - - - , X5, respec-
tively, then

Xuv(alz cet ;an) = Xu(al/ ce /am)xm_xnxv(am-&-lr ce /an> (6)

forallay,- - ,a, € V, where x,;, and x, are the last leaves of u and v, respectively. Here,
weregard u € By (x1, -+ ,Xm), 0 € Byem(Xps1,- -, xn) and uv € By(xq, -+, xn).

(iii) For aq,- -+ ,a, € V and B € B, we define

@)
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The result of setting x, = 0in (7) is denoted by

yB(xl,-u,x,,,l,O) (a1, ,an) = XB(xl,m,xn,l,O) (a1, an).
Example 1. Let B = (ee)(ee). Let aq, - - - ,ay be vectors in a prefield algebra V. We have

Xxl (al) =4ai, -, Xx4 (a4) = a4,

and by (6),
XX1X2 (a]/ ﬂZ) == ajlcl o a2
XXSX4 (a3l a4) = a§37X4a4/
and

X,y (xax) (31,02, 83,04) = (a7 2a3)> " (a3 May),

Vixran) (xara) (01, 82,83, 84) = (a7 2ap) > (a3> M ay) ) 1.

Setting x4 = 0, we have

V(r1x2)(x30) (a1,82,a3,04) = (ay' 2 a2)™ (a3’ ay).

Proceeding in the same way for the other elements in By, we obtain

ay! (a3 (a3°a4))
ay' ((ay" " a3) ™ ay)
( a1 X3( Xp— xsaa))X3u4
(

(Xl Xz )Xz—X3a3)X3a4.

X1 X2 X3O al/ a2/ a3/ 114

) (
Vi, (xrax)0) (a1, 82,83, a4
xl x2X3)) O(a az,as, a4
(

) =
ay)
)
((x1x2)x3)0\A1, 42, a3, ay) =

When n < 2, we have yxl (a1) = a1' L and Yy, x, (a1,a2) = (a7 *2a2)*21, and thus Yo(a1) = m
and Yy, 0(ay,a2) = ”1 as.

The dependency of Xy, ... x,) (a1, - -, ax) on the formal variables x1, - - -, x,, is only through
their differences x; — X; for1 <i < j < mn,and we can thus recover XB(xl,“-,xn) (ar, - ,ay)
from Xpy, ... x, ,0)(a1,- -, an) by replacing x; with x; — x, for 1 < i < n—1. We thus
write (7) in the form

yB(xl,»»-,xn) (alr T raﬂ) = ean yB(xlfx,,,---,xn,lfxn,O)(all T /ﬂn)- (8)

Lemma 2. Let V be a prefield algebra. Let B € By, and let uy, - - -, uy, be nodes in B(x1,- -+, xp)
whose leaves give a partition of {x1,- -+, xn}. Let Xi,*** ,Xi, be the last leaves of uy,- -+, uy, re-
spectively, with iy, = n.Let B(x;,, - -+ ,X;,) € Bu(xy,, - -, ;) be the contraction of B(x1, - - - , x)
by the nodes uq, - - - , uy,. Then, we have

Xy, ) (@1 An) = Xy oy ) (X (@1, a3), o, Xy (g, g1y, a,)) )
forallay,--- ,a, € V.

Proof. We can recursively define any function f on the set of all nodes of an ordered
full binary tree by defining its values on the leaves and by defining the value f(w) on
a node w from the values f(u) and f(v) on its children u and v. Let ay,- -+ ,a, € V and
B € B,. We define a function F = (F;, F,) on the set of nodes of B(x1,- - ,x,) in such
a way. The value F(u) = (Fy(u),F2(u)) on each node is a tuple, where F; (u) is some
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formal expression involving elements a1, - - - ,a, € V, and F,(u) is always one of the formal
variables x1, - - - , x,,. For one of the leaves, let

F(xl) = (allxl)/' o /F(xn) = (a}’l/x}’l)-
For every node w = uv with children u and v, if F(u) = (L, x;) and F(v) = (R, x;), let
F(w) = (LY YR, x).

It follows that for every node w of B(xy,---,x,) with leaves {xj,- -+, xr}, we have
F(w) = Xp(aj, -+, a), and B(w) = x. In particular, Fi(0) = Xp(y, ... x,) (a1, , an)
where o0 is the root of B(xy, - - -, x,). From the recursive definition, F; (o) is equivalently
computed starting from

F(ul) = (Xul (ﬂl, e ’ail)’ xil)’ Tty F(Mm) = (Xum (a(im,]Jrl)" o ’ai7n)/ xirn)

on the new tree B(xl-l, .-+, x; ) having Xi,, "+ ,X;, as leaves, and the lemma follows. [J

From Lemma 2, it follows that we have

VB (xp,e ) (@1, ) = yB(xi1,~~~,xin,)(X“1 (@, 1), Xy (@G, 1), ai) (10)

in the same notation, by applying (-)*'1 on both sides of (9).

Let B(xq,- -+, %) € Bu(x1,- -+ ,xy,) for n > 2. Suppose leaves x; and x; 1 are siblings
forsomel <] <n—1.Let Bl(xl,- -+, %, ,xn) be the contraction of B(xy,---,x,) by
the node x;x; 1, where £; means x; is omitted. By (9) and (10),

XB(X],"',XH)(al’ e /ui’l) = XBI(X],---,J?I,“-,XM)(al’ e /XXIXH,] (ﬂ[,ﬂ[+1), e /a}’l) (11)
yB(xl,---,xn)(all T /a'rl) = yBl(xl,“',J?l,'“,Xn)(al’ o /XXIXZ+1 (alraH»l)r e ran)~

The relationships (11) give another recursive description of the maps X’z and V3 for B € B,
starting with Xy, (a1) = a1, Xy x,(a1,02) = aicl*xzaz and Yy, (a1) = 1T ay forallay,ay € V,
because every tree B(xy, -+ ,x,) € Bu(xq,---,x,) for n > 2 contains at least one pair of
leaves x; and x;, 1, which are siblings.
For B € B, and a vector space V over C, let us define the vector spaces Vp(,, ... 1)
with the following properties:
(i) Forxj € Bi(x1), Vo, = V.
(i) For B(x1, - ,xn) € Bu(x1,- -+ ,xn), let {xll,x(ll+1)},~ -, {x,m,x(lmﬂ)} be all pairs of
siblings among the leaves of B(xy,- -+ ,xy). Let B(xq, - - - Ry, Ry, 000, xn) be the
contraction of B(x1, - -+, x,) by the nodes x; x(, 1), -+, X1, X(1,,+1)- Then,

VB(X1,~~~,xn> = VB(xl,'“,J?]l,“‘,f]m,"',xn) ((xll - x(l]-‘rl)/ T /xlm - x(lm+1)))
It follows from Lemma 2 that we have

XB(xl,w,xn) I VAaLLgY VB(x1

yB(xlz"'/xn) : VX” - VB(x1,~~~,xn)HxﬂH-

S X )

We can recursively verify that V(,, ... ) contains V[[x1 — Xy, X2 — Xn, -+, X4—1 — Xn]] asa
subspace. In particular, Cpy, ... v, is an algebra over C[[x1 — Xy, X2 — Xy, -+, X1 — Xu]|,
and Vp(y, ... x,) isamoduleover Cgy, ... 1. Hence, Vp(, .. . )[[xn]] contains V[[x1, -, x4]]
as a subspace. It is a module over Cgy, .. . )[[xn]] that contains C[x1, -, x,]] as
a subalgebra.
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Example 2. For a vector space V over C, we have Vy,x, = V((x2 — x4)), and

