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1. Introduction

Volterra integral equations have practical applications in many fields, including bi-
ology, medicine, finance and engineering. Although various methods are available to
find analytical solutions for these integral equations, in most cases, finding a closed-form
solution may be unfeasible. To this end, several numerical methods have been developed
in recent years (see, e.g., [1,2]). In the present work, we deal specifically with the Volterra
integral equation of the second kind, defined below

φ(t) = f (t, φ(t)) +
∫ t

0
k(t, s)ψ(t, s, φ(t), φ(s)) ds, (1)

with t ∈ I = [0, T]. Such an equation in which the integrand depends both on φ(t) and φ(s)
is also a nonstandard Volterra integral equation ([3]).

In the field of mathematical finance, Equation (1) and its solution are a matter of
interest in order to determine the value of an American financial option. More generally, a
financial option is a derivative contract allowing for the holder to buy or sell an underlying
financial asset at a fixed price, namely, the strike price. If the holder can buy or sell the
underlying asset only at the expiration date, the option is called European; conversely,
an American financial option provides the holder with the possibility to also exercise its
right before the expiration date. Depending on the value of the underlying asset, it may
become optimal for the holder to exercise its right before the expiration time. Such an asset
value is the optimal exercise price, and by considering the optimal exercise times during
the option duration, we can achieve a collection of optimal exercise prices, namely, the
optimal exercise boundary. From a mathematical perspective, the definition of optimal
exercise boundary identifies a free boundary problem whose solution must be determined
numerically. For instance, Kim [4] showed that the early exercise boundary of an American
put option is the solution of the integral equation having the form (1).

Among others, the authors in [5,6], Barone-Adesi, Whaley [7], Bunch et al. [8], Ait-
sahlia and Lai [9,10] considered integral equations and/or the optimal stopping problem
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for pricing American options. The integral representation proposed by Kim gives a sug-
gestive economic interpretation, but a closed-form solution for these kind of problems
is not available. In particular, Kim’s equation ([4]) contains a double integral due to the
presence of a cumulative normal distribution term. To avoid such a problem, the authors
in [11,12] suggested a transformation of the original equation in order to reduce it to an
one-dimensional integral equation and afterwards consider its numerical solution. The
early exercise boundary shows some kind of singularity near expiration (see, e.g., [13,14]).
Considering the numerical approximation problem of the early boundary exercise for the
American put, there have been more efforts in recent years. The authors in[15] proposed
a four-point extrapolation scheme. Bunch and Johnson [8] proposed a modified version
of the two-point extrapolation scheme of Geske and Johnson. Broadie and Detemple [16]
suggested a lower and upper bound approximation method. The authors in [17] showed
the exponential function method combined with a three-point Richardson extrapolation.
Starting from an integral equation representation for the early boundary exercise, the au-
thors in [12] used an iteration method. The authors in [18] proposed trapezoidal formulas
approximations combined with the Newton–Raphson iteration. In [19], the authors solved
a variational inequality representation of the American put option pricing problem by
applying the projected successive over-relaxation method. The authors in [20] suggested
an analytical expression to the value of American put options and their optimal exercise
boundary. The authors in [21] derived a local iterative numerical scheme based on a solu-
tion of the integral equation proposed by [13]. More recently, Nedaiasl et al. [22], starting
from the cited one-dimensional reformulation of Kim’s integral equations, obtained the
numerical solution by using a modified version of the Nyström method in order to take into
account the singularity near expiry presented by the early exercise boundary. Besides the
method of Zhu [20] and others involving semianalytical approximations that are not cited
for the brevity of treatment, in the American option pricing literature, numerical methods
aim to numerically solve the integral equations describing the early exercise boundary. We
proceed in the latter direction.

More recently, some research studies applied the integral equation approach to deal
with particular financial evaluations. For instance, the authors in [23] exploited the Mellin’s
transform aiming to provide an integral representation for the barrier option price. In [24],
the authors gave an integral equation representation for a two-free-boundaries problem
arising in the American better-of option on two assets.

In the present work, using a very simplified approach, we straightforward solve the
nonstandard Volterra integral equation of the form (1). In more detail, using the mean-
value theorem for integrals, we provide a flexible algorithm that allows for reaching a more
accurate numerical solution with fewer calculations rather than other previously described
methods.

The paper is organized as follows. In Section 2, we propose our numerical method
for nonstandard Volterra integral equations. In Section 3, such a method is applied to the
case of the American put. In Section 4, we present some numerical results confirming the
accuracy of the proposed method. Lastly, in Section 5 we show the conclusions.

