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Abstract: It was shown that deep reinforcement learning (DRL) has the potential to solve portfolio
management problems in recent years. The Twin Delayed Deep Deterministic policy gradient
algorithm (TD3) is an actor-critic method, a typical DRL method in continuous action space. Despite
the success of DRL in financial trading, surprisingly, most of the literature ignores the element of
risk control. The research is proposed to combine long- and short-term risk (LSTR) control with
the TD3 algorithm to build a portfolio model with risk management capabilities. Using Chinese
stock data from the Shanghai Stock Exchange, we train and validate the proposed portfolio model.
Performances were compared to the TD3 model without risk control. The results indicated that our
proposal offers better risk control and investment returns.

Keywords: deep reinforcement learning; portfolio management; long- and short-term risk control

MSC: 68T07

1. Introduction

Portfolio management is the decision-making process of continually reallocating funds
to various financial products to maximize returns within a specific range of risks. The
portfolio theory based on the mean-variance model initially proposed by Markowitz in
1952 is an essential foundation for portfolio management [1]. However, the model must
satisfy the hypothesis that returns follow a normal distribution to measure risk effectively.
Therefore, many scholars are committed to finding more reasonable and effective risk
measurement methods [2]. Many traditional portfolio algorithms were developed to
maximize final returns, such as UP, EG, ONS, and CFR-OGD [3–6]. However, these
algorithms may incur significant losses in specific markets. The fundamental reason
is that they are not designed to address risk directly [7]. Subsequently, it was suggested
that risk should be defined based on variance, half variance, and the likelihood of adverse
outcomes [8]. However, any portfolio strategy using these three risk definitions requires
the collection of adequate performance observations to make empirical estimates of the
likelihood properties associated with risk. These portfolio algorithms can monitor long-
term risk but do not have the ability to monitor short-term risk. To achieve effective trading
algorithms, it is also helpful to make specific risk enhancements to existing portfolio
algorithms. One method involves monitoring the maximum drawdown of each portfolio
vector, i.e., the investor gives more cash to the portfolio vector with a smaller maximum
drawdown at each trading period [9]. Another approach is to add factors describing risk
to the reward function of reinforcement learning. Arguably, the most common variable
for risk control is the Sharpe ratio [10,11]. The Sharpe ratio calculation includes the mean
and standard deviation of portfolio returns, both used as long-term indicators describing
the market with a small amount of short-term variation. Given the above problems, Bai
et al. proposed a long- and short-term risk control algorithm to control both long-term and
short-term loss risk by controlling the proportion of risk-free assets and achieved good
results on six financial market data sets [12].
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Reinforcement learning, an essential branch of machine learning, has been widely
used in financial market trading in the past decades to predict price movements using
historical market data. The advantage of reinforcement learning is that investors do not
need to focus on much expertise beyond the basic trading rules. Moody et al. were the first
to propose a framework for cyclic reinforcement learning to trade a single asset, which uses
the differential Sharpe ratio as the objective function to maximize risk-adjusted returns by
considering transaction cost [13]. Dempster, Deng, Almahdi, and Yang et al. developed RRL
frameworks successively for trading assets [14–16]. Bertoluzzo et al. considered Q-learning
to construct automatic financial trading systems for artificial and real-time series of daily
financial asset prices [17]. Unfortunately, the action spaces of these algorithms are discrete.

