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Abstract: For large space dimensions, the log-linear convergence of the elitist evolution strategy
with a 1/5 success rule on the sphere fitness function has been observed, experimentally, from the
very beginning. Finding a mathematical proof took considerably more time. This paper presents a
review and comparison of the most consistent theories developed so far, in the critical interpretation
of the author, concerning both global convergence and the estimation of convergence rates. I discuss
the local theory of the one-step expected progress and success probability for the (1+1) ES with a
normal/uniform distribution inside the sphere mutation, thereby minimizing the SPHERE function,
but also the adjacent global convergence and convergence rate theory, essentially based on the 1/5
rule. Small digressions into complementary theories (martingale, irreducible Markov chain, drift
analysis) and different types of algorithms (population based, recombination, covariance matrix
adaptation and self-adaptive ES) complete the review.
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1. Introduction

It is within the human nature to favor short, simple and intuitive constructs in abstract
sciences. This is the case with the 1/5 success rule, proposed in 1965 by Rechenberg for the
adaptation of the normal mutation parameter in evolution strategies (ES) [1]. According
to Auger and Hansen [2], the idea of step-size adaptation for probabilistic algorithms was
also independently proposed by other authors around that time, e.g., [3]. Without any
theoretical explanation, the adaptation rule performed surprisingly well in experiments,
providing global convergence for various algorithmic designs and fitness landscapes. The
magical aura around the rule began to unravel in 2000, with the apparition of convergence
proofs for the ES on SPHERE [4–6]. We use uppercase when referring to the fitness function
and lowercase for the uniform distribution inside the sphere. Obviously, the optimum
(minimum) of SPHERE is located at the origin of <n.

F : <n → < F (x1, . . . , xn) =
n

∑
i=1

x2
i . (1)

Apart from the adaptation mechanism provided by the 1/5 rule, the ES design is very
simple: a random walk for generating new individuals (mutation), plus elitist selection,
the natural principle of discarding worse offspring. Together, the three procedures build
up an efficient algorithm, simple in form but complicated in theory. The local behavior is
difficult to estimate because of the discontinuous and inhomogeneous Markov transition
kernel induced by mutation and selection, though global convergence is hard to prove due
to the empirical application of the 1/5 rule. The Markov character of the ES is lost upon
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the application of the 1/5 rule, which observes not one, but several previous iterations of
the algorithm.

In order to gain a better grip on these difficulties, we introduce first the spherical
distributions, a class of multi-variate random variables (r.v.s) which includes the normal
distribution and also the uniform on/inside the sphere [7].

Definition 1.

• An n-dimensional r.v. x is said to have a spherical distribution if

x d
= r · un (2)

for some one-dimensional r.v. (radius) r, and a uniform distribution on the unit sphere un.
Moreover, r and un are independent, and also

r = ||x|| ≥ 0, un d
=

x
||x|| . (3)

• If the spherical distribution has pdf g, then g(x) = g(||x||), and there is a special connection
between g and f , the pdf of r:

f (||x||) = 2πn/2

Γ n
2

xn−1g(x). (4)

The basic algorithm discussed in this paper is the following.
The mutation operator yields new, potentially better solutions from the fitness land-

scape. Classical ES theory, developed mainly by Rechenberg, Schwefel and Beyer, uses
the normal mutation distribution with normalized standard deviation σ = ρ/

√
n [1,4,8].

Rudolph applied the uniform on sphere [9], and a recent study proved that, under proper
scaling of the mutation parameter, the uniform distribution inside the sphere of radius
ρ and the averaged sum of uniforms perform, both locally and globally, similarly to the
normal operator [10].

Under a constant mutation rate, a real ES stagnates in the vicinity of the optimum.
This is where the 1/5 rule applies, by modifying (decreasing) the mutation parameter ρ.
Algorithm 1 depicts Rechenberg’s original (symmetric) version of the 1/5 rule, commonly
applied in both practical and theoretical studies [1,4,6,11,12]. A simplified, asymmetric rule
that only decreases but never increases ρ works as well [10].

There are different ways to describe the sequence of r.v.s {Zt}t∈N generated by the
ES evolution over successive iterations. Contrary to random walk, the Markov kernel
induced by mutation and selection is inhomogeneous, since the current state changes
the one-step transition (success) probabilities. For arbitrary space dimension n, an exact
calculus involving the local transition kernel is intractable, opening the way for various
approximations and making the ES convergence one of the most studied problems in
literature. The stochastic models proposed so far include renewal processes, drift analysis
and martingales [6,9,13–15]. Markov chain models have also been tested, first for constant
mutation ES, without (or prior to) the step-size adaptation procedure provided by the
1/5 rule [16,17]. Decomposing the algorithm into a sequence of constant mutation cycles
(mathematically, a sequence of Markov chains) has also been considered [2,10,18,19], which
is similar to theoretical studies of closely related probabilistic algorithms such as simulated
annealing and random heuristic search [20,21]. It is also worth mentioning the large number
of theoretical studies that do not presume any stochastic structure at all [4,12,22–24].



Mathematics 2023, 11, 201 3 of 20

Algorithm 1 Elitist ES with 1/5 success rule.

1. Set t = 0, tmax, initial point x0 and initial mutation parameter ρ
2. repeat

• t := t + 1
• Mutation: generate a new point x in <n using some spherical mutation distribu-

tion with radius mean ρ
• Selection: if F (x) < F (xt−1) then xt := x

else xt := xt−1

• 1/5 success rule: if t = 0 modulo n, compute the success frequency over the last n
iterations

SF = #S/n

Change ρ according to

(i) ρ = ρ/2, if SF < 1/5
(ii) ρ = 2 ρ, if SF > 1/5

3. until t = tmax

Let us take a closer look at the success region, a key concept in the algorithm’s local
behavior. This is the integration region for both success probability and expected progress.
Let x ∈ <n be the current ES position, A ⊂ <n an open set and the mutation be defined by
a probability density function (pdf) f . The cumulative effect of elitist selection yields the
success region RS

x and transition kernel Px(A). The transition kernel is discontinuous due
to δx(A), the Dirac measure in x—defined as 1 if x ∈ A and 0 otherwise.