2. A New Numerical Scheme for Nonstandard Volterra Integral Equations

Let us fix interval I = [0, T] where T > 0 and consider the following nonstandard
Volterra integral equation:

φ(t) = f (t, φ(t)) +
∫ t

0
k(t, s)ψ

(
t, s, φ(t), φ(s)

)
ds, (2)

with t ∈ I = [0, T], where the kernel function k is continuous in I × I, ψ is continuous in
I × I ×R×R.
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Let n be a positive integer, and let us consider the following partition Γ of the interval
[0, T] into n intervals of equal length ∆ = T/n:

0 = t0 < t1 < t2 < · · · < tn−1 < tn = T. (3)

Let us consider Equation (2). By means of the additive properties for integrals, we can
rewrite for each ti, i = 1, 2, . . . , n Equation (2) in the following way:

φ(ti) = f (ti, φ(ti)) +
i

∑
m=1

∫ tm

tm−1

k(ti, s)ψ
(

ti, s, φ(ti), φ(s)
)

ds. (4)

The following result holds.

Proposition 1. Let:

(a) Function k(t, s) be continuous such that it never changes sign for all (t, s) ∈ I × I. Let L > 0
be a constant such that |k(t, s)| ≤ L for each (t, s) ∈ I × I.

(b) Function φ(s) be continuous in I.
(c) Function ψ(t, s, x, y) be continuous in I × I ×R×R.

Then, for each m = 1, 2 . . . , i, the following approximation holds:

∫ tm

tm−1

k(ti, s)ψ
(

ti, s, φ(ti), φ(s)
)

ds =

=
1
2

ψ
(

ti, tm−1, φ(ti), φ(tm−1)
) ∫ tm

tm−1

k(ti, s) ds+

+
1
2

ψ
(

ti, tm, φ(ti), φ(tm)
) ∫ tm

tm−1

k(ti, s) ds + εm,i , (5)

where error |εm,i| satisfies |εm,i| ≤ hm/(2n), with hm a constant, and εm,i → 0 for n→ ∞.

Proof. Using the mean value theorem for integrals, it follows that∫ tm

tm−1

k(ti, s)ψ
(

ti, s, φ(ti), φ(s)
)

ds = ψ
(

ti, ξm, φ(ti), φ(ξm)
) ∫ tm

tm−1

k(ti, s) ds,

where ξm is, for each m, a number belonging to the interval [tm−1, tm]. It follows

∫ tm

tm−1

k(ti, s)ψ
(

ti, s, φ(ti), φ(s)
)

ds =
1
2

ψ
(

ti, tm−1, φ(ti), φ(tm−1)
) ∫ tm

tm−1

k(ti, s) ds+

+
1
2

ψ
(

ti, tm, φ(ti), φ(tm)
) ∫ tm

tm−1

k(ti, s) ds− 1
2

ψ
(

ti, tm−1, φ(ti), φ(tm−1)
) ∫ tm

tm−1

k(ti, s) ds+

− 1
2

ψ
(

ti, tm, φ(ti), φ(tm)
) ∫ tm

tm−1

k(ti, s) ds +
1
2

ψ
(

ti, ξm, φ(ti), φ(ξm)
) ∫ tm

tm−1

k(ti, s) ds+

+
1
2

ψ
(

ti, ξm, φ(ti), φ(ξm)
) ∫ tm

tm−1

k(ti, s) ds. (6)

Let us rearrange the elements in (6) in the following way:

∫ tm

tm−1

k(ti, s)ψ
(

ti, s, φ(ti), φ(s)
)

ds =
1
2

ψ
(

ti, tm−1, φ(ti), φ(tm−1)
) ∫ tm

tm−1

k(ti, s) ds+

+
1
2

ψ
(

ti, tm, φ(ti), φ(tm)
) ∫ tm

tm−1

k(ti, s) ds + εA
m,i + εB

m,i , (7)
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where we have set

εA
m,i =

1
2

[
ψ
(

ti, ξm, φ(ti), φ(ξm)
)
− ψ

(
ti, tm−1, φ(ti), φ(tm−1)

)] ∫ tm

tm−1

k(ti, s) ds

and

εB
m,i =

1
2

[
ψ
(

ti, ξm, φ(ti), φ(ξm)
)
− ψ

(
ti, tm, φ(ti), φ(tm)

)] ∫ tm

tm−1

k(ti, s) ds.