Therefore, these reinforcement learning methods with discrete action space cannot be
directly applied to portfolio management problems with continuous action space. Deep
reinforcement learning has demonstrated the ability to learn complex strategies from many
types of environments in recent years due to its great success in gaming. Deep Q-network
(DQN) is a popular approach in deep reinforcement learning. Zhang et al. adopted it to
design trading strategies for continuous futures contacts [18]. In order to further improve
the versatility of the algorithm, Lillicrap et al. proposed the deep deterministic policy
gradient (DDPG) algorithm using deterministic policies instead of random policies, which
can solve a series of control problems in continuous action space [19]. Jiang et al. and Xiong
et al. conducted tests based on DDPG in digital currency and stock markets to demonstrate
the effectiveness of the DDPG algorithm in portfolio management [20,21]. Wang et al.
combined the classical DDPG and the hierarchical RL structure for portfolio management
problems [22]. It was tested on the U.S. stock market, which illustrates this approach can
outperform the classical DDPG. Its advantage is that it can effectively use reinforcement
learning tasks in large-scale or continuous action spaces. Still, DDPG also suffers from
bias and variance problems introduced by function approximation. To solve this problem,
Meger et al. proposed a TD3 algorithm based on the DDPG algorithm [23]. However, to
my knowledge, few scholars have applied it to the portfolio management problem.

Since deep reinforcement learning shows excellent potential in portfolio problems,
inspired by Huang et al., this paper attempts to apply the TD3 algorithm to the portfolio
management problem in the Chinese stock market [24]. In addition, considering that
existing deep reinforcement learning algorithms assume less risk when constructing the
objective function. This paper introduces the long- and short-term risk control algorithm
into TD3 to build the LSTR–TD3 algorithm, which can update the resulting actions by
updating the risk control parameters to optimize portfolio strategies. Three different
performance metrics are used in the experiments to construct three other portfolios to
evaluate the algorithm’s performance from different perspectives. The experimental results
show that the LSTR–TD3 algorithm is effective in the Chinese stock market and possesses
a more robust risk control capability than the original TD3 algorithm. The experimental
results also show that the method proposed in this paper is adequate for investors who
suffer huge losses due to special reasons such as financial crises.

The paper is organized as follows. Section 2 describes the definition of portfolio
models. Section 3 introduces the classical TD3 algorithm and LSTR algorithm. Section 4
presents the novel algorithm LSTR–TD3 algorithm proposed in this paper. Section 5 shows
the experimental setup and results. The conclusions are shown in Section 6.

2. Portfolio Allocation Problem

Considering the interactive, stochastic nature of the stock trading market, the trading
process of the portfolio can be modeled as a Markov decision process. We set the state
St = (Xt, Wt), where Xt is a tensor consisting of price features and Wt is a weight vector
composed of the weight of each asset in the portfolio. Tensor Xt consists of four price
features: close price, high price, low price, and open price, where t indicates the tth trading
period. The structure of Xt is shown in Figure 1.
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Figure 1. The data structure of the price tensor.

We set the weight of each asset in the portfolio as actions, i.e., At = Wt and initializing
the portfolio weights to W0 = (1, 0, · · · , 0)T , which means before the transaction begins,
there is no money invested in other assets and only cash assets in the portfolio. It is also
assumed that the entire portfolio has one cash asset and m risky assets (in this paper, risky
assets refer to CSI500 constituent stocks and CSI300). Then, At can be expressed as:

At = (ω0,t, ω1,t, ω2,t, · · · , ωm,t) (1)

ω0,t indicates the percentage of cash held by investors in the trading period and ωm,t
is the percentage of each stock held in the tth trading period.

Using the daily log returns of the portfolio as the reward function Rt, if the portfolio
price for the tth trading period is denoted by ρt. Then, ignoring transaction costs, the
portfolio price can be expressed as:

ρt = ρt−1 exp[(ln Yt)·Wt−1] (2)

The symbol · denotes the dot product of the vectors, Yt represents the relative price
vector, i.e., the ratio of the closing price vectors of each asset of the trading period t and the
trading period t− 1 of a portfolio.