Vieyxa) (xaxg) = Vg (X1 = x2, 03 — x4)) = V((x2 — x4)) (1 — x2, X3 — x4)).

contains VHXZ — X4HHX1 — Xp, X3 — X4” = V[[xl — X4, X — X4,X3 — X4H,
= C((x2 —x4))((x1 — x2,x3 — x4)). If V is a prefield algebra

Hence, V(xlxz)(x3x4)
and it is a module over (C(
and ay,ap,a3,a4 €V,

x1%2)(x3%4)

X(vy20) (xaxg) (01,82, 83,04) = (a7 2a2) 7" (a5’ ag) € Vix 1) (xs1)
Virxa) (eas) (01, 82,83, 84) € Vi) (s [[¥a]]
Vixyxa) (xaxy) [[¥a]] i @ module over Cy, 1) (xyx,)[[x4]] and contains
Vil = x4, 22 = x4, %3 — x4]][[x4]] = V[[x1, %2, 3, x4]]
as a submodule over Cl[x1, x2, X3, X4]]-

3.3. Definition of n-Associativity
Definition 3. Let V be a prefield algebra. For n > 1, we say that the vectors ay, - -- ,a, € V are
n-associative if there exist ¥(xy,- - -, xn) € V[[x1,- -+ , x| and N € N such that

N
H (xi - x])) yB(xl,---,xn)(alf o /a'rl) = 1Ij(xlr U /xn) (12)
1<i<j<n

forall B € B,,. We say that V is n-associative if every sequence of n vectors in V is n-associative.
V is called oco-associative if it is n-associative for every n > 3.

Every prefield algebra is automatically 1 and 2-associative. The reason that Definition 3
includes the cases n < 2 is for later convenience. We use the notation s, (x1,- -+, x,)

to denote
5n(xlr"‘ rx'rl) = H (xllix]‘)
1<i<j<n

with s1(x1) = 1 and any empty product is defined as 1. Then,

n—1
5n(x1/"' /xn—l/o) - ka 1_[ (xl'_x]'),
k

=1 1<i<j<n—1

and
sp(xq, -, xn) =8p(x1 — Xy, -+, X1 — X, 0).

The following lemma shows that we can set x;,, = 0 in Definition 3 for simplicity.

Lemma 3. Let V be a prefield algebra. The vectors ay, - -+ ,a, € V,and n > 1 are n-associative
if and only if there exist ®(x1,- -+ ,x,-1) € V[[x1, -+, xp-1]] (P € Vifn=1),and N € N
such that

5n(x1, o /xn—llo)NyB(xl,w,xn,l,O) (111, to /an) = q)(xll o /xn—l) (13)
forall B € B,.

Proof. If a1, -+ ,a, € V are n-associative, Equation (13) holds by setting x, = 0 in (12).
Conversely, suppose (13) holds. By replacing x; with x; — x, for 1 <i <n — 1, we have

5n(xlr ce ’x”)NyB(xl—xn,~~~,xn,l—xn,O) (111, s /an> = q)(xl —Xn, , Xp—1— xn)

for all B € B;. By (8), we see that
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571(x1/ . /xi’l)NyB(xl,"',xn)(al’ . ,lln)
= 5n<x1/ L ,xn)Nean yB(xl—xn,m,xn,l—xn,O) (Cll, e /ui’l)
- ean (sﬂ(xll e ,Xn>NyB(xl—xn,---,xn_lfxn,O) (dl, o ,ﬂn))

=T d(x) —xp, -+, Xy 1 — Xn)

for all B € By, and (12) holds with ¥(xq,- -, x,) = e T ®(xy — xp, -+, X1 — xy). O

Let V be a prefield algebra. The condition (13) in Lemma 3 with n = 3 is precisely the
associativity axiom in Definition 1, and (13) with n = 4 is the condition of 4-associativity
stated in Section 1.

Lemma 4. Let V be a prefield algebra. Suppose aq,--- ,a, € V,and n > 2 are n-associative.
Then, for1 <1 <n —1, the elements aq, - - - A (u)A1+1, 7, Ap ATE (n — 1)-associative for each
m € Z, where - (- is given by (1).

Proof. For1 <1 <n—1,letB,(xy,---,x;)bethesetofall B(xy, ---,x,) € Bu(x1,---,xn)
such that the leaves x; and x;1 are siblings. Let B(xy, - -+ ,x,) € B, ;(x1,- -+, x5). We have

_ X=X _ —1-m
Koz (a,a1) = @) ag = ) (0 — x141) a1 (m)yA141/
mez

and by (11),

V(ser, o) @1+ van) = 3 (= 21500) ™ " Vi e gy (1 A1) A1, )
mez

where Bl(xl,- e Ry, xn) € By_1(xq,- -+, %, -+, xy) is the contraction of B(xq, - - -, xp)
by x;x;,1. Suppose we have (12) for ay, - - - ,a,. We have ¥ (x1,- -+ ,x,) € V][x1, -+, xu]]
and N € N such that

T('xl/ e /xl’l) = 5n(x1/ e /xi’l)NyB(XL"',Xn)(al/ e /a”)

=Y (—x )V ] =)V T (g —x)N (14)

mez 1<i<l I+1<j<n

X Sy-1 (xl/ e /ﬁl/ T ’x”)NyB’(xl,m,)21,~~~,xn)(a1’ T /al(m)al+1/ T /a}’l)
forall B(xy, -+ ,xn) € Byy(x1,---, %), where N—1—m > 0inthesum. Let1 <i <n
be such thati ¢ {I,/ + 1}. The last line in (14) is independent of x;. By writing x; — x; =
(x; — x;) + (x; — xj) for j ¢ {i,l} in (14), we obtain an expansion of ¥(x1,---,x,) €
V([xy, -, xn]] in V[[xy,---, %, -+, xa]][[x; — x;]], which shows ¥ (x1, -+ ,x,) € (x; —
x;)NV([[x1,- -, xu]]. Hence, both sides of (14) as a power series in V[[x, - -, x,]] contain
the factor [Ty<;;(x; — x;)N [Tr1<jcn(x — xj)N. By canceling this factor in (14), we obtain

(p(xll e /xn) == Z (xl - xl+1)N_1_m5n—l(xll e /-’fl/' o /xl’l)N

mezZ

x yB](le”,3?1,~-',x,,)(a1' M ()1, /an)

for some ®(x1,- -+ ,x,) € V[[x1, -+, xy]]. Expanding

D(xy, - xn) = Y (0 = xp00) P, -+, Ry xn)
k>0

for @k(x1,~- ,J?[,--' ,xn) € V[[X1,"' ,XAZ,"' ,xn]],wehave

N N
51‘171(%1/ te /xl/ s /xn) yB’(xl,-~~,32,,~-,xn)(al’ e /al(m)alJ,»]/ e /an)

- cDN—l—m(xl/' o /xAl/ e /xn)
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forall B(xy -+ ,x,) € B