Then, it follows that

|εA
m,i| =

1
2

∣∣∣[ψ(ti, ξm, φ(ti), φ(ξm)
)
− ψ

(
ti, tm−1, φ(ti), φ(tm−1)

)] ∫ tm

tm−1

k(ti, s) ds
∣∣∣ =

1
2

∣∣∣ψ(ti, ξm, φ(ti), φ(ξm)
)
− ψ

(
ti, tm−1, φ(ti), φ(tm−1)

)∣∣∣ · ∣∣∣ ∫ tm

tm−1

k(ti, s) ds
∣∣∣ ≤

1
2

∣∣∣ψ(ti, ξm, φ(ti), φ(ξm)
)
− ψ

(
ti, tm−1, φ(ti), φ(tm−1)

)∣∣∣ · ∫ tm

tm−1

∣∣∣k(ti, s)
∣∣∣ ds ≤

1
2

∣∣∣ψ(ti, ξm, φ(ti), φ(ξm)
)
− ψ

(
ti, tm−1, φ(ti), φ(tm−1)

)∣∣∣ · TL
n

=
hA

m,i

2n
,

where hA
m,i is a positive constant because the argument in modulus is a number for each m

and for any fixed ti.
As n → ∞, it follows εA

m,i → 0, and the same considerations apply to εB
m,i with a

positive constant hB
m,i. If we consider the sum εm,i = εA

m,i + εB
m,i, it follows εm,i → 0, as

n→ ∞.
In addition, it follows easily that |εm,i| ≤ hm,i/(2n), with hm,i = hA

m,i + hB
m,i.

Remark. If we consider Equation (4), it follows, through Proposition 1 for each fixed ti, that

i

∑
m=1

∫ tm

tm−1

k(ti, s)ψ
(

ti, s, φ(ti), φ(s)
)

ds =

=
1
2

i

∑
m=1

[
ψ
(

ti, tm−1, φ(ti), φ(tm−1)
) ∫ tm

tm−1

k(ti, s), ds+

+ ψ
(

ti, tm, φ(ti), φ(tm)
) ∫ tm

tm−1

k(ti, s), ds
]
+ εi ,

where

εi =
i

∑
m=1

εm,i.

From Proposition 1, it is easy to check that: |εi| ≤ H/(2n), with H = ∑i
m=1 hm,i. It is straightfor-

ward to notice that εi → 0 for n→ ∞.

We provide the following algorithm in order to find the numerical solution.

Step 1. Let n be a positive integer. Let us consider the following partition Γ of interval [0, T] into n
intervals of equal length ∆ = T/n:

0 = t0 < t1 < t2 < · · · < tn−1 < tn = T.
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If Proposition 1 is verified, and from the additive property for integrals, for each ti, with i =
0, 1, 2, . . . , n, we can rewrite Equation (2) in the following way:

φ(ti) = f (ti, φ(ti)) +
1
2

[ i

∑
m=1

ψ
(

ti, tm−1, φ(ti), φ(tm−1)
) ∫ tm

tm−1

k(ti, s) ds+

+ψ
(

ti, tm, φ(ti), φ(tm)
) ∫ tm

tm−1

k(ti, s) ds
] (8)

Step 2. We observe that

φ(t0) = f (t0, φ(t0)) +
∫ t0

t0

k(t0, s)ψ
(

t0, s, φ(t0), φ(s)
)

ds = f (t0, φ(t0)). (9)

Then, for i = 0, . . . , n we consider the following nonlinear system.



φ(t0) = f (t0, φ(t0)),

φ(t1) = f (t1, φ(t1)) +
1
2

[
ψ
(

t1, t0, φ(t1), φ(t0)
) ∫ t1

t0
k(t1, s) ds+

+ψ
(

t1, t1, φ(t1), φ(t1)
) ∫ t1

t0
k(t1, s) ds

]
,

φ(t2) = f (t2, φ(t2)) +
1
2

[
∑2

m=1 ψ
(

t2, tm−1, φ(t2), φ(tm−1)
) ∫ tm

tm−1
k(t2, s) ds+

+ψ
(

t2, tm, φ(t2), φ(tm)
) ∫ tm

tm−1
k(t2, s) ds

]
,

...