The daily log rate of return of a portfolio is:

γt = ln(ρt/ρt−1) (3)

Assume that the portfolio weight vector is Wt−1 at the beginning of the trading time t.
Due to stock price changes, the portfolio weights will shift and become W ′t at the end of
trading time t. The weight evolution equation is:

W ′t = (Yt �Wt−1)/(Yt · |Wt−1|) (4)

where the symbol � denotes the Hadamard product. The weight vector will evolve from
W ′t to Wt before the start of the trading time t + 1, such that the entire transaction cost rate
of the portfolio at this point is:

Ct = µt(
m

∑
i=1

∣∣ω′i,t −ωi,t
∣∣) (5)
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Figure 2 demonstrates the dynamic relationship between the portfolio value and
weight vector.
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µt is the transaction cost rate of a single asset on the stock exchange, including commis-
sions and other costs in the trading process. Then, the portfolio price after the introduction
of transaction costs is:

ρt = ρt−1(1− Ct) exp[(ln Yt) ·Wt−1] (6)

3. Methodology

In this section, we first describe the algorithmic architecture of the classical TD3
algorithm. Then, we describe the LSTR method by directly changing the proportion of
risk-free assets. Finally, we describe the algorithm for adding LSTR to the TD3 algorithm.

3.1. TD3 Algorithm

The TD3 algorithm is an improved version of the DDPG algorithm, mainly to solve the
problem of overestimation of Q-values due to function approximation error [23]. The DDPG
algorithm improves the DPG algorithm based on the AC framework with the empirical
playback of DQN and the dual network structure [19]. The DDPG algorithm learns the
approximate value function Q(s, a, w) and the deterministic policy µ(s, θ). The network
model is trained using stochastic gradient descent, where w and θ are the weights of the
value network and the policy network, respectively. In addition, the DDPG algorithm solves
the problem of inter-data correlation and non-stationary normal distribution by introducing
an empirical replay mechanism to reduce the bias arising from the value function estimation.
DQN knows that learning using only a single network can be unstable, therefore DDPG
introduces target networks Q′(s, a, w′) and µ′(s, a, θ′), for the value network Q(s, a, w), and
the policy network µ(s, a, θ), respectively [10].

As with the DQN, the DDPG utilizes the TD error-based MSE as a loss function.

y = r + γQ′(s′, µ′(s′, θ′), w′) (7)

L(w) = E[(y−Q(s, a, w))2] (8)

The objective of the value network is to minimize the loss function, therefore the
MSGD method is used to obtain N small batches of randomly sampled data from the
empirical pool D as a sampled estimate of the expected value.

∇wL(w) ≈ 1
N

N

∑
i=1

(ri + γQ′(s′
i
, µ′(s′i, θ′), w′)−Q(si, ai, w)∇wQ(si, ai, w) (9)
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where θ′ and w′ denote the weights of the target policy network µ′ and the target value
network Q′, respectively.

To address the problem of overestimating Q-values in the DDPG, TD3 use clipped
double Q-learning, delayed policy update, and target policy smoothing to alleviate this
problem [23]. The structure of the TD3 algorithm is shown in Figure 3.
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Truncated double Q-learning uses two independent critics Qw1 and Qw2 and two inde-
pendent actors µθ1 and µθ2 , splitting the original Q-value function into two parts and choosing
a minimum of two critic networks Qw1 and Qw2 as the value of function estimation.

y = r + γmin
i=1,2

Q(s′, µ(s′, θ), w′i) (10)

The above equation is used to update the critic network. The following loss function
is shared.

L(wi) = Es,a,r,s′∼D[(y−Q(s, a, wi))
2] (11)

The delayed policy update is to make the target network out of sync with the current
network update. The current network updates d times before the target network is updated.
This reduces the accumulated error and the variance. The same strategy network can
also be updated on a delayed basis because the parameters are updated slowly in the AC
method. Performing a delayed update can reduce unnecessary repeated updates on the one
hand and the accumulated error in multiple updates on the other hand. While reducing
the update frequency, soft updates should be used.