RS
x = {y ∈ <n|F (y) < F (x)} (5)

Px(A) =
∫

A∩RS
x

f (y)dy +

[
1−

∫
A∩RS

x

f (y)dy
]

δx(A). (6)

If A = RS
x , Equation (6) reduces to the first term, understood as success probability and

denoted PS.
Under uniform mutation inside the sphere, the modification of the success region—

and also the inhomogeneous Markov kernel—can be observed as the ES approaches the
optimum in Figure 1, from right to left. In case (a), RS

x is the intersection of two spheres
(corresponding to mutation and fitness). As the algorithm approaches the optimum,
assuming ρ has not changed, RS

x becomes a full (fitness) sphere, case (b). The ES stagnates
at this point, the 1/5 rule is activated and ρ is halved, such that RS

x becomes again the
intersection of two spheres, case (c).

Figure 1. Elitist ES on SPHERE: success region (blue) of uniform mutation. The solid line circle
(centered in optimum O) represents the fitness sphere; the dotted circle (centered in current position
P) stands for the mutation sphere. As the ES approaches O from sub-figure (a–c), mutation radius ρ is
halved under the 1/5 success rule.
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Among the many studies devoted to the convergence of elitist ES with the 1/5 success
rule on SPHERE and similar quadratic fitness functions, we review in this paper only
what we consider to be complete theories, which follow the general pattern presented in
Algorithm 1 and also achieve proofs of global convergence. Consequently, we distinguish
between classic ES theory, in Section 2, and general theories, in Section 3. In classic ES
theory, the accent falls on local behavior, with global convergence being a consequence of
the best-case local scenario. General theories, on the other hand, provide a unitary solution
to the convergence paradigm. To classic ES theory we assimilate the works of Rechenberg,
Schwefel, Beyer, Rudolph and Jägersküpper; and to general theories the analyses of Auger
and Hansen of Akimoto, Auger and Glasmachers. Note that the papers of Jägersküpper
fall somehow in between, since they build on local behavior, but also provide a global
convergence proof outside the best-case local scenario. The adaptation mechanisms used
in population-based ES—with multiple offspring, multiple parents and recombination,
self-adaptation or covariance matrix adaptation—are briefly discussed as generalizations
of the 1/5 success rule in Section 4.

We underline the fact that this review paper is not an exhaustive survey of the ES
state-of-art—we defer to [25] for that purpose—but a personal reading of the convergence
theories built in this field at the intersection of probability theory, computational complexity
and statistics.

2. Classic ES Theory

As in Figure 1b, assume the algorithm and the center of the coordinate system are
both in P; the distance to global optimum O is R = |OP|; denote x1 by x and the remaining
n− 1 components x(2) by h. The classic ES theory focuses on the local, one-step behavior of
the algorithm, where the mutation rate ρ can be assumed constant.

If C is a random point generated by mutation, the progress becomes a one-dimensional
r.v. corresponding to the difference in distance to optimum between the current ES position
and the next. Due to the elitist selection, progress is non-negative. For a successful mutation,
C is inside region RS

x , the blue area in Figure 1. Apply Pythagoras to OC and u = ||h||2;
then, progress becomes [10] and ([4], p. 54).

progress = |OP| − |OC| = R−
√
(R− x1)2 +

n

∑
i=2

x2
i = R−

√
(R− x)2 + u. (7)

Insert progress into the integral and set A = RS
x ; then Equations (6) and (7) build the

so-called ES’ expected progress:

φ =
∫

RS

(
R−

√
(R− x)2 + u

)
f (x, u)dxdu. (8)

In order to approximate the above integral, two distinct cases occur: (i) ES close to optimum,
or large step size (Figure 1b); (ii) ES far from the optimum, or small step size (Figure 1a,c).

With the same uniform mutation distribution, ref. [24] refined the results of both [13,26],
and came closer to the analysis reviewed below by considering, in the estimation of local
expected progress, the same two cases. However, without a deeper insight into spherical
distributions, the study yielded only upper bounds for the expected progress and thus
lower bounds for the global convergence time. Additionally, [23] analyzed an EA with
λ > 1 individuals in the population, acting on the SPHERE, with uniform mutation inside
the sphere. However, the analysis is confined to the case where optimum is within the
mutation sphere—that means, large step size, for which only asymptotic (λ→ ∞) results
are derived; again, a comparison to (32) is intractable. Noteworthy, yet again incomparable
to the results reviewed below, are theoretical analyses of mutation distributions that are
uniform but non-spherical [22,27].
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2.1. Large Step Size

This case is defined by the inequality ρ ≥ 2R, such that success region RS
x is completely

included in the mutation sphere, Figure 1b. We assume uniform mutation inside the sphere,
but an ES with normal mutation performs similarly, for large n and a proper parameter
scaling [10,28].

Mathematically, this is the unique situation when Formula (8) is tractable, allowing
for a closed-form derivation of the expected progress. However, the case did not receive
much attention in the literature, since it corresponds to the worst case scenario (stagnation),
calling for an emergency application of the mutation adaptation rule.

A first rigorous result concerning this case was provided by Rudolph, with the anal-
ysis of pure random search, an algorithm that generates offspring independently, us-
ing the uniform distribution inside the sphere with a fixed center and constant radius
ρ ([9], pp. 168–169). The minimal distance to optimum out of the first t trials, Rt, is com-
puted, for large t, by order statistics [29]. The second approximation is with respect to large
space dimension n.

Rt ≈ ρ t−1/nΓ1+ 1
n
≈ ρ t−1/n. (9)

The following definitions are used in computational complexity analysis [5,10].

Definition 2.

• A statement Z(n) holds for large enough n if there is N ∈ N such that for all n ≥ N,
Z(n) holds.

• For g(n) > 0, we say g(n) = O(n) if there exists c > 0 such that g(n) ≤ c n, for a large
enough n. Similarly, g(n) = Ω(n) if g(n) ≥ c n, for a large enough n. If g(n) is both O(n)
and Ω(n), we say that g(n) = Θ(n).

• We say g(n) = o(n) if g(n)/n→ 0 as n→ ∞.
• A sequence pn ≥ 0 is exponentially small in n if pn ≤ e−O(n).
• An event An happens with overwhelming probability (w.o.p.) in n if 1− P(An) is exponen-

tially small in n.