φ(tn) = f (tn, φ(tn)) +
1
2

[
∑n

m=1 ψ
(

tn, tm−1, φ(tn), φ(tm−1)
) ∫ tm

tm−1
k(tn, s) ds+

+ψ(tn, tm−1, φ(tn), φ(tm)
) ∫ tm

tm−1
k(tn, s) ds

]
.

(10)

The above nonlinear system is solved with a numerical method that provides the
approximate solution {φ̃(t0), φ̃(t2), . . . , φ̃(tn)}.

3. Approaching the American Put Pricing Problem

Let us assume the asset price process {S(t), t ≥ 0} following the log-normal distribu-
tion of the form

dSt = (r− δ)St dt + σSt dWt, (11)

where Wt is the standard Wiener process, r is the constant interest rate, and δ is the
dividend yield. For the aim of the present work, we follow [25] assuming that the volatility
term, σ, is constant. The latter is a simplifying hypothesis, and Equation (11) can be
generalized considering nonconstant volatility, as in [26]. In this case, the boundary
problem is represented by a multidimensional Volterra integral equation involving more
complicated integrals (see, e.g., [27]). We leave the nonconstant volatility problem to future
research works.

Let us consider the interval I = [0, T]. We denote with Φ(·) the standard cumulative
normal distribution function. Let us denote with B(t) the early exercise boundary of an
American put option, where t ∈ I. Let P the price of an American put. The authors in [28]
proved the existence and uniqueness of the pair (P,B), and the continuity and monotonic
behaviour of B. In [4], the authors showed that B(t), as a function of time to expiration,
satisfies the following weakly singular Volterra integral equation:
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K−B(t) = Ke−rtΦ

− log
(
B(t)

K

)
+ (r− δ− σ2

2 )t

σ
√

t

+

−B(t)e−δtΦ

− log
(
B(t)

K

)
+ (r− δ + σ2

2 )t

σ
√

t

+

+Kr
∫ t

0
e−r(t−s)Φ

− log
(
B(t)
B(s)

)
+ (r− δ− σ2

2 )(t− s)

σ
√

t− s

 ds+

−δB(t)
∫ t

0
e−δ(t−s)Φ

− log
(
B(t)
B(s)

)
+ (r− δ + σ2

2 )(t− s)

σ
√

t− s

 ds,

(12)

where K is the exercise price.
In Equation (12), let us consider the two integrals and in particular the two functions

k1(t, s) = e−r(t−s) and k2(t, s) = e−δ(t−s). It is easy to check that k1(t, s) and k2(t, s), for any
(t, s) ∈ I × I, satisfy Proposition 1 with L = 1.

We apply the algorithm presented in Section 2. Let us consider the following result.

Proposition 2. Assume that the asset price, St, follows a log-normal distribution process of the
form dSt = (r− δ)Stdt + σStdWt, in which Wt is the standard Wiener process.

Let B(t) be the solution of Integral Equation (12). Then, B(t) is a continuously differentiable
function on (0, T] and

• for r ≤ δ:
lim
t→0
B(t) = K; (13)

• for r > δ:

lim
t→0
B(t) = r

δ
K. (14)

Proof. See [4].

For our purposes, let us rewrite Equation (12) in contract form:

B(t) = K− f (t,B(t))− rK
∫ t

0
e−r(t−s)Φ

(
− d2(t, s,B(t),B(s))

)
ds+

+ δB(t)
∫ t

0
e−δ(t−s)Φ

(
− d1(t, s,B(t),B(s))

)
ds,

(15)

where

• f (t,B(t)) = Ke−rtΦ

(
−

log
(
B(t)

K

)
+(r−δ− σ2

2 )t

σ
√

t

)
−B(t)e−δtΦ

(
−

log
(
B(t)

K

)
+(r−δ+ σ2

2 )t

σ
√

t

)
;

• d1(t, s,B(t),B(s)) =
log
(
B(t)
B(s)

)
+(r−δ+ σ2

2 )(t−s)

σ
√

t−s
;

• d2(t, s,B(t),B(s)) =
log
(
B(t)
B(s)

)
+(r−δ− σ2

2 )(t−s)

σ
√

t−s
.

Let n be a positive integer. Let us consider the following partition Γ of the interval
[0, T] into n intervals of equal length ∆ = T/n:

0 = t0 < t1 < t2 < · · · < tn−1 < tn = T.