θ′ ← τθ + (1− τ)θ′ (12)

Target policy smoothing is based on the target policy µ to obtain the target action and
add truncated noise to the target action so that the value of a small area around the target
action is smooth enough to reduce the generation of errors effectively. The target policy
smoothing process can be expressed as:

a′ = clip(µ(s′) + ε, alow, ahigh) (13)
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where ε ∼ clip(N(0, σ),−c, c), alow and ahigh represent the maximum and minimum values
of the action a, respectively. clip(x,−y, y) represents the truncation of each element of x in
the interval [−y, y].

3.2. LSTR Algorithm

The commonly used risk indicators in portfolio problems are the Sharpe ratio, max-
imum drawdown, etc. Still, they cannot respond to the market risk situation promptly,
therefore Bai et al. proposed a long- and short-term risk control algorithm to redefine
risk and improve risk control ability [12]. The basic principle of this algorithm is to use a
particular portfolio algorithm to obtain the investment strategy of each period bt, and then
calculate the long- and short-term risk parameters λ and η. After that, we can make the
following risk adjustment:

b̂t = ληe1 + (1− λη)(I − e1)� bt (14)

where � denotes element-by-element multiplication and η ∈ [0, 1] indicates the proportion
of risk-free assets based on the short-term return of the portfolio strategy, which in this
paper refers to the ratio of cash assets, I denotes a column vector with all elements being
1, e1 is a vector with the first element 1 and the rest 0. λ ∈ [0, 1] denotes a sample of
a probability distribution that describes information about the long-term trend based
on the market.

The algorithm uses the risk indicator random variable C(st) to describe the long-term
risk and short-term risk. st is used to describe the daily return of the portfolio on the tth
trading day and φ is to denote the desired daily return set by the investor. z ≥ 0 represents
the maximum loss that the investor can sustain on a single trading day, and then the risk
indicator random variable is defined as:

C(st) =
{

0,φ−st>z
1,φ−st≤z (15)

Long-term risk control means the historical data of tth trading day are known and
the probability of tth trading days C = 0 is predicted. q is the probability of C = 0 on
tth trading day. The q obeys the Beta distribution. After the daily return st of the t− 1th
trading day is known and the tth trading day is C = 0, the posterior probability of q is:

P(q|v, N − v) = P(α, β + 1) (16)

Correspondingly, if the tth trading day is C = 1, the posterior probability of q is

P(q|v, N − v) = P(α + 1, β) (17)

where N describes the number of consecutive trading days and v indicates the number
of C = 0 in this successive trading day. α and β are parameters of the Beta distribution.
Since the long-term risk control parameter λ ∼ P(q|v, N − v) , as the number of trading
days C = 1 increases, i.e., the daily return st is smaller than the investor’s preset loss, i.e.,
the portfolio strategy performs well. Then, the Beta distribution becomes right skewed,
λ becomes larger, and the proportion of risk-free assets increases when substituted into the
portfolio update formula. The long-term risk parameter λ can take the value of:

λE = E[q] =
α

α + β
(18)

The short-term risk parameter η represents the proportion of risk-free assets in the
portfolio. Changes in the algorithm’s short-term returns can be reflected by the number
of consecutive occurrences of the risk indicator variable C = 1, which, as the number of
successive events increases, implies that the short-term daily losses are within acceptable
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limits for the investor. During this period, the short-term risk parameter η needs to decrease
rapidly to near zero.

η =
1

1 + exp{κ + τ} (19)

In the above equation, κ indicates the number of consecutive trading days in which
C = 1 occurs. The τ is a constant that determines the degree of η has declined. In other
words, how much money will enter the market. The framework of the algorithm is shown
in Figure 4.
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3.3. LSTR–TD3 Algorithm

To construct a deep reinforcement learning algorithm with risk control capability and
apply it to solve the portfolio management problem, this paper tries to introduce the long-
and short-term risk control algorithm into the TD3 algorithm in DRL so that the agent can
control risk effectively and obtain better returns. The detailed process of the LSTR–TD3
algorithm is shown in Algorithm 1. Its input hyperparameters include the number of
iterations M, discount factor γ, etc. The output is an action vector.