(x1,+ -+ ,xy), and the contractions B (x1,- -+, %, -+, x) give all
elements of B, _1(xq, -+, %,

n,l
, 3?1 c Xn). O
Lemma 5. Let V be a prefield algebra. Then,

yB(x1,~~,xn)(a1/ Tty Tﬂl, tet /an> - aXIyB(xl,u-,xn)(al/ e /al’l)
foray,--- ,ap, € Vand Be B, with1 <l <nandn > 1.
Proof. Let us show the claim by induction on n. For n = 1, Yy, (Ta;) = (Tap;)1 =
Oy, (a7'1) = 9x, Vx, (a1). Consider the n > 1 case. If there exist siblings x; and x; 1 such that
I ¢ {i,i+1}, by (11) and the inductive hypothesis,
yB(xlr"'/xn) (all to /Tal/ ot /al’l)
- yBi(Xl,“',fi,"';xn)(al' ctty Xx,-xl-H (ai/ ﬂj+1), Tty Tﬂl, e /an)
- axlny(x1,~~',J?i,m,x,,)(al’ Tty XXin+1 (air ui«i»l)r e /alr tt /ai’l)
- ax[yB(xll--A,x")(all B /) P /an)-
It only remains to consider the case when x; has another leaf as a sibling. If x; and x; 1 are
siblings, by translation covariance,
yB(xl,---,x,,)(all cee, Tﬂl, e ,an) — yB’(xl,u-,)?l,---,xn)(alf el (Tal)Xl_Xl+1al+1, e ,gn)
= yBZ(Xlw-,921,-“,Xn)<a1/' T /ax1<alxlixl+1al+l)r' o, an)
= axzyBl(x1,~~~,Jel,m,xn)(”l/' AT gy, ay)
= aX]yB(xll.n,xn)(al/ e /al/ et /ai’l)'

If x;_1 and x; are siblings, by the inductive hypothesis and translation covariance,

Vo(er ey @1, Tay, -, ay)
Vit ety sy (@1 AT (Tay), )
= yBU*l)(Xlw-,J?z_l,xz,~-~,xn) (a, - (T — axl,l)(alflxlflixl“l)/' o, an)
= (9 — axl,])yB(I—l)(xl’.../flilrtl’.../xn)(all' At ay, ,ﬂn>|t,:x,
= axlyBU*l)(nw-,J?z,l,xl,---,xn) (a1, @ " " May, - an)
= 9 V(ay ) (@1, 1 ),

and the lemma follows. O

Lemma 6. Let V be a prefield algebra, and suppose ay, - - - ,a, € V and n > 1 are n-associative.
Then, ay,--- ,Tay, - - - ,a, are n-associative, forany 1 <1 < n.

Proof. Suppose we have ¥ (xq,---,x,) € V[[x1,---,x,]] and N € N such that
III(xl/ e /xi’l) == 5n(x1/ e /xi’l)NyB(xl,...,xn)<al/ e /ai’l) (15)
for all B € B,,. By applying s, (x1,- - - , ¥4)0x, to both sides, we get

Sﬂ(xll T /xn)ax,lf(xlz ot /xn)
= N(axlsn(xl/ e /xn))5n(xl/ e /xn)NyB(xll...’xn)<al/ Tt /an)

+5n(x1/' e /xn)N+1axlyB(xl,...,xn)(011,' e ,an)

and by (15) and Lemma 5, we have
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ﬁn(xl/' e ,xn)NHyB(xl,...,xn)(ﬂl, <o, Tay, - - ,an)
- sﬂ(xll e /xn)axIT(XL to /xn) - N(axlsn(xlz ot /xi’l))‘i{(xl/ T /xl’l)

forallBe B,. O

Lemma 7. Let V be a prefield algebra, and suppose we have ay, - - - ,a, € V,n > 2, witha; =1
for some 1 < i < n. Then, they are n-associative if and only if a1,--- ,8;,- - ,a, are (n — 1)-
associative, where d; means that a; is omitted.

Proof. The direct implication follows from Lemma 4 because a(_)1 = 1(_yya = a for
any a € V. Conversely, suppose ay,---,4;,--- ,a, are (n — 1)-associative. We have
Y(xy, -, %, ,x0) € V[[x1,--+,%;,--+,xn]] and N € N such that

snfl(xlr e ,5(\1', tee rxn)NyB(xl,.-.lfi,m,xn)(ali tee /ﬁi/ e /a}‘l) = T(xll te ,.721‘, tee /xl’l) (16)
forall Be€ B, 1.Let C(x1, -+ ,x,) € By(x1,- -+, x,) and consider

spo1 (xR )NV e o) (@1, L ). (17)

Because n > 2, x; is not the root in C(x1, - - - , x5, ); hence, it is either a left child or a right
child. If it is a left child, we have
w = X;v

for some nodes w, vin C(xy,- - - , X, ), where v has leaves x; 1, - -, x;j. Let Clxy, -+ ,xi_1, Xj,
.-+, xp) be the contraction of C(xy,--- ,xj,--- ,x,) by w, and let

C*(x1, -, &y xn) € Bya(x,--+, %00+, Xn)
be the tree obtained by replacing the subtree w by the subtree v in C(xq, - - - , x,,). Because
Xo(ai,ai1,- - aj) = 170X (041, -+, a7) = Xo(aigr, -+, aj),
by Lemma 2, we have

Vet o) (@1, 1, an)
= V(e iy o) @1 Xo(@i diga, -+, ag), - an)
= yC(xl,---,xi,l,x]-,m,xn)(ﬂlr' XKo@, ,0), o an)
= Ve (a1, iy o) (@1 S iyt )

and, therefore, Equation (17) equals
su_1(x1, -, Ri, fxn)NyC*(xl,--~,;21,~-~,x”)(alf'" g, an) =Y(xq,- -, R, )

by (16). If x; is a right child, then
w = ux;

for some nodes w, uin C(xy,- - -, x,), where u hasleaves xy, - - - , x;_1.Let C(xq, - -+, x¢_1, X;,
-++,xp) be the contraction of C(x1,- -+ ,x;,- -+ ,x,) by w, and let C*(x1,- -+ ,%;,- -, x,) be
the tree obtained by replacing the subtree w by the subtree u in C (x1,- -+ ,xu). Because

Xolag, - ,ai-1,8;) = Xy(ag, - ,ai_1) 51751 = =T X, (g, -, a;_1),

we have, by Lemmas 2 and 5,
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yC(x1,~~-,xi,~-~,xn)(a1, e, 1, ,an)
- yc_(xlr"'/xk—lr-xi/“'lxﬂ)(all e /Xw(ak/ cet o, 4i-1, ai)/ e /al’l)
i—1—x;)T
= yC— X b4 X X (a1’ e ,e(x,,l xz) Xu(ﬂkr e /ai—l)/ N ,an)
( 1777 P Ak—=1X07" n)

Xj_1—X;)0x;
— e( i-1X;) X; yC(x1,~~~,xk,1,xi,~~,xn)(alf N ’Xu(ak’ N Iallfl)l NN ,an)_

Because u has leaves xy, - - - , x;_1, we obtain Xc-(xl e XK ) (ay, -, Xulag, -+ ,ai_1),
,ay) from

XC(xl,...,xk,l,x,-,l,-..,xn)(alr Tty Xu(uk/ e /aifl)/ o ,ﬂn) (18)