Rudolph argues that the convergence rate of elitist, constant mutation ES decreases to
the asymptotics (9), estimated, after re-noting Rt = ε, as

t = Θ
[(

1
ε

)n]
(10)

and classified as poor, compared to the performance of adaptive mutation ES.
One can note in Figure 1b that progress is minimal (zero) if the randomly generated

point C is P and maximal (R) if the generated point is O. The success probability in the large
step size case is simply the ratio of two n-sphere volumes, (R/ρ)n. A complete description
of the progress r.v. (7) is provided in the following.

Proposition 1. Assume the elitist ES with one individual and uniform mutation inside the sphere of
radius ρ, minimizing the SPHERE, is at distance R from the origin, ρ ≥ 2R. Then, the progress is

• cdf

F(x) = P(R− |OC| ≤ x) =



0, x < 0

1−
(

R
ρ

)n
, x = 0

1−
(

R−x
ρ

)n
, x ∈ (0, R)

1, x ≥ R

(11)

• and partial pdf

f (x) =

{
n
ρn (R− x)n−1, x ∈ (0, R)

0, other
. (12)
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Proof. It is easy to see that progress is non-negative, discontinuous and P(progress = 0) =
1− (R/ρ)n. For x ∈ (0, R), the point C can be seen as generated by the uniform distribution
inside the sphere of radius ρ, but with center O. Then, |OC| corresponds to r, the radius of
the uniform distribution inside the ρ-sphere, truncated to SO(R), the n-sphere with center
O and radius R. Note the difference between the radius r.v. r from Definition 1, and the
positive real number ρ, the radius of the mutation sphere.

However, r is Beta(n, 1) in the case of the uniform inside the sphere of radius ρ, with
pdf [10]:

g(r) =
1
ρn nrn−1, r ∈ (0, ρ). (13)

Restricted to (0, R), the pdf (13) provides the (partial) cdf:

G(r) =
(

r
ρ

)n
, r ∈ (0, R), (14)

such that

F(x) =P(R− r ≤ x) = 1− P(r ≤ R− x) = 1− G(R− x) = (15)

=1−
(

R− x
ρ

)n
, x ∈ (0, R). (16)

A simple derivation with respect to x provides the pdf (12).

The progress r.v. is depicted in Figure 2, for ρ = 1, R = 1/2 and different space
dimensions n. To each n corresponds a bar at zero—the Dirac measure δ0, that is, the
discrete part of the progress—and a thin line with the same color representing the partial
pdf of the continuous part of the progress.

Figure 2. Progress of elitist ES on SPHERE: Dirac (bar) and pdf of continuous part (line)—large
step size.

The following result is a slight generalization of a similar result (on the particular
case ρ = 1) from [30]. However, the proof presented below is easier than the one in [30],
building on the exact formulas provided by Proposition 1.

Theorem 1. In the conditions of Proposition 1,

• the success probability is

PS =

(
R
ρ

)n
, (17)
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• the expected progress is

φ =
Rn+1

ρn(n + 1)
. (18)

Proof. The success probability has already been derived geometrically. However, in a
unitary setting, both success probability and expected progress are obtained by integration
of partial pdf (12) over the success region (0, R).

PS =
∫ R

0

n
ρn (R− x)n−1dx =

(
R
ρ

)n
.

φ = E(progress) =
∫ R

0

nx
ρn (R− x)n−1dx =

Rn+1

ρn(n + 1)
,

where the second calculus yields from partial integration.

Theorem 1 points out an outstanding analytical property of the uniform mutation
operator, in case of the algorithm with a large step size: The success probability is the derivative,
with respect to distance to optimum, of the expected progress.

This result relies on the non-centrality property of the uniform distribution inside the
sphere. Namely, we can regard the random point C as being generated from a uniform
centered in O, not in P, then apply the radius r.v. for the random distance |OC|. This
procedure can be applied only for Figure 1b, not for Figure 1a or 1c, and neither for
other spherical mutation like the normal distribution. The uniform distribution on the
sphere provides zero progress if ρ ≥ 2R, so that case is also tractable but not interesting,
corresponding to pure stagnation.

Finally, we confirm and generalize Rudolph’s result (10) on the convergence time of
the elitist ES on the SPHERE, under constant, large-step-size mutation.

Theorem 2. In the conditions of Proposition 1, the time required by the algorithm to reach distance
ε from optimum is

t = Θ
[(ρ

ε

)n]
. (19)

Proof. Start from Equation (18) and the definition of progress (7).

φ =|OP| − |OC| = Rt − Rt+1 =
Rn+1

t
ρn(n + 1)

(20)

⇒ Rt+1 − Rt = −
Rn+1

t
ρn(n + 1)

. (21)

We transform the above difference equation into a differential equation, with separable
variables, which we solve.

y′ =− yn+1

ρn(n + 1)
(22)

⇒
∫ y′

yn dy = −
∫

ρn

n
dx (23)

⇒ yn−1 =
n

n− 1
x−1 (24)

⇒ y =

(
n

n− 1

)n−1( x
ρn

)− 1
n−1
≈ x−

1
n ρ. (25)

At the last step, we remove the factors/exponents that converge to one as n→ ∞.
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If we denote y = Rt = ε and x = t, we get

ε ≈ t−
1
n ρ ⇒ t ≈

(ρ

ε

)n
. (26)

One should note that the relevance of the above analysis is purely theoretical. Inspec-
tion of Equations (17) and (18) shows that both success probability and expected progress
attain their maximum for ρ = 2R, where the two quantities are of order 1/2n, a rather low
value, leading to stagnation. The situation is avoided in Algorithm 1 by halving ρ, such
that the ES enters (again) the small step size situation of Figure 1c.

2.2. Small Step Size

This case is defined by the inequality ρ < 2R, such that success region RS
x is the

intersection of the mutation and fitness spheres; see Figure 1a,c.
If the ES uses uniform mutation inside the ρ-sphere, the following equation transforms

the original radius into a new parameter, equivalent (asymptotically) to the standard
deviation (σ) of the normal mutation [10,28].

a =
ρ√
n

. (27)

Under the assumption a ≈ σ, the local behavior of Algorithm 1 does not depend on the
mutation distribution used: normal with standard deviation σ or uniform inside the sphere
of radius ρ—one can treat these two ES versions as one. Apply next a second normalization
of both new mutation parameter a and expected progress φ ([4], p. 32):

a∗ = a
n
R

, φ∗ = φ
n
R

. (28)

The random local behavior of the algorithm can be expressed by the following compact
formulas ([4], pp. 67–68), [10]. The cumulative distribution function (cdf) of the standard

normal (Gaussian) distribution N(0, 1) is Φ(x) = 1√
2π

∫ x
−∞ e−

t2
2 dt.