We start by using classic TD3 to obtain the portfolio strategy for each period. Second,
we calculate the long-term and short-term risk parameters. Finally, the strategy update
formula is used to obtain the final portfolio optimization strategy.

In the process, the LSTR algorithm proposes a new risk definition based on the proba-
bility of adverse results and defines the random variables of the risk indicator. Different
statistical methods for this variable can represent long-term and short-term risk, respec-
tively. η is a non-linear, rapidly changing short-term risk control parameter. Its local
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changes are rapid and can reflect the short-term trading risk of the portfolio strategy. There-
fore, the parameter η is used to capture short-term and nonlinear controls to achieve local
fast trend reversals. λ is a linear, slow-changing, long-term risk parameter control quantity.
For the Beta posterior distribution which λ obeys, depending on the results of the previous
trading day, the parameters are α + 1 or β + 1 on the basis of the prior distribution and
its likelihood function assumes that the market fits the mean reversion theory, which is
more useful in long-term investment. In the strategy update formula, when the product
of the two parameters is large, that is, the current risk is larger, the proportion of funds of
risk-free assets will be higher, and vice versa. After allocating the proportion of funds to
risk-free assets, the remaining funds are allocated to other assets to achieve the purpose of
controlling risk.

Algorithm 1 LSTR–TD3 Algorithm

1: Initialize predictive value networks Qw1 and Qw2 , parameters are w1 and w2
2: Initialize target value networks Qw′1

and Qw′2 , parameters are w′1 and w′2
3: Initialize predictive policy networks
µθ and target policy networks µθ′ , parameters are θ and θ′

4: Synchronized parameters w′1 → w1, w′2 → w2, θ′ → θ

5: The capacity of the experience pool D is N
6: The number of iterations is M, the discount factor is γ, τ = 0.0001, the number of random
mini-batch sampling samples is n
7: For e = 1 to M do:
8: Receive initial state S0
9: Repeat each time step in episode t = 0, 1, 2, · · · :
10: Select actions At = µ(St, θ) + εt based on the current prediction strategy network and
exploration noise, where εt ∼ Nt(0, σ)
11: Calculate the risk control parameters λ and η

12: Perform risk adjustment according to Ât = ληe1 + (1− λη)(1− e1)� At
13: Execute the action Ât, obtain returns Rt+1 and the next state St+1
14: Convert experience (St, Ât, Rt+1, St+1) to experience pool D
15: Randomly sampling small batches of nth experience transfer samples from the experience pool D
16: Actions after perturbation ãi+1 ← µ(Si+1, θ′) + εi , where εi ∼ clip(Nt(0, σ̃),−c, c)
17: Update the target yi = Ri+1 + γmin

i=1,2
Q(Si+1, ãi+1, w′i)

18: Use MBGD method, parameters of policy network w are updated according to the
maximization objective function

∇wL(w) ≈ 1
N

N
∑

i=1
(yi −Q(Si, Ãi, w))∇wQ(Si, Ãi, w)

19: If t mod d then
20: Use MBGA method, parameters of value network θ are updated according to the
minimization loss function

∇θ J̃β(θ) ≈ 1
N

N
∑

i=1,2
∇aQ(Si, a, w)

∣∣∣a=µ(Si ,θ)

21: Soft update target network
{

w;←τw+(1−τ)w′

θ′←τθ+(1−τ)θ′

22: Until t = T − 1
23: End for

4. Experiment Study
4.1. Experiment Setup

This paper selects the CSI500 index with a strong market representation from the
Chinese stock market. In order to guarantee the integrity of the training data set, we
selected stocks listed before 1 January 2012 from the constituent stocks of the CSI500
index to generate a stock pool. After that, four stocks were randomly selected from the
stock pool and used together with the CSI300 as a trading asset portfolio for empirical
research in the model. Random selection can ensure that the model setter selects stocks
based on subjective factors and has an uncertain impact on the experiment. In order to
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avoid accidents, three portfolios were generated and experimented with separately to
analyze the experimental effects of the model on different portfolios. This demonstrates
the effectiveness of the LSTR–TD3 model constructed in Section 3.3 in solving the problem
of stock portfolio management. Additionally, the performance is compared with the TD3
algorithm without risk control, where the transaction cost is 0.0025 for every single asset
being traded. The daily closing price changes of stocks in the three experiments are shown
in Figures 5–7.
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Figure 7. The closing price changes of Portfolio 3.