= XC*("L"-,J?i,-",xn)(al" el ap)

by replacing x; — x;_1 to x; — x; when x; is not a leaf of u. The variables x; fork <j <i—1
only appear inside X (ag, - - - ,a;_1) in (18). Hence, we can replace x; to x; + x; 1 — x; for
allje]J={j|j<korj>i}in(18). Forj, I €], xj — x;_1 becomes x; — x;, and x; — x; is
left-invariant. If n € |, then
yC(Xl,“',Xk,l,xl',m,xn)(ull Tty Xu(ak/ o /aifl)/ e ,ﬂn)
= ean XC(Xl,"',xk_1,x1',"',xn)(a1’ Tty XM (ak/ to /aifl)/ T /an) (19)

i—xi-1)T g
= elr—%-1) (yc*(xlf"ﬁ?i,m,xn) (a1, -~ 4, an) |X/’—>Xj+Xi—1—Xirj€I)’
andifn ¢ J (if i = n), e®i—%i-1)T = e(xn=2u-1)T jn (19). In both cases, we have

Xi_1—X;)0x;
e( i1 X;) leC_(XI,'..,Xk71,Xi’.“,xn)(alr e ,Xu(ak’ e 'aifl)l e ’gn)

— o(Xi1—xj)0y R TP
=e v (yC*(xlx'“/fi/"'rxn)(al’ r iy ’a")’xijﬁrx,-_lfx,-,je])'

Because for any f(x1,- -+, %, ,xn) € V][x1, -+, %i, -+, Xn]],
i_1—X;)0x. s _
e(xl 1 X) i (f(xl,... rxil"' ’xn)|xj|—)xj+xi71—xl‘,j€]) —f(Xll‘.. rxi/"' IXn),
Equation (17) also equals

57171(3(1/ e IxAi/ e /xl’l)NyC(xlr...’xi,...’xn)(al/ e /1/ T /an)

— elXi-1—xi)ay; ((511—1(951’ cee  Riy e, X
X yc*(xlf"rfi,'“/xn)(al’. Coli e an) ) |x]'ij+xi71—Xirf€I>

— el¥i-1=xi)ox; (‘f'(x1,- Ry ’x")|x~

j'_>xj+xi—17xi/j6])

:\If(xll... ,_fi/. .. /xn)
and the lemma follows. O

4. F, 2 .7:,,4_1

Let F), be the class of prefield algebras that are n-associative. We now construct an
example of a field algebra V belonging to F; but not to F,1.1, n > 3. It is a simple example
generated by a single element a.
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Theorem 1. Let n > 3. Let C[T|a be a free C[T]-module generated by an element a. Let
A = T*(C|[T]|a) be the tensor algebra of C[Ta, a free associative C-algebra generated by C[T|a.
We define a grading on A by setting dega = 1 and deg T = 0, so that

A= (C[T]a)*"

k>0

and each Ay = (C[T]a) “Fisa C[T]-module, where T acts as a derivation of A. Hence, C[T] acts
on Ay via the k-fold comultiplication map

Ay : C[T] — C[T]®k

given by Ay(T) = X5, T, with Ty =1® - - - @ T® - - @ 1 having T at the ith position, and T is
the zero map on Ay = C. We consider the ideal

Ioniz= P Ax

k>n+2
consisting of all elements of degree > n + 2, which is closed under T, and define
V= A/IZH+2'

V is naturally an associative C algebra with a derivation T. We define a prefield algebra structure
on V as follows: We have the grading on V given by

n+1
V=6V
k=0

and each Vj is identified with ((C[T]a)®k. Choose any element

Gi(x1, - xn) € Vi ((x) [l - 2], 20)
Gr(xe, -+, xn) € Vi (i) [[v1 — 2+ -+ 5 X1 — X X1, -+, X
for2 <k <mn.Let1l e C =V, be the identity element of the prefield algebra. To give the map
X VXV = V((x)),
we define it for graded components of V. We have

(VxVii= P VixVu, 0<Im<n+1
I+m=k

(i) For (V x V), wherek < n, forallu € Vyand v € Vy, with 1 + m < n, we define
w0 =T U @0 € Vi ((1)).

(i) For (V x V), withk > n+2,welet-*-: (V x V) — V((x)) be the zero map. Hence, when
the sum of the degrees exceeds n + 1, the product vanishes.

(iif) It now remains to specify -*- on
(VX V)1 =Vx Vi) @ (Vi x Vi) @ - & (Vg1 X V).

For (1,0)€ Vo x Vy4q, let 150 = v. For (u,1) € V11 x Vo, let u*1 = *T u.
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(iv) For the rest of V; x Vi with 1 +m = n+1,1,m > 1, we define the product on the follow-
ing C[T]-module generators and let it be generated by the relation (Ta)*b = 9x(a*b) and
a*(Tb) = (T — 9x)(a*b) to all of Vi @ V. Take

T(jl)a R R T(jk—l)a X a
with ji,- -+, jx—1 > 0 as generators of Vi. For V1 @ V,,, let

axl(T(jl)a®...®T(jn—l)a®a) — W (x1),

T et

(1) ; . i1
where ¢ i (x1) is the coefficient of x5 xtin

G1(x1, -+, xn) € Visa ((x1))[[x2, -+, 2]

(v) For Vi x V,_guq for 2 < k < n, we define

(T(jl)a Q- TU1)g a)xk(T(fk)a Q- -®TUn15 a) = c®) (x1)

]1"'jn—1
where C]('lk-)--jn,l (xi) is the coefficient of (x1 — xi )/t - - - (xp_q — xg)k-1 xi"ﬂ . ~x£{”1 in

Gr(x1, -+, xn) € Vi () [[x1 — Xk, -+, X1 — Xioy Xie1, - -+, X

Then, V is a prefield algebra with the following properties:
(@) Themap -*-: V x V — V((x)) is degree-preserving.

(b) Ifuy,---,u; € Varesuch that Z{::l degu; < n, then

XB(X],---,xj) (”1/ Uy, - - ,uj) — e(xlij)Tul ® e(Xzfx]')T U@+ e(xj,lij)Tuj_l ® uj,
yB(Xl,“‘,Xj)<ul/ Uy« ,M]') = ex]Tul ® eXZT Up Q-+ & eij Uj
forall B € B,.

(©) Ifuy,---,u; € Varesuch that 2?21 degu; > n+ 2, then
XB(X],---,xj)(uLMZI tt ruj) - yB(xl,---,x]-) (ul/MZI e ,T/l]') =0

forall B € B;.

Proof. We check that V is a prefield algebra. By (i) and (ii), the prefield algebra axioms in
Definition 2 are seen to hold on

(VxVii= P VixVu, 0<Im<n+1,
I+m=k

for k < nork > n+4 2, and it follows from (i) and (ii) that (b) and (c) hold. On
(Vx Vg1 = Vo x Vys1) @ (Vi X Vi) @ -+ @ (V41 x Vo), consider the most general
degree-preserving map -*- : (V x V), 11 — V,41((x)) that satisfies the prefield algebra
axioms. The product -*- on Vy x V1 and V, 41 x V} is dictated by the identity axiom,
and thus must be defined as above, as in (iii). Consider V; X Vi, with[+m =n+1,I,m > 1.
Because each V; and V}, are free C[T]-modules, the translation covariance is satisfied if
we define -*- on the generators u; of V; and v; of V;, and let the translation covariance
determine -*- uniquely on the rest of V; ® V;;, by the formula

(L A(Mu) (L 8i(T)oy) = L fi(@x)g(T = 3x) (1))
! ] i,j
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for any f;(T), g;(T) € C[T]. We take
TWag.- - @Ti-VagaecV,
TWag . @ Th-Vagac V,

for ji,- -+ ,ju—1 = 0 as the generators of V; and Vm, respectively, with [ +m =n+1 and
l,m > 1. Hence, we are free to choose, foreach T'g @ -+ - @ Ti-Vg @ aand T ® - - - @
TUn-1)g ® a, an element