Mathematics 2023, 11, 187 7 of 12

For each ti, with i = 0, 1, 2, . . . , n, using the additive property of integral, let us rewrite
Equation (15) in this way:

B(ti) = K− f (ti,B(ti)) +
i

∑
m=1

[
− rK

∫ tm

tm−1

e−r(ti−s)Φ
(
− d2(ti, s,B(ti),B(s))

)
ds+

+ δB(t)
∫ tm

tm−1

e−δ(ti−s)Φ
(
− d1(ti, s,B(ti),B(s))

)
ds
]
. (16)

Proposition 3. For the two integrals appearing in Equation (16), the following equalities hold:∫ tm

tm−1

e−r(ti−s)Φ
(
− d2(ti, s,B(ti),B(s))

)
ds =

=
1
2

Φ
(
− d2(ti, tm−1,B(ti),B(tm−1)

) ∫ tm

tm−1

e−r(ti−s) ds+

+
1
2

Φ
(
− d2(ti, tm,B(ti),B(tm)

) ∫ tm

tm−1
e−r(ti−s) ds + εA

m,i

(17)

and ∫ tm

tm−1

e−δ(ti−s)Φ
(
− d1(ti, s,B(ti),B(s))

)
ds =

=
1
2

Φ
(
− d1(ti, tm−1,B(ti),B(tm−1))

) ∫ ζm

tm−1

e−δ(ti−s) ds+

+
1
2

Φ
(
− d1(ti, tm,B(ti),B(tm))

) ∫ tm

tm−1

e−δ(ti−s) ds + εB
m,i,

(18)

where εA
m,i and εB

m,i are the errors as defined in Proposition 1.

Proof. The result follows immediately from the continuity of Φ and B and by means of
Proposition 1.

Equation (12) represents a nonstandard Volterra integral equation of the second kind
having the form (1). We solve it by using of the method described in Section 2. By applying
this method, when s = ti, the indeterminate form

Φ

− log
(
B(ti)
B(ti)

)
+ (r− δ− σ2

2 )(ti − ti)

σ
√

ti − ti

 = Φ
(

0
0

)
(19)

arises. Observing that

lim
s→t−

Φ

− log
(
B(t)
B(s)

)
+ (r− δ− σ2

2 )(t− s)

σ
√

t− s

 =
1
2

, (20)

we can define the continuous function

Φ

− log
(

u(t)
u(s)

)
+ (r− δ− σ2

2 )(t− s)

σ
√

t− s

 =

 Φ

(
−

log
(

u(t)
u(s)

)
+(r−δ− σ2

2 )(t−s)

σ
√

t−s

)
⇐⇒ 0 ≤ s < t

1
2 ⇐⇒ t = s.

The same considerations apply to

Φ

− log
(

u(t)
u(s)

)
+ (r− δ + σ2

2 )(t− s)

σ
√

t− s

.
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Using aforementioned notations, from the numerical approximation of the early
boundary exercise, the price of the American put may be found by means of the following
formula:

P(t, S) = f (t, S) + rK
∫ t

0
e−r(t−s)Φ(−d2(t, s, S,B(s))) ds+

− δS
∫ t

0
e−δ(t−s)Φ(−d1(t, s, S,B(s))) ds.

(21)

In Equation (21), S represents the current price of the underlying asset (see [4]). The
authors in [29] showed that the value of American options can be written as the sum of the
corresponding European option price and the early exercise premium. Equation (21) lends
itself to this interpretation being f (t, S) the price of an European put.

4. Numerical Results

In this section, we present some numerical results showing the accuracy of the ap-
proximations computed by means of the pricing model presented in Sections 2 and 3. We
denote by T the time expressed in year, and the interest rate, dividend yield, and volatility
are expressed on an annual basis. The results were obtained using MATLAB on a MacBook
Pro with a 2.6 GHz Intel Core i7 processor with 16 GB RAM. We considered n = 110 steps.
The required computational time was about 9 s. The nonlinear system of equations of the
form (10), arising in the problem discussed in Section 3, was solved applying the Broyden’s
method, a quasi-Newtonian method.

The obtained approximated values of B(t) are plotted in Figure 1 for several values of
σ. We chose S = K = 100, T = 2, r = 0.05, δ = 0 and σ = 0.2, 0.40, 0.60.

0 0.5 1 1.5 2

40

60

80

100

t

B
(t
)

σ = 0.20
σ = 0.40
σ = 0.60

Figure 1. The numerical approximation of B(t): K = 100, T = 2, r = 0.05, δ = 0 and σ =

0.2, 0.40, 0.60.