Theorem 3. Let a elitist ES minimize the SPHERE, with either uniform mutation inside the sphere
of radius ρ or normal mutation with standard deviation a = ρ/

√
n. Then, for large n, the following

approximations hold:

• Success probability:

Prob ≈ 1−Φ
(

a∗

2

)
. (29)

• Normalized expected progress:

φ∗ ≈ a∗√
2π

e−
a∗2

8 − a∗2

2

[
1−Φ

(
a∗

2

)]
. (30)

The asymptotics of success probability and expected progress are depicted in Figure 3.
The particular form of φ∗ as function of a∗ is essential for proving the global convergence
of the adaptive ES. Note that the function (30) is uni-modal, with a maximum at a∗ = 1.224,
φ∗max = φ∗(1.22) = 0.202.
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Figure 3. Success probability (29), expected progress (30) and evolution window (blue) of elitist ES
on SPHERE.

The blue area corresponding to the a∗-interval [0.84, 1.68] is the ’evolution window’ of
Algorithm 1. In classic ES theory, the term is used in the broader sense of the region with
expected progress being significantly greater than zero, e.g., a∗ ∈ [0.1, 5] in Figure 3 [1],
([4], p. 69), [31]. However, we use here the more restrictive definition from [10], which
ensures also global convergence of the ES under the 1/5 rule. Using the success probability
formula, Formula (29), we identify first the critical value a∗ = 1.68, corresponding to
Prob(1.68) = 1/5 = 0.2. Then, we apply the expected progress formula, Formula (30),
get φ∗(1.68) = 0.188 and use again (30) to get φ∗(0.84) = 0.188. One could say that the
evolution window in this case is defined by the condition φ∗ ≥ 0.188.

Observing the possible benefits of different mutation distributions, the authors of [3,9]
developed an analysis based on uniform mutation on the sphere. Using the random angle
θ = ∠CPO between the mutated point and the optimum direction, and the same parameter
normalization, Rudolph solved the low-dimensional case, n = 3. The general case proved
intractable, so he resorted to the same approximation of a random variable through its
expected value, yielding an asymptotic progress which is the double of Formula (30) ([9],
pp. 170–172). Note that a different progress definition applies, usually referred to as
quality gain:

progress′ = R2 − |OC|2 (31)

φ′ = 2 φ∗. (32)

By applying another spherical mutation operator to the same problem, the Cauchy distri-
bution, Rudolph obtained a different expression of progress, valid for the case n = 3 [32].
Like the normal multivariate, the Cauchy distribution is with un-bounded support, can be
constructed from independent identical components and exhibits the rare property of being
closed to addition. Under quadratic definition (31), the expected progress φC depends on
the mutation parameter δ:

φC = 1− 1
δπ

[
3
δ

arctan(2δ) +
2δ2 − 1

2δ2 log(4δ2 + 1)− 4
]

. (33)

Unfortunately, the generalization to larger dimensions failed, due to the intractability of
radius r from Equation (2), in the case of the Cauchy distribution.

Considering yet another spherical distribution, the (averaged) sum of two independent
uniforms inside the sphere, x = (x1 + x2)/2 [10], also showed that φS, the expected progress
of this new mutation operator, is

φS(a∗) = φ∗
(

a∗√
2

)
. (34)
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Note that if x1,2 are uniformly distributed inside the sphere with radius ρ, the expected value
of the radius r.v. r from Equation (1) is also ρ—asymptotically for large space dimension n.
On the other hand, the expected value of the radius of x is ρ/

√
2, so the scaling factor of the

argument in Equation (34) is actually the ratio between the different expected radiuses [10].

2.3. Global Convergence

For decades, the algorithm’s global convergence was only a marginal subject in classic
ES theory, regarded as a consequence of the ability—un-explained theoretically, though
supported by empirical evidence—of the 1/5 success rule to keep the expected progress
around its maximal value during the whole evolution. We illustrate this with Beyer’s
reasoning and apply Formula (30) to express the ES’s expected progress between time t
and t + 1 ([4], pp. 48–50).

Rt − Rt+1 = φ(at) ⇒ Rt+1 − Rt = −Rt
φ∗(a∗t )

n
. (35)

One obtains a separable differential equation from the difference equation.

R′t = −Rt
φ∗(a∗t )

n
. (36)

If the 1/5 rule manages to keep a∗t approximately constant at its maximum, φ∗(a∗t ) ≈
φ∗max = 0.202; the differential equation solves to the following (note that R0 is the initial
distance to optimum):

Rt = R0 e−
0.202 t

n . (37)

Apply next the logarithm to get

ln
(

Rt

R0

)
=
−0.202 t

n
, (38)

and then reverse Equation (38); denote Rt = ε > 0 and 1/0.202 = C, such that

t = C n log
R0

ε
. (39)

According to Definition 2, Equation (39) reads as linear convergence time, with respect
to both space dimension n and the logarithm of initial distance to optimum R0. The only
problem is that the above analysis is based on the optimistic assumption that the 1/5 rule
keeps expected progress around the value of 0.202. Rigorously, this is only a best-case
scenario, so one should actually read the above equalities as inequalities and (39) as a lower
bound on convergence time [10]. The ES convergence time is Ω[n · log(R0/ε)].

t ≥ C n log
R0

ε
. (40)

However, the practical efficiency of Equation (37), expressed by its ability in predicting
the behavior of the real algorithm, is undeniable. Following [10], we present here another
derivation of Formula (37) with a slightly different exponential parameter (0.178 instead of
0.202) but obtained as an average, not extreme case value.

Rudolph considered first the stochastic nature of the ES, using a martingale model to
derive sufficient conditions for global convergence. The following definitions and results
are from ([9], pp. 25–26, 52, 166) and ([33], pp. 94, 109, 127–128, 131).

Definition 3.

• The conditional expectation E(Rt+1|Rt) is a r.v., with values E(Rt+1|Rt = R) and probabili-
ties of Rt, such that E[E(Rt+1|Rt)] = E(Rt+1).