(T(]l)a R R® T(]’l*l)a ® a)x(T(jl)a XX T(jnfl)a X a) c Vn+l((x))

The choices that we make are best organized by generating functions. For V; x V,,, replacing
x with xq, we let

G](X],'--,xn) = Z xél...x"];r_luxl(T(jl)a@...®T(jn7])a®a)
jlr"'rjnflzo

€ Vi () [[x2, -+ 2]

It also follows that
Gi(xr, ) = 0" (€T aw - @enTawa) = a (@2(- - (a7a)). (1)

For Vi x V41 for 2 < k < n, we collect the products into generating functions as

Gr(xy, - xn) = ), (a—x) - (e — xk)jk’lxilﬂrl Cap!
jl/"'fjn—lzo

X (T(]l)a R R T(jk*l)a X a)xk(T(jk)a R X T(jnfl)a X a)

€ Vi () [[x1 — Xk, -+, X1 — Xpes Xpeqr, - -+ 4 X |-
Then we have
Gk(Xl, N ,xn) — (e(xlka)Ta R ® e(xkflka)Ta X a)xk (exk+lTu KRR ex'lT ax a). (22)

In summary, these generating functions determine the product -*- completely on the
generators, and we have freedom to choose any functions

Gi(x1, -, %n) € Vit ((x1)) [[x2, - -+, xu]]
Gr(x1, -+, %n) € Vi () [0 — xp0, - -+, X1 — Xk Xpgr, - -+, X
for 2 < k < n, so that the theorem holds. [

Formal Expansion L,

For a formal expression f(x,y,z,- - - ), we use the notation ¢ to denote

f(ry,z ) = e f(hy 2]
=Y =yl fLyz )y,

j=0

(23)

if the latter expression is well defined. Because the specific domain of the map ¢ varies
according to the given situation, it is convenient to have a general discussion first. The fol-
lowing properties hold when a suitable domain is specified.
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(i) If f(x,y,z - ) is a power series in x, then it is invariant under LZ, because

Hf ey z ) = e f(yz ),
=flx—y+tyz-)|_, =fxyz-)

if each step of the argument is well defined.

(i) If the product f(x,y,z,---)g(x,y,z,---) is defined, then i respects the product, be-
cause

[z(f(x,ylzl. .. )g(xlylzl. .. )) — e(x*y)at(f(t’ylzl. .. )g(t’ylzl. . ))|t:y
= e(x*y)aff(t,y,z, . )|t:y e(xfy)at g(t,y,z, . )|t:y
=nf(xyz ) 68X y,z ),

if each step of the argument is well defined.

(iii) If the compositions of the expansions are defined, then t]Z/t% = 1313, because

GES (e y,2, ) = eV (O f s,z )|
_ —2)0s X—Y)0¢
=ely—2) (e( Y f(t,s,z,'--)‘t:s”
— ( oy=2)(3+35) o(x—1)0; e
= (e e f(t/ S, 2, ))
_ (e(xfz)at e(yfz)as f(t, S,z ))

= REf(xyz- ),

5=z
5=z
’ t=z,5=z

’t:z,s:z

if each step of the argument is well defined. In particular, if f(x,y,z,- - - ) is a power
series in y, then we have

Gz ) = Gy ). @)

Example 3. Th
’ o & C((x) = C(()((x =)

gives a field map which is identity on the common subspace C|[[x]]. In particular,

) =Y (-0)y i (x—y)

j20

is the reciprocal of x = y+ (x —y) in C((y))((x —y)), and it is the formal expansion of
x b= (y+ (x —y))" 1 in the domain |x — y| < |y| [15]. The image LC((x)) is a subfield
of C((y))((x —y)) isomorphic to C((x)).

Lemma 8. Let V be a vector space over C. For m > 0, we have a well-defined map

VI yz, ozl = VIO - vz =y, zm =yl

given by (23).
Proof. Suppose f(x,y,z1,** ,zm) € V[[x,y,21,- -+ ,zm]][x"1]. Then,
f(x/]/zzlz e /Zm) = xiN(P(x/]//Zl/ e /Zm)

for ¢(x,y,2z1, -+ ,zm) € V[[x,y,21, -+ , zm]]. Hence,

AfCyz) = @y N)g(xy, 21, zm). (25)
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By writing x = (x —y) +yand z; = (z; —y) +y for 1 <i < m, we see that ¢(x,y,z1,- -,
zm) belongs to V[[x,y,z1,- -+ ,zm]] = V[[y,x —y,z1 —y,- -+, zm — y]], and (25) belongs to
V(y)lx—y,z1—Y, - ,zm — y]]- Equivalently, because

(P(x,y, Z1, - /Zm) — e(x_y)as e(zlfy)afl e e(zm_y)afm (P(s, yl tl/ s, tm) |s:t1:~~:tm:y ,

we can write

[Zf(x,y, Z,- . ) — e(X—y)as e(zlfy)afl e e(zﬂl_y)afm f(s/ Y, tl, s, tm) }s:tlz---:tm:y

whichisclearin V((y))[[x —v,z1 =y, - ,zm —y]]. O
Lemma 8 shows that we have a well-defined map

e Viryz, - zlle ) S VIO - vz - vz~ Yz 2l

for 0 <1 < m,because V[[x,y,z1, - ,zm]][x 1] C VI[x,y,z1, -+, z]|][x Yllzi41, - 2zm]]-
Lemma 9. Let V be a vector space over C. Two elements

f(x/yrzll e /Zm) € V[[x/ylzl/ e /Zm]][xil]/
sy z, ) eVIW)x =y 21—y 2=y, 2101, 2]

satisfy

Ny, ze, - zm) = xNg(x,y, 21, Zm)

for some N € N if and only if
g(x/yrzll"' /ZWl) :l]J/(f(x/y/Zl/"' IZWl)' (26)

Proof. V = V|[x,y,z1, ,zm)][x Jand W = V((y)[[x —v,z1 — Y, - ,21 — Y, 2141, " - ,
zm]] are vector spaces over C((x)) and £C((x)), respectively. If

Y(x,y,z1 - zm) = XN Fo Y,z zm) = xNg(x, Y21+, Zm)

for¥(x,y,z1--- ,zm) € V[[x,¥,21 -, zm]], multiplying ¥ (x,y,21,- - ,zm) = fo(x,y,zl,
-+ ,zm) by x N in V gives

fx,y,z1,- - ,2m) = x‘N‘I’(x,y,z1,~ L Zm)-
Multiplying ¥ (x,y,z1,- -+ ,zm) = xNg(x, Y,21, -+ ,Zm) by LZ(x_N) in W gives
e(x,y,z1,-+ zm) = LZ(X_N)‘Y(x,y,zl,- L Zm)
and (26) follows. Conversely, if (26) holds, then writing
flxy,z1-- ,zm) = fo‘I’(x,y,z1 Ce,Zm)
for¥(x,y,z1--- ,zm) € V[[x,y,21- -+ ,2m]|, we have
gy z zm) = G(x ¥ (% y, 21 zm),
and multiplying by xN gives
WNe(xy,z1- - zm) =¥(xy,21- - zm) = X" f(x,y,21- -, 2m)

and the lemma follows. O



Mathematics 2023, 11, 206

17 of 25

Lemma 10. Let n > 3. The prefield algebra V defined in Theorem 1 is n-associative if and only if
all of the following conditions are satisfied for the generating functions in (20).