For several values of δ, the obtained values of B(t) are, instead, plotted in Figure 2.
We chose S = K = 100, T = 2, r = 0.05, σ = 0.2 and δ = 0.05, 0.10, 0.15.
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Figure 2. The numerical approximation of B(t): K = 100, T = 2, r = 0.05, σ = 0.2 and δ =

0.05, 0.10, 0.15.

The numerical approximation of B(t) gained from our method was applied to (21);
consequently, the trapezoidal numerical integration rule was engaged to calculate the
price of an American put. The outcome values were compared with the benchmarks ones,
stemming from a binomial tree with n = 10,000 time steps.

Table 1 displays values of the American put achieved through benchmarks methods.
All the considered methods are able to produce an approximation of the boundary. In
particular, the Cox, Ross and Rubenstein model ([30]), namely, C-R-R in the first column
of Table 1, with n = 10,000 time steps (C-R-R), is considered. The second column contains
the American put prices corresponding to different approximated values of B(t) using
the four-point extrapolation scheme of [15], namely, G-J. The third column of Table 1
reports the modified two-point method of [8], namely, B-J. The fourth column embeds
values stemming from the lower and upper bound approximation of [16], indicated as B-D.
The fifth column, namely, Ju, shows the exponential functions method combined with a
three-point Richardson extrapolation proposed by [17]. In addition, the iteration method
proposed by [12] was considered and it is identified as K-J-K. Values within the seventh
column in Table 1 represents the trapezoidal formulas approximations of [18] followed by
the Newton–Raphson iteration, namely, K-K. N-B-R refers to the more recently product
integration method for the approximation of the early boundary in the American option
pricing problem exposed in [22]. Lastly, the last column in Table 1, indicated as D-M-M-V,
represents the mean-value theorem approach that we proposed in this work.

In Table 1, we considered S as in first column, T = 3, σ = 0.2, r = 0.08, K = 100 and
δ = 0.08 and n = 32. The benchmark values in the first column stem from a binomial tree
(C-R-R model) with n = 10,000 time steps. For ease of reading, we underlined the best
approximations.

The proposed numerical approach employs about 0.66 s to compute n = 32 points. It
is worth underlining that approximations attained with our method are coherent or even
better compared to the similar stemming from benchmark methods. The only exception
holds for approximations obtained by [22]. Table 2 shows results from our proposal
compared to the ones [22] considering, for D-M-M-V method, n = 110 points.
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Table 1. Numerical approximations of American put price: S as in the first column, T = 3, σ = 0.2,
r = 0.08, K = 100, δ = 0.08, and n = 32. For each value of S, the resulting approximation errors
are displayed in the second rows within brackets. Some data in Table 1 were extracted from [22]; in
addition, underlined values represent approximated prices to which the lowest error corresponds.

S C-R-R G-J B-J B-D Ju K-J-K K-K N-B-R D-M-M-V

80
22.2050 22.2079 22.7106 22.1985 22.2084 22.1942 22.1900 22.2048 22.2075

(-) (2.9× 10−3) (5.1× 10−1) (6.5× 10−3) (3.4× 10−3) (1.1× 10−2) (1.5× 10−2) (2× 10−4) (2.5× 10−3)

90
16.2071 16.1639 16.5205 16.1986 16.2106 16.1999 16.1960 16.2068 16.2096

(-) (4.3× 10−2) (3.6× 10−1) (5.9× 10−2) (7.2× 10−3) (1.1× 10−2) (3.9× 10−3) (1.1× 10−4) (2.5× 10−3)

100
11.7037 11.7053 11.8106 11.6988 11.7066 11.6991 11.6958 11.7037 11.7061

(-) (1.6× 10−3) (1.1× 10−1) (4.9× 10−3) (2.9× 10−3) (4.9× 10−3) (7.9× 10−3) (1.0× 10−5) (4.4× 10−3)

110
8.3671 8.3886 8.4072 8.3630 8.3695 8.3638 8.3613 8.3669 8.3689

(-) (2.1× 10−2) (4.0× 10−2) (4.1× 10−3) (2.4× 10−3) (3.3× 10−3) (5.8× 10−3) (2.0× 10−4) (1.8× 10−3)

120
5.9299 5.9435 5.9310 5.9261 5.9323 5.9278 5.9258 5.9298 5.9314

(-) (1.4× 10−2) (1.1× 10−3) (3.8× 10−3) (2.4× 10−3) (2.1× 10−3) (4.1× 10−3) (1.0× 10−4) (1.5× 10−3)

Table 2. Comparison between