• A sequence of r.v.s {Rt}t∈N is called
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– Non-negative supermartingale if, for all t,

E(|Rt|) < ∞ and E(Rt+1 | Rt) ≤ Rt (41)

– Uniformly integrable (UI) if, for any ε > 0, there is K ≥ 0 such that, for all t

E
(
|Rt| · 1{|Rt |>K}

)
< ε. (42)

Proposition 2. Let {Rt}t∈N be a sequence of r.v.s.

• A sufficient condition for UI is: there is K > 0 such that |Rt| < K for all t.
• If {Rt}t∈N is a non-negative supermartingale, it converges a.s. to a finite r.v. If {Rt}t∈N is

also UI, convergence is also in the mean.

Let Xt be the r.v. elitist ES at iteration t, f a function with minimum zero and
Rt = f (Xt). Then, {Rt}t∈N is a non-negative supermartingale due to the elitist selection,
and UI since Rt ≤ R0. Due to Proposition 2, Rt converges a.s. and in mean to a finite r.v.
What remains to be proved is:

• Global convergence—the limit is exactly zero;
• Convergence rates.

Sufficient convergence conditions are provided in ([9], pp. 165–167). Note that part
(a) of Theorem 4 is also presented in [34], and part (b), in terms of dynamical systems and
Lyapunov functions, is also in ([15], p. 154).

Theorem 4. Let {X}t∈N be generated by some ES optimizing a fitness function f with global
minimum at zero, and Rt = f (Xt) > 0.

(a) If the ES employs an elitist selection rule and there exist sequences εt, δt ∈ (0, 1) such that for
all t

δt ≤ Prob{Rt+1 ≤ (1− εt)Rt|Rt} (43)

and
∞

∑
t=0

εt · δt = ∞ (44)

then the ES converges to zero a.s and in mean, and the approach is exponentially fast with rate
c = 1− δ · ε ∈ (0, 1).

ERt+1 ≤ ERt c =⇒ ERt ≤ ER0 ct. (45)

(b) Regardless of the selection rule, if there is a constant c ∈ (0, 1) such that for all t

E(Rt+1 | Rt) ≤ c · Rt a.s. (46)

then the ES converges to zero a.s. and in mean, and the approach is exponentially fast with
rate c.

The key r.v.s and parameters used in this study are summarized in Table 1.
Rudolph used Theorem 4 (b) to justify global convergence on SPHERE, for the elitist ES

with uniform mutation on sphere ([9], pp. 170–172). However, the reasoning is unrealistic:
it assumes a mutation radius proportional, at each moment, to distance to the optimum of
ρt = γRt, with the parameter set to optimal value γ∗ = 1.224.

The problem is that a real ES, modeled as a sequence of (decreasing) constant-mutation
phases, delimited by the application of the 1/5 rule, does not fulfill Equations (43)–(46)
per se. Assuming a ’good’ starting point (see Theorem 7), there is a constant c > 0 such
that (46) holds as long as the ES is within some narrow evolution window, such as the one
depicted in Figure 3. However, as the algorithm reaches the upper limit of the evolution
window, at some random time T, there is an exponentially small probability for the ES to
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continue the descent such that (46) is precluded. Since mutation adaptation is necessary
for global convergence, we are interested in the (large probability) event ’the 1/5 rule
applies at iteration T’. The situation resembles Theorem 4 (a), with the difference being
that E(RT+1|RT) = RT for the 1/5 rule applies only in unsuccessful iterations, such that
εT = 0 and (43) is precluded as well.

Table 1. Mathematical concepts used in ES analysis.

Xt n-dim r.v. ’ES position at time t’

Rt 1-dim r.v. ’ES distance to optimum at time t’

R positive real number

(Rt+1|Rt = R)
1-dim r.v. ’ES distance to optimum
at t + 1, conditioned by dist. R at t’

E(Rt+1|Rt = R) positive real number, mean of the above

E(Rt+1|Rt)
1-dim r.v. ’ES distance to optimum

at t + 1, conditioned by distance at t’

φt(R, n, ρ) = R− non-negative real number, mean
−E(Rt+1|Rt = R) progress between time t and t + 1

φ∗t (a∗) = φtn/R
non-negative real number,
normalized mean progress

Td 1-dim r.v. ’first hitting time of distance d’

Summing up, Theorem 4 is not strong enough to derive upper bounds on the global
convergence time of the elitist ES with the 1/5 success rule. As one can see in the following,
the mathematical difficulty resides not in the multi-variate calculus, but in the computa-
tional complexity analysis of the 1/5 rule. The linear upper bounds were proved for the
first time by Jägersküpper, who regarded the elitist ES as a sequence of n-length phases with
a constant mutation rate in each phase, during which the success frequency of mutation
was observed before the application of the 1/5 rule [5,26,35,36].

Removing line (ii) from the 1/5 rule in Algorithm 1—that is, parameter ρ decreases if
success frequency is less than 1/5, but never increases—and using A uniform mutation
inside the sphere instead of normal mutation, [10] proved that all of Jägersküpper’s results
still hold. Moreover, under the simplified 1/5 rule, the constant-mutation phase extends
to a number of phases, called a cycle. The r.v. ’length of a cycle’ will play a key role in
connecting the two (otherwise distinct) parts of the convergence analysis, local and global,
leading to an exponential formula able to predict the behavior of the real ES, similar to
Equation (37).

We resume next the results from [5,10,26,35,36] in a unitary setting, covering both
types of 1/5 rule and both mutation distributions, normal and uniform inside the sphere.
The results hold also for the sum of two uniforms; see [10] for details. For the local behavior,
Jägersküpper avoided the calculus from Section 2.2 and used instead the decomposition (2)
of the normal mutation distribution with standard deviation σ, N(0, σIn), into r.v.s uniform
on sphere un and radius `. Recall that ρ is the radius parameter of the uniform mutation
inside the sphere, R the current distance to optimum, Prob the success probability and r
the radius r.v. from Equation (1). We also apply the normalization a = ρ/

√
n in order to

equalize the asymptotic mean radiuses of the two distributions, normal and uniform, such
that a can be identified to σ and r to `.