(i) For2<i<n-—1,
Gi(x, -+ xu) € (Vagallwr, -+, % - xal) [ ) [ — xiga]],
Gl(xll T /xn> € (VnJrl[[xl/' o /xnfl]][x;l]) Hx"”'
Ga(x1,- -+, xn) € (Vg [[x2, - - - ,xn]][xz_l])[[ﬁ —x2]].

(i) For2<k<mn,

Gk(xll' o /xn) == l?{Gl(Xl,' o /xi’l)-
(iii) For3 <k <mn,

Gk(X],’ o /xn) = l?;GZ(xl/' T /xn)-

where ;X and 1y are the maps given by the formula (23).

Proof. By Theorem 1, it is only nontrivial to check the n-associativity of the vectors in
V when the sum of the degrees is #n 4+ 1. By Lemma 6, it is enough to consider the n-
associativity of the generators of V as a C[T] module. We can take the generators to be

1,0, T"aa TWaeTWaxa, ---

with j; > 0 and consider the cases where the sum of the degrees is nn 4 1. It is easy to see
that considering the n-associativity of the n vectors

a,---,4a, T(j)a@a’al...la (27)

suffices, where the element T a @ ais at the ith position for 1 <i < n,j > 0. Indeed, if (27)
are n-associative, then by Lemma 4, the n — 1 vectors given by

a---,a, T(jl)a@T(h)a@a, a---,a, or

a,---,a, T(jl)a@a,...,T(]'Z)g®a,a,...,a

are (n — 1)-associative, and by Lemma 7, the n vectors
a,---,4a, T(jl)a@T(jZ)a@a, a,--- 11,... ,a

a---,a, T(j])a@a’... ,T(jz)a®a, a--- ,1,... ,a

are n-associative. Continuing this way, we obtain all possible combinations of generators
whose degrees sum to 7 4- 1 involving more 1s.

Let B(xy, -+ ,xn) € Bu(x1,- -+ ,xp). Let 0 always denote the root, with children u and
v. We have a partition of the set of leaves into {xq,- -+, x5} U {xs41,- - -, X» } consisting of
the leaves of u and v, respectively, for 1 < s < n — 1. In this case, we say that B splits at s.
We define B,,(s) to be the subset of B, consisting of those that split at s. Hence, we have a
partition of B, into Jy<s<y,—1 Bu(s)-

Let i be the position of the vector TWa ® ain (27) for a fixed j > 0. First, we consider
the case i = 1, namely, the n-associativity of

TWqa ®a,a,---,a. (28)

For each j > 0, the expression yB( (T(f Ja ® aa,- .-, a) for B € B, only depends on

1 <'s < n —1where B splits.

xlr"'rxn)
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(i) Casei=1lands=1.

Suppose B splits at s = 1. Then, for 0 = uv in B(x1, -+ ,x,), we have
X (TVa®a)=TVawa,
Xo(a,- - ,a) = e )T g el gg ... geltn1-3T g g
and, therefore,
VB(x1,+ iy 1,0) (TVa@a,a,---,a) = (TVaa)1 (e ae™ a0 - @1 Ta®a).
By a change in variables,
yB(x2,~~,x,,,0) (T(j)a ®a,a,---,a)= (T(j)a ®a)* (e"3T 10T gw. . 0eTaw a).
By (22), this is the coefficient of (x; — x3)/ of
Go(xy, %2, ,xn) = (e(x1fx2)Ta ® a)xz<ex3Ta el 0. .0elaw a)

which is an element in
Vi1 ((x2))[[x1 — x2, 3, - -+, x]].

Writing Go(x1, X2, -+, Xp) = ijo(xl — xz)sz,j(?Q/ .-+, xy), we have
Gaj(x2, -+, xn) € Vg1 ((x2))[[x3, - -+, xul]-

(ii) Casei=1land2<s<n-—1.
Suppose now B € B, (s) for2 <s<mn—1.Letk=s+1,3 <k < n. For 0 = uv, we have

X (TVa®a, a,---,a)
— e(xlka—l)T(T(]l)a ®a)® e )T .. g el %-1)T g g g
Xv(a, N ,a) = e(xkfxn)Ta ® e(xk+17xi’l)Ta R R e(xn*]fxn)Ta R a.
Thus,
yB(x1’.."x"71,0) (T(])a ® aa,--- ,a)
= (e )T (T @a)@et2 1T ... @elk27%1)T 5 g g)%1
X (eka a ® exk+1T a ® e ® exnflT a ® ﬂ),

and with a change in variables,

Vb(xg i) (TWa@aa,- - a)
= (e(xzka)T(T(]')a ®a)® ()T 2 ® e— gy

X (exk+1Ta e 2Tge. .. .@eT g a).
Hence, it is obtained as the (x1 — x2)7 coefficient of

Gie(x1, %0+, xy) = (1™ T g g 2T g ... @ ek1720T g )%
X (exk+1T a ® ekarZTa ® e ® ex"T a ® a)
- (e(xzka)T(e(erz)T aRa)® e =T ... gek1—%T 5 a)**

X (exk+lTa ® exk+2Ta KRR exﬂTa X a)
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which belongs to

Vi1 () ) [ — Xk, -+ ) X1 — Xpey Xge1, -+ X
= Vi () [[x2 = X%, -+ 5 X1 — Xp, Xpegr, - -+, %] [[X1 — x2]]

by writing x1 — xy as (x1 —x2) + (22 — x%). Writing Gr(xy,-+ ,xp) = ijo(xl — Xz)ij,j(XQ,
-+ ,xy), we have

Grj(x2, -+, xn) € Vi1 (o)) [[x2 — X, - -+, X1 — Xp X1, o+, X |- (29)

We now combine the cases (i) and (ii). Suppose the vectors in (28) are n-associative. We
have ‘I’]-(xz,- <+, xn) € Viya[[x2, - -+, xn]] and N; € N such that

‘II]'(XZI e /xn) - 571(x2/ o, Xny, O)Nij,j(le tet rxn) (30)

forall2 < k < n.Because Gy j(x2, -+, %n) € Viy1((x2))[[x3,- -+, xu]], ¥j(x2, - -, xn) must

have a factor
(x3 CXp H (xp — xq)>

3<p<g<n

N;

Because Gy j(x2, -+, xn) € V((xx))[[x2 — Xk, -+, X1 — Xk, X1, -+, Xn]], ¥j(x2, -, xn)
must also have a factor (x; — x;)Ni for all 3 < k < n. Canceling these factors in (30) for
k = 2, we conclude that

N4
X, G j(x2,- -+, xn) € Vypal[x2, - -+, xal],
and thus
GZ,j(xL e, xn) € Vigallxo, - /xn]][xil]f (31)

and N N
x2]G2/j(x2,- ce ) = x2’Gk,j(x2,~ c L, Xy) (32)

for all 3 < k < n. Therefore, by Lemma 9, we must have
Gk,j(xZI Tty x}’l) = l?z( Gz,j(xZI Tty xn) (33)

for all 3 < k < n. Conversely, if (31) and (33) hold, it follows from Lemma 9 that (29)
and (32) hold, and the vectors in (28) are n-associative. The conditions for all j > 0 can
equivalently be written as

GZ(xll T /xn) € (VnJrl[[xZ/' o /xn]][xgl]) [[xl - xZ]] (34)

Gk(xll"'/x ) fCIQCGZ(xll"' /xi’l)
forall3 <k <n.
Now consider the n-associativity of
u,... ,a’ T(j)a@a, a/... /a
where T a @ a is at the ith position, for a fixed2 <i <mandj > 0.
(iii)) Case2 <i<mnands =1.