The data selected for the experiments are from the JoinQuant database. The experi-
mental data in this paper are chosen from daily trading data, including four price features:
the closing price, the open price, the high price, and the low price. In addition, it is assumed
that all risky assets are sufficiently liquid, each trading is executed immediately, and the
transaction does not impact the market. The stock codes selected in each experiment are
shown in Table 1.

Table 1. The stock code of different experiments.

Portfolio 1 Portfolio 2 Portfolio 3

600763 000100 601766
601857 600362 601877
000768 300124 002001
000063 601998 300122
CSI300 CSI300 CSI300

4.2. Performance Metrics

Three different metrics are used to evaluate the performance of trading strategies, the
first of which is the Accumulated Portfolio Value (APV), which is defined as:

APV =
Pt

P0
(20)

Here, Pt represents the portfolio value at the end of the test period and P0 represents
the portfolio value at the beginning of the test period.

The second metric is the Sharpe Ratio (SR), which primarily represents the risk-
adjusted return of the strategy and is defined as:

SR =
Et|ρt − ρRF|√
Var(ρt − ρRF)

(21)

where ρRF denotes the risk-free asset return.
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The third metric is the maximum drawdown (MDD), which is used to assess the risk
resistance of an investment strategy and is defined as:

MDD = max
t2�t1

Vt2 −Vt1

Vt2

(22)

where t1 and t2 denote different time steps; this metric represents the maximum loss of
portfolio value from peak to trough.

4.3. Algorithm Parameters

The key hyperparameter settings for the DRL training process are listed in Table 2.

Table 2. Primary hyperparameters of LSTR–TD3 algorithm.

Hyperparameters Value

Critic learning rate 0.001
Critic regularization None
Actor learning rate 0.0001

Optimizer Adam
Discount factor 0.99

Exploration noise 0.2
Policy update frequency 2

Batch size 64
Reward scaling 1000

5. Experiment Results

The agents were trained in the training environment and tested separately in the test
environment. The actor and critic networks are designed by using the Alexnet convolu-
tional neural network, which is based on the results of Huang et al. [24]. Figure 8 shows
the neural network structure of the actor. Figure 9 shows the neural network structure
of the critic.

Figures 10–12 show the portfolio value and CSI300 value curves for TD3 and LSTR–
TD3 in the three experiments during the testing period, respectively. In the Portfolio 1 data
set, LSTR–TD3 shows excellent performance compared with the benchmark CSI300, while
TD3 is slightly inferior. In addition, its three performance indicators are better than the TD3
algorithm. In the Portfolio 2 data set, the Sharpe ratio and maximum drawdown are both
significantly improved, except for the cumulative portfolio value, which is slightly lower
than the original TD3 algorithm. In the Portfolio 3 data set, LSTR–TD3 still outperforms
TD3 in three performance indicators, which indicates that the LSTR–TD3 model proposed
in this paper can achieve better returns while controlling risk.

Table 3 compares the LSTR–TD3 algorithm proposed in this paper with the TD3
algorithm and the benchmark in the three experiments. Three performance indicators are
computed to compare the performance of the LSTR–TD3 algorithm.

Table 3. Experimental results for three different portfolios.