Lemma 1. Let Algorithm 1 with any spherical mutation minimizing the SPHERE be in current
point P; |OP| = R. The mutant C is accepted with Prob ∈ [ε, 1/2− ε], ε > 0, if and only if
|PC| = Θ

(
R/
√

n
)
.
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Lemma 2. If X is uniform inside the sphere of radius ρ or normal with standard deviation
σ = ρ/

√
n, and r is the corresponding r.v. radius, then

P(|r− ρ| ≤ δρ) ≥ 1−O
(

1
nδ2

)
. (47)

If X1, . . . , Xn are independent copies of X, then for any λ ∈ (0, 1), there exist aλ, bλ > 0 such that
the r.v. cardinal number of {i | aλρ ≤ ri ≤ bλρ} is ≥ λn w.o.p.

The first part of Lemma 2 is actually Chebyshev inequality. Note that the inequality
|r− ρ| ≤ δρ is equivalent to |r− ρ|/ρ ≤ δ, so the result holds for the original (that is, before
normalization ρ = a

√
n) uniform distribution inside the sphere, for the normalized uniform

and also for the normal distribution.

Lemma 3. Let Algorithm 1 with mutation X, as in Lemma 2, minimize the SPHERE. The following
are equivalent:

(i) σ = Θ(R/n)
(ii) ρ = Θ

(
R/
√

n
)

(iii) There exists ε > 0 such that Prob ∈
[
ε, 1

2 − ε
]

for a large enough n—that is, Prob is Ω(1)
and 1/2−Ω(1).

Lemma 4. If r = Θ
(

R/
√

n
)
, then progress is Θ(R/n), with probability Ω(1), and within

expectation.

The radius r in Lemma 4 corresponds to the normalized (ρ = a
√

n) uniform inside the
sphere, and hence also to the normal distribution.

Let i, i + 1 denote the states of the algorithm at the beginning/end of this phase,
respectively.

Lemma 5. Let Algorithm 1 with mutation X as in Lemma 2 minimize the SPHERE. Consider two
variants of the 1/5 rule: (i and ii).

(i) If ρi = Θ
(

Ri/
√

n
)
, then Ri − Ri+1 = Θ(Ri) w.o.p.; that is, w.o.p. the approximation error

is reduced by a constant fraction in the i-th phase.
(ii) If ρi is doubled (or respectively not modified) after the i-th phase, then ρi = O

(
Ri/
√

n
)
.

(iii) If ρi is halved after the i-th phase, then ρi+1 = Ω
(

Ri+1/
√

n
)
.

Lemma 6. Let Algorithm 1 be as in Lemma 5. If the 1/5 rule causes a (k + 1)-sequence of phases,
1 ≤ k = nO(n), such that in the first phase ρ is halved and in all the following it is doubled
(respectively left unchanged), or the other way around, then w.o.p. the distance from optimum is k
times reduced by a constant fraction in these phases.

We can state now the main global convergence result, valid for the ES with either
uniform or normal mutation, with either complete (i–ii) or simplified (i) 1/5 success
rule [5,10,35].

Theorem 5. Let Algorithm 1, defined as in Lemma 5, start at distance R0 from optimum, with
mutation parameter ρ0 = Θ

(
R0/
√

n
)
. If t satisfies 1 ≤ t = nO(1), then the number of iterations

to reach distance Rt with Rt ≤ R0/2t is Θ(t · n), w.o.p. and within expectation.

For t = 1, Theorem 5 states the existence of two constants a, b > 0, such that for a large
enough n, the random time T required to halve the initial distance to optimum R0 satisfies

a n ≤ E(T) ≤ b n. (48)
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Even if the result does not state convergence to zero of r.v. Rt, as t → ∞, neither in
expectation, nor a.s. nor w.o.p., it accounts for a form of linear convergence, with respect to
both t and n.

Remark 1. For an arbitrary initial point, outside the prescribed range ρ0 = Θ
(

R0/
√

n
)
, Jäger-

sküpper conjectured in [35] that: ’For other starting conditions, the number of steps until the
theorem’s assumption is met must be estimated before the theorem can be applied—by estimating the
number of steps until the scaling factor is halved at least once. This is a rather simple task when
utilizing the strong results presented in Lemma 5’. Empirical evidence for this fact can be found
in [10].

This is the point where Jägersküpper’s convergence time analysis stops, without
providing a formula similar to (37), to be tested against the behavior of the real ES. To
fill in the gap, reference [10] applied the uniform mutation inside the sphere and the
simplified 1/5 rule—obtained by removing line (ii) from Algorithm 1—and made use
of the r.v. T = ’length of a constant-mutation ES cycle’, defined as a stopping time ([33],
pp. 97–98).

Definition 4. A r.v. T with state space {0, 1, . . . , ∞} is said to be a stopping time for the sequence
of r.v.s {Xt}t∈N if one can decide whether the event {T = t} has occurred only by observing
X1, . . . , Xt. Note that, since the ES is a Markov chain, we do not assume independence of X1, X2, . . .,
as in Wald’s equation and renewal theory [37].

Stopping time will be considered the first hitting time of distance d > 0 from the initial
point X0.

Td = min{t |X1 + . . . + Xt ≥ d}. (49)

A key role in the analysis is played by the following generalization of Wald’s equation
([37], p. 38), as introduced in [10]. Note that we define, for some r.v. X and P(A) > 0, the
conditional expectation E(X|A) = E(X · 1A)/P(A).

Proposition 3 (Wald’s inequality [10]). Let c, d, δ`, δu > 0 and {Xt}t∈N be non-negative r.v.s
such that X0 = c and δ` ≤ E(Xt|Td ≥ t) ≤ δu for t ≥ 1. Then

d
δu
≤ E(Td) ≤

d + δu

δ`
. (50)

We set in our ES analysis X0 = c = R0 > d and Xt+1 = Rt − Rt+1; hence, X1 + . . . + Xt =
R0 − Rt for all t ≥ 0.

Another form of Wald’s inequality can be obtained from the additive drift theorem,
derived by Lehre and Witt in [38]—which, as the authors mention, adapts for the continuous
case the discrete space drift theorem of He and Yao [14]. We apply a formalization similar
to Proposition 3.