Suppose B splits at s = 1. For 0 = uv,
Xy(a) =a,
Xv(a,... ,T(j)a®a,... ’a)
= e(xz_x”)Ta ® . ® e(xi_x")T(T(j)a ® a) ® e ® e(xnfl_x")Ta ® a.
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By changing variables to xq,-- -, %;,- - - , x4, 0, we obtain

VB(x1, 5o pin,0) (7 8, TWa®a,a,---a)
—a1(e?Ta® e Tage T (TVign) ®- - 2e"Taga).
We obtain this by taking (x; — x;,1)/ coefficient of
Gi(xy, -, xy) = axl(esza® el ggeditTgw ... ®ex”Ta®a)
— g4 (esza QR ® exi“T(e(xi*xi“)Ta ®a)R® - ® T ® a)
€ Vi ((x1))[[x2, -+ xn]]

where we have

Vi () [[x2, -+ xal] = Vipa () w0 % 2] [ = xiga]s

We write

Gl(xl, e /xi’l) = Z(xl - xl+1)]G£Z,]j(x1/ e /fi/ e ,xn)
=0

where ‘
cﬂ.(xl,... (20 xn) € Ve () [[xa, -+, %6+ 2]
(iv) Case3 <i<nand2 <s<i—1.

Here, we have, for o = uv,

Xu(a, e ’a) — e(xl_xS)Ta R R® e(xs—l_xs)Ta ® a,
Xv(a,... ,T(j>ﬂ®ﬂ,"' ,a)
= e(x5+l_xn)T aR---X® e(xifl_xl’l)T a® e(xi_xﬂ)T(T(j)a X a)@
X ® e(xn—lfxn)Ta ® a.
By a change in variables,
yB(Xl,"',J?,',"',Xn,O) (a’ ce-,4a, T(])a ® aa,--- ,a)
= (e(xlfo)T AR ® e(xs,lfo)T a® u)xs

X (exs+lT a ® e ® exiflTa ® exi+1T(T(j)a ® a) ® e ® eleT a ® a>‘
With k = s, this is obtained as the (x; — x;,1)/ coefficient of

Gi(xq, -+ ,xy) = (e(xl_xk)Ta ® - @el1=xT 5 )% (e 1T g @emT a®a)
= (e(xl_xk)Ta R X e(xk—l_xk)T a® a)xk

x (e nTg@... ®exi+1T(e(xi—xi+1)Ta ®a)Q- - @e"Ta®a)
which is in

Vi1 () ) [ — X -+ X1 — X X1, -+ 5 X

= Vit () [[x1 — Xk -+ Xem1 — Xy Xt -+ R+, X [[x — xig4])-
Expanding Gy (x1,- -+ ,xn) = ijo(x,' — xiH)le[(i]j(xl, <o+, %+ ,x,), we have

A

G][{l/]](xl/ s /J?i/' o /xn) S V?’l"rl(('xk))[[xl - Xk,' t /xk—1 - xklxk—‘,-]/' X /xi’l]]'
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(v) Casei=nand1 <s<i-—1.

Here, we have, for o = uv,

Xu(a, e ’a) — e(xl_xS)Ta R R e(xsfl_xs)Ta ® a,

Xy(a, a0, TDa®a) =elsri=)T g g ... g elma=2T g g (TWg @ a).
By a change in variables to xq,- -, %;,- -+, x4,0, which is x1, - - - , x,_1,0 because i = n,
Vs 10 (@ 14, TWa@a) = (e T ...@els1-%)T 5 g g)%
x (e Taw... e 1T (TVa@a)).
With k = s, this is obtained as the xf; coefficient of

Gr(xy, -, xy) = (=% ... gelk17%T 4 g )k (e nTg. .. 0T awa)
€ V’rl+1((xk))Hx1 = Xk s Xk—1 T Xy X1, 0 /xn]]
= Vi1 (o) [[x1 — 2k -+ X—1 — X, Xeger, - Xn—1] ][] ]-

Expanding Gy (x1,- -+ ,xn) = Y0 xLG,[(’;.] (x1,- -+ ,x,_1), we have

Gyl (1, 1) € Vi () [[¥1 = X+ X1 = X X, %]

(vi) Case2 <i<n—1lands =1.

In this case, for 0 = uv, we have

Xu (u, - ,a, T(])a ® a) — e(xlfo)T AR - ® e(xs—lfo)Ta ® (T(])a ® a),

Xy(ﬂ, L ,LI) = e(xs+1—xn)T AR ® e(xn—l—xn)T a®a.
By a change in variables,

yB(xl,---,J?i,---,xﬂ,O) (a, - a, T(])g ®a,a,--- ,a)
_ (e(xl_xs+1)Ta ®R--® e(Xs—1=xs41)T ® (T(j)ll ® a))xs+l

x (e2Tag...0emTawa).
With k = s + 1 = i 4 1, this is obtained as the (x; — x; 1)/ coefficient of

Gk(xll e ,xn) — (e(xlka)Ta ® . ® e(xkflka)Ta ® a)xk(exk+1Ta ® e ® ex"Ta ® a)
— (e(xl_xk)Ta ® e ® e(xi_xi+1)Ta ® a)xk(exk+1Ta ® e ® ex"Ta ® a)
€ Vi (i) [[x1 — 2k, - -+, Xp1 — X, Xpg1, 4 X

= Vi1 () [0 — Xk, -+ s Xk—2 — Xk, X1, X ] [[%5 — Xig1]]-

We write Gk(xll e /xn) = Z]'ZO(xi - xi+1)le[(l]j(x1/ e r-’el‘/ e /xn)/ with

Gl e, i+ %) € Vn () [ly = Xk Xea — X X1,

(vil) Case2<i<n—2andi+1<s<n-1.
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In this case, for 0 = uv, we have

Xu(a,... ,T(j)a®a/... /a)
= e("l*XS)Ta R ® e(xi*XS)T(T(f)a R u) R ® e("s—l*XS)Ta ®a,

Xv(a’ e ’a) — e(xsﬁ»l*xn)Ta ® e ® e(xnflfoI)Ta ® a.
By a change in variables,

yB(xl,‘“,fi,w,xn,O)(a, -4, T(j)a ®a,a,--- ,a)
:( el @. . gelixn)T, g e(xi+1*xs+1)T(T(J‘)a ®a)®

e® e(xs—xs+1)Ta ® a)xs+1 (ex5+2Ta R -® e T g, ® Ll).
With k = s + 1, this is obtained as the (x; — x;1)/ coefficient of

Gr(x1,- -, xn)
= (e W ... ge 17N ;@ a)% (e T pg .. @ a@a)
= (MW, .. gelin W (i)l ;@4 Q... @e17%T 5 g)%
x (e 1Tg®...@e"T g®a)

€ Vi1 () [[x1 = xpe, - -+ ) X1 — Xioy Xp1, -+ 4 X

= Vi1 () [[x1 — Xk, -, X5 — Xp, o+ X1 — Xjey X1, -+ -5 X ) [[X5 — Xig1]]-

We write Gy(x1, -+, xn) = Ljso(xi — xi+1)fG,[<l;]]-(x1, oo, R e, xn), with

—

G,Ei]].(xl,- o Ripe %) € Vi (i) [[xn — X+, X — X+, Xkt — X X1, X |-

Cases (iii)—(vii) cover all points in the rectangle 2 < i < nand1 < s < n — 1. Cases
(iii)—(v) cover all the cases s < i; in this case, with k = s, yB(xl,__,,,e,_,,,_ 3,0) (a,---,a, TWa®
a,a,--- ,a) is obtained from the (x; — x; 1)/ coefficient of G (x1, - - - , x,), with the under-
standing that x; — x;11 = x, if i = n. Cases (vi) and (vii) cover all cases s > i, and in this
case, the same is true except we should take k = s + 1. Hence, for a fixed 2 < i < n, we
have 1 < k <nwithk #1i.