Portfolio Metrics TD3 LSTR–TD3 CSI300

Portfolio 1
APV 1.0848 1.4573 1.0069
SR 0.5679 1.8225 0.0773

MDD 12.7039 8.5175 8.8823

Portfolio 2
APV 1.1030 1.0859 0.9951
SR 0.8053 0.8830 0.1151

MDD 8.3310 5.1889 8.8823

Portfolio 3
APV 0.9493 1.0739 0.9966
SR −0.1644 0.5378 0.1287

MDD 16.5333 15.8147 8.8823
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Compared with the benchmark, the cumulative portfolio value and Sharpe ratio
of both the classical TD3 and the LSTR–TD3 model are higher than the CSI300 index,
indicating that classical TD3 and the methodology proposed in this article can be effectively
applied to the China A-share market. In addition, the maximum drawdown of the LSTR–
TD3 model in Portfolios 1 and 2 can even be lower than the CSI300 index. This shows
that the portfolio strategy generated by the model in this paper can be less risky than the
CSI300 index. Compared to the classic TD3 algorithm, the LSTR–TD3 model has a better
maximum drawdown. At the same time, its cumulative portfolio values are higher than or
equal to the classical TD3. Therefore, from the perspective of comprehensive return and
risk, the model proposed in this paper with LSTR outperforms the classic TD3 in balancing
risk and return. In conclusion, the results show that the LSTR–TD3 is effective in China’s
A-share market and has better risk management capabilities than the classic TD3.

However, Figure 11 shows that the cumulative portfolio value of the CSI300 index
rose sharply at the end of December 2021, while the cumulative portfolio growth of the
LSTR–TD3 model was not as fast as the CSI300 Index. This suggests that when the model
has a rapid upward signal in the market, the agent fails to seize the opportunity in time to
increase the return by buying stocks with large income increases. Therefore, in addition to
price information, technical indicators should be added in future work so we can further
improve the return of portfolio strategy, and seize the opportunity of the bull market.
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6. Conclusions

Because of the low signal-to-noise ratio of financial data, investors based on traditional
econometric models often miss the opportunity to gain excess returns. In order to beat
the market for excess returns, many scholars have used deep reinforcement learning
methods to obtain better trading strategies. Despite the success of deep reinforcement
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learning in portfolio management problems, the Sharpe ratio and maximum drawdown
are excellent measures of risk. Still, they are not applicable for optimizing them as objective
functions, which describe long-term risk and do not respond to market conditions promptly.
Therefore, this paper explores a deep reinforcement learning algorithm, namely TD3, to
find the optimal portfolio strategy in the complex and volatile Chinese stock market. The
LSTR algorithm is introduced to optimize the portfolio strategy. While changing the weight
of risk-free assets by the LSTR algorithm, the portfolio strategy is adjusted. Compared to
the TD3 strategy studied in previous studies, the improved strategy can increase returns
while reducing the risk of the strategy. In summary, our approach is more robust than
others in balancing risk and reward. In addition, our deep reinforcement learning approach
considers not only long-term risks but also short-term risks.

To verify the effectiveness of the proposed method in this paper, an empirical analysis
is conducted in the Chinese stock market and a comparative study is performed with
the original TD3 algorithm. Three portfolios were randomly selected for the experiment.
Their historical price data were collected to express the state of the market. The DRL
algorithm proposed in this paper is trained and tested based on these historical data. The
experiment results show that the LSTR–TD3 algorithm proposed in this paper has better
risk management performance than the TD3 algorithm.

In a real trading system, the investor would be able to set a target return for a single
trading day and the maximum loss they can tolerate in a single trading day. Thus, the
portfolio risk-averse policy constructed by our proposed model can control risk according
to the preferences of different investors. However, this model may be difficult to implement
in the practical world. An important reason for this is that asset turnover can be high and
the operation of determining portfolio weights can lead to frequent asset switching.

Of course, the algorithm proposed in this paper also has limitations. First, some
parameters in the LSTR algorithm need to be set artificially, which seems to go against
the original intention of artificial intelligence. In addition, only price features are used to
describe the environment during the experiment, which cannot sufficiently represent the
state of the market.
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