Theorem 6 (Additive Drift). Let {Xt}t∈N be a stochastic process, adapted to a filtration
{Ft}t∈N, over some state space S ⊆ <; let d, δ`, δu > 0 and T0 = min{t |Xt > 0}. Then, if
0 ≤ Xt ≤ d = X0 and δ` ≤ E(Xt − Xt+1 ; Xt > 0 | Ft) ≤ δu for all t

d
δu
≤ E(T0|F0) ≤

d
δ`

. (51)

To be comparable with Wald’s inequality, one should set Xt+1 = d− (R0 − Rt+1) in the
Adaptive Drift theorem. However, we consider the assumption Xt ≥ 0 for all t, implying
XTd = 0, to be unrealistic for d < R0. On the other hand, if one sets d = R0 as above,
the lower bound δ` > 0 does not exist (independent of t) in the continuous case, e.g., the
SPHERE. The existence of a strictly positive lower bound on either success probability or
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expected progress can be seen as a sufficient convergence condition for continuous space
algorithms—see also Theorem 4—yet it is only satisfied in discrete space.

Back to the application of Wald’s inequality in deriving convergence rates for the ES
model. Let n be arbitrarily fixed; d < R0; and consider the two a∗-values corresponding
to the lower and upper limits of the evolution window depicted in Figure 3, a∗1 = 0.84
and a∗2 = 1.68. The normalized distance d∗ between these points corresponds to the
un-normalized distance

d = R0.84 − R1.68 = ρ
√

n
(

1
0.84
− 1

1.68

)
, (52)

which further leads, using Wald’s inequality (see [10] for details), to

Theorem 7. Let Algorithm 1 be as in Theorem 5, starting in point a∗ = 0.84, and let
d∗ = 1.68− 0.84. Then, for large n

2.5n ≤ E(Td) . 5.3n. (53)

The resemblance between Equations (48) and (53) is obvious. According to Theorem 7,
if the elitist ES is currently (initially) in point a∗0 = 0.84 = ρ

√
n/R0, the expected time

to reach 2a∗0 = 1.68 = ρ
√

n/(R0/2) is within [2.5n, 5.3n]. One could use these limits as
lower and upper bounds on E(T), or search for some value in between, to be used as an
estimate for E(T). In [10] the simple arithmetical mean 3.9 has been used, yet we choose
here the estimate 3.5, as suggested by the new empirical evidence presented in Figure 4.
The experiments were conducted with Algorithm 1 and uniform mutation inside the sphere,
on the SPHERE fitness function, with different space dimensions and initial points, all
corresponding to a∗ = 0.84. The results were averaged over 100 independent runs. In each
run, the maximal number of iterations was set to tmax = 50, 000, and the last, incomplete
cycle was discarded.

Figure 4. Expected number of iterations per cycle, as a function of space dimension n. Trend-line
equation with R2 value, displayed by Excel.

Using the value 3.5 for the expected value estimate of the r.v. T = ’No. of iterations per
constant-mutation ES cycle’, we obtained

R3.5 n ≈
R0

2
. (54)

By iterating Equation (54) s times and substituting in 3.9ns = t, we get

R3.5 ns =
R0

2s =⇒ Rt = R0 2−
t

3.5 n , (55)
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which further implies, with log 2/3.5 = 0.192,

Rt = R0 e−
0.192 t

n . (56)

Using Rt = ε and a derivation similar to the one inferred from Equation (37), the linear
convergence of the elitist ES on SPHERE is finally obtained.

elitist ES convergence time = Θ
(

n · log
R0

ε

)
.

As demonstrated in [10], Formula (56) can be used, with very good experimental results, as
a theoretical predictor of the algorithm’s global behavior. Note that the slightly different
exponential coefficient, 0.192 instead of 0.178 in [10], is not disruptive.

On the other hand, the above model, indicating identical behavior of the elitist ES
within each constant mutation cycle, offers an intuitive insight into the algorithm’s dy-
namics, seen as a sequence of cycles, that are independent and with identical expected
length.

3. General 1/5-Rule Theories

Different convergence theories for the elitist ES with 1/5 success rule exist, building
up mathematical rigor and complexity, yet, by imposing supplementary conditions, they
usually lack compact results such as Theorem 3 and Formula (56). Some relevant examples
are reviewed in the following.

Rudolph’s stochastic analysis based on martingales, presented already in Section 2.3,
provides only sufficient global convergence conditions for the algorithm. A different
stochastic process—a random system with complete connections—was used with a similar
outcome in [16]. With a deeper insight into the theory of the irreducible Markov chain,
which identifies the discrete states to the so-called small sets and extrapolates the basic
features of a discrete homogeneous Markov chain onto the continuous space [39,40], Dorea
proved, under elitist selection, the global convergence of ES and of a continuous version
of simulated annealing to an ε-vicinity of the optimum [17]. However, since the mutation
distribution is decoupled from the current position, the result is of little practical use.
Bienvenüe and Francois applied a different Markov model to an adaptive ES, but under
a different, problem-related adaptation rule that multiplies at each iteration the mutation
parameter ρ with the current distance to optimum Rt, then searches for ’optimal universal
step lengths on the basis of the convergence of the dynamics’ [41]. The same adaptation rule
was used by Rudolph in his convergence analysis of the elitist ES on SPHERE ([9], p. 70).
Connecting the mutation rate to the current position works for the SPHERE centered on
the origin, but failed for a slightly modified problem, e.g., for a SPHERE with a different
center—where Algorithm 1, adapting the mutation rate according to the 1/5 rule, works
very well.

Unaware of Dorea’s work, Auger and Hansen re-iterated the irreducible Markov
chain modeling, but on the more practical premises used by Jägersküpper [2,18]. Similarly
to Bienvenüe and Francois, but without their over-simplifying assumption, Auger and
Hansen achieved, at the mathematical peak of ES literature, linear convergence of the elitist
ES with the 1/5 rule on scaling-invariant functions (SPHERE included) by studying the
stability of the normalized Markov chain Zt = Rt/σ [19]. A compact formula similar to
(56) was proved.

Rt = R0 e−CR t, (57)

where CR > 0 depends on the asymptotic success probability PS and on the 1/5 rule
parameters γ, q. 

CR = − ln γ
(

q+1
q PS− 1

q

)
increasing 1/5 rule factor γ

decreasing 1/5 rule factor γ−1/q.

(58)
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A supplementary condition is imposed on the parameters, which reads for the SPHERE

1
2

(
1
γ
+ γ

1
q

)
< 1. (59)

Bringing some clarity and a new stochastic formalization to the previous approach, Aki-
moto, Auger and co-workers employed drift analysis to prove the linear convergence
time [6,11,42]. However, since their theory is still avoiding the expected progress calculus,
a verification against the behavior of real algorithms can be performed only in terms of
upper and lower bounds—see also the critique of adaptive drift theorem from Section 2.3.