Suppose (27) is n-associative for a fixed 2 <i < n and j > 0. We have ‘I’ij(aq,- R
o, xn) € Vyaal[x, oo, %00, xp]] and N;j; € N such that

A

IIIi]‘(xll' o /Jei/' o /xi’l) :ﬁn(xl/' te /561'/' o /xnlo)NijGIEZ,]]'(xll' X ,Xn)

forall 1 < k < n with k # i. Because Gﬂ(xl,. R xn) € Vg () [[x2, -+ i -

xn]], ¥ij(x1,- -+, %i,- -+, xn) must have a factor

Njj
(x2~~~xi~--xn I (xp—xq)) :
2<p<q<n
paF
Because G][(l,]](xl/ e /Jei/ e ’xn) belongs to V?l+l((xk))Hxl — xk, .o /J{_-\xk/ I /xkfl — xk’
Xgi1, -+, Xn]] for k > iand to Vi1 ((xx))[[x1 — Xk, - -+, Xk—1 — Xy Xgw1s -+, Kiy o, X ]
for k < i, we see that ‘-I’i]-(xl,- -+, %, -+ ,x,) must also have a factor (x| — xk)Nif for all
2 <k < n, k # i. Canceling these factors for k = 1, we conclude that

Nji 1 N s
xl ]Ggl’]]'(xlr' X /xn) S V;/H_l[[X],‘ X /xn” (35)
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and thus ]
Gl 2 x) € Vil 2+ xall ] (36)

and .
[i]

Nij A[i N Njj
xl ]GE’]]'(xlr”' S Xi, e ,xn) = xl ]Gk,]'(xl/' SR PR ,xn)

forall2 <k <, k # i. Therefore, by Lemma 9, we must have
Gz[cl;]]‘(xlf“‘ (i X)) = [kaH(xl,. R xn)

forall 2 < k < n, k # i. Conversely, if (35) and (36) hold, it also follows from Lemma 9
that (27) are n-associative. Because GH (xl, -+, %, ,xp) for j > 0 are obtained as the

(x; — xi41)! coefficient of Gy (x1,- - -, x ) the conditions for n-associativity for all j > 0 can
be written as

Gi(xg,---,x ( AERYIESVRREIS S -xn]][xl ])Hxi = Xit1]]
Gr(x1,- -+, xn ) EGr(xy, - xn) 37)
forall 2 < k < nwith k # i, with x; — x;.1 = x;, if i = n. Requiring these conditions

for all 2 < i < n implies that (37) should hold for all 2 < k < n. Combining with (34),
the lemma follows. O

Theorem 2. Let n > 3. Let V be a prefield algebra in Theorem 1 defined with the functions

Gl (xll . /xn) = exp ((.X'1 - xz)(X2 - X?;gl. .. (xn_l — xn)xn) a®(71+1),
(¥1 —x2)(x2 —x3) -~ (X1 — xn)Xn> 2®(n+1)
X1

Gr(xq, -+ ,xp) = tfc’l‘ exp (

for2 <k < n.Then, V is n-associative, but it is not (n + 1)-associative. Hence, the condition of
(n + 1)-associativity is strictly stronger than n-associativity for all n > 3.

Proof. We use the fact that for any commutative associative C-algebra A, if u(xq,---,x;) €
Al[x1,- -+, x¢]] has the vanishing constant term, then for any f(x) € C[[x]], the compo-
sition f(u(xy,---,x;)) is well defined as an element of A[[xy, - - ,xk]]. We verify that
Gi(x1,- -+ ,xn),1 < k < n, satisfy the conditions for n-associativity of V given in Lemma 10.
Let

(x1 —x)(x2 — x3) - - - (Xn—1 — Xn)Xn

P(xll"'/xn): x1

With the understanding that x,.1 = 0, we have

(1 —x2) -+ ((xim1 — xi1) — (0 — xis1)) (0 — Xi1) -+ (X1 — X)X
X1

€ (Cllxr, -+ i ]l ) [ = xia]]

in the ideal generated by x; — x;,1 for all 2 < i < n. Hence,

P(X],“' /xn) -

Gl (-xll' T /xi’l) = (expp(xl/' o /x”))a®(n+1)
€ (Visallxi, -+, i - 2] [0 1) [ — xi41]]
for all 2 < i < n, and the identities

Gk(xll e /xn> lx1G1<x11 /xn)
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forall 2 < k < n in Lemma 10 are satisfied by definition. We also need to verify

Ga(x1,+,xn) € (V[ -, 2]y ') [l21 — 22l

n+1)

This follows because we have Gp(x1,- -+, x,) = exp (t}?P(xl,- -, xn))a®( , where

P Qo xm) = ( Z(_l)szilij(xl - x2)j)(x1 —x2)(x2 —x3) - (Xp—1 — Xn)Xn
j=0

which belongs to the ideal generated by x1 — x in (C[[x2, - - - x,]][x5 ]) [[x1 — x2]]. Finally,
the identities
Gk(x1, e /x}’l> = [fCIZCGz(xl/ T /xi’l)

for 3 < k < n are the consequences of the fact that ti’;tﬁ?P(xl, cee L, Xp) = tff’;P(xl, cee L, Xp),
which holds by (24). Hence, V is n-associative. By (21), we have

Gl (xll e ,xn) = gM (axz(. .. (llx”a))) = yxl(xz(“_(x'lo)))(a,a . ,a)
for the n + 1 vectors a,a, - - - ,a € V. They do not satisfy (n + 1)-associativity because the
presence of an “essential singularity” along x; in Gy (x1, - - - , x,) shows

Sn+1 (xl/ te /xn/O)Nyxl(xz(m(an)))(a/a T ,11) ¢ V[[.’Xfl, te /xn”
forany N € N. [

5. Conclusions

Vertex algebras are analogous to the commutative and associative algebras, and field
algebras generalize vertex algebras by only requiring the associative properties. We de-
fined the notion of higher-order associativity of field algebras. If F; is the class of field
algebras that are n-associative, then by Theorem 2, the inclusions (2) can be written as
proper inclusions

F32F2F52 2 Feo (38)

We may phrase this phenomenon by saying that even if the product of every n fields is
associative and has only meromorphic operator product expansion, the product of more
fields may develop an essential singularity. One may wonder if this can be used to an
advantage to find some strange but interesting examples.

On the other hand, we may want to specify the class F in an efficient way. We
can certainly require the co-associativity in Definition 3. The notion of meromorphic field
algebras was given in [12] with an equivalent definition as a formally rational deformation
operad. Whether there exists a simpler description remains a question.
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