4. Extensions of the 1/5-Rule—Population-Based ES

As noticed from the very beginning, the ES performance depends strongly on the value
of the mutation parameter σ (or ρ). The 1/5 success rule discussed so far is the simplest,
yet not the only way of adapting the parameter during the algorithm’s evolution. Two of
the most efficient techniques are the σ-self-adaptation [1,4,8] and the covariance matrix
adaptation (CMA), which allows for different σ-values on the independent components
(of normal mutation), aiming at accelerating the evolution in certain directions of the
n-dimensional space [12,25,43,44].

As Beyer pointed out, each of these popular adaptation techniques borrows something
from the original 1/5 success rule. The CMA techniques ’have an operating mechanism
similar to the 1/5 rule: they analyze the statistical features of the selected mutations in
order to change the strategy parameters towards the optimal value’ ([4], p. 258). Namely,
the pdf of multivariate normal mutation in CMA-ES is

f (x) =
1

(
√

2π)n
√

det(C)
e−

xT C−1x
2 (60)

with symmetric covariance matrix C depending on n(n + 1)/2 mutation parameters. If one
considers all these parameters as independent r.v.s and switches from a single to a multiple
offspring algorithm—one parent, λ offspring and no elitist selection being the simplest case,
known as (1, λ) ES—Rudolph argues that a very large number of individuals is required
in order to obtain a good approximation of the optimal matrix C. Pointing out that, in
case of quadratic-convex fitness functions, the optimal C is the inverse of the function’s
Hessian matrix, he suggests that the CMA update rules should follow the deterministic
iterative methods of approximating the Hessian matrix, based on the information gathered
from previous samples ([9], p. 198); see also [43]. According to the recent survey of the
state-of-art in ES for continuous optimization [25], ‘we still lack a rigorous analysis of the
one-step approximation of the covariance matrix’.

As a general remark in case of population-based algorithms—with multiple offspring,
as for the (1, λ) ES discussed above or the (µ/µ, λ) ES with multiple parents, offspring
and recombination/crossover [45,46], the explicit reduction of the mutation parameter
induced by the 1/5 success rule is not necessary anymore, its exploitation effect being
accomplished by the (minimum) order statistics of the λ offspring sample and/or by the
µ/µ recombination of the parent population. Intuitively, the explanation is provided by the
following fact: The average of two multivariate uniform distributions inside the sphere of
radius ρ is also spherical, but with a smaller (expected value) radius, ρ/

√
2 instead of ρ;

see [28] for details.
On the other hand, in self-adaptation, the dynamics of the mutation parameter is not

based on some success-related statistics, but included in the evolution itself, subject to the
basic algorithmic operators. Since mutation parameter σ becomes in this case part of the
individual, ’the question reduces to the manner in which σ should be mutated. The answer
is: multiplicatively, in contrast to the additive mutations of object parameters’ ([4], p. 259).
Obviously, the multiplicative character of the adaptation is inspired by the 1/5 rule.
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5. Conclusions

Using the elitist, single-individual algorithm with mutation and the 1/5 success rule as
the adaptation procedure and the SPHERE fitness function, the paper provides a bird eye’s
view over the theory of evolution strategies, an important class of probabilistic optimization
algorithms for multi-dimensional real space.

Despite their easy implementation and huge success in applications, the mathematical
models are complicated, and global convergence results are rather scarce. Taking into
account some recent studies applying the uniform distribution inside the sphere as a
mutation operator, the review centered on the classic evolution strategy theory, built on
the one-step behavior of the algorithm and on local quantities such as success probability
and expected progress. For the first time in the literature, the three main building blocks of
classic theory were presented together in a coherent formalization:

• the asymptotic (w.r.t. large space dimension) local expected progress formula,
• the computational complexity analysis proving lower and upper linear bounds for

global convergence,
• a probabilistic analysis—using an adaptation of Wald’s equation—of the cyclic be-

havior of the algorithm with constant mutation rate, connecting the local and global
behavior into a prediction formula for the (expected) convergence time of the real
algorithm.

Different theories, based on martingales, irreducible Markov chain and drift analysis,
were also reviewed, and their results were compared with those of classic theory.

As for population based algorithms—(1, λ), (µ/µ, λ), CMA and self-adaptive ES—
the role of the 1/5 rule is transferred to the selection and crossover operators, yielding a
reduction in the mutation parameter for local improvement.

Since the 1/5 rule is devoted to exploitation, not to the exploration phase of the
algorithm, the case of multi-modal fitness functions was not tackled in this paper.

Funding: This research received no external funding.

Data Availability Statement: No new data were created.

Acknowledgments: The author acknowledges support over the years by the old Chair Informatics
11, Dortmund University, especially from Günter Rudolph, Hans-Paul Schwefel, Hans-Georg Beyer
and Thomas Bäck.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Rechenberg, I. Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution; Frommann-Holzboog

Verlag: Stuttgart, Germany, 1973.
2. Auger, A. Convergence results for the (1, λ)-SA-ES using the theory of φ-irreducible Markov chains. Theor. Comput. Sci. 2005, 334,

35–69. [CrossRef]
3. Schumer, M.A.; Steiglitz, K. Adaptive Step Size Random Search. IEEE Trans. Aut. Control 1968, 13, 270–276. [CrossRef]
4. Beyer, H.-G. The Theory of Evolution Strategies; Springer: Berlin/Heidelberg, Germany, 2001.
5. Jägersküpper, J. How the elitist ES using isotropic mutations minimizes positive definite quadratic forms. Theor. Comp. Sci. 2006,

361, 38–56. [CrossRef]
6. Akimoto, Y.; Auger, A.; Glasmachers, T. Drift theory in continuous search spaces: Expected hitting time of the (1 + 1)-ES with 1/5

success rule. In Proceedings of the GECCO ’18: Genetic and Evolutionary Computation Conference, Kyoto Japan, 15–19 July
2018; pp. 801–808,.

7. Fang, K.-T.; Kotz, S.; Ng, K.-W. Symmetric Multivariate and Related Distributions; Chapman and Hall: London, UK, 1990.
8. Schwefel, H.-P. Evolution and Optimum Seeking; Wiley: New York, NY, USA, 1995.
9. Rudolph, G. Convergence Properties of Evolutionary Algorithms; Kovać: Hamburg, Germany, 1997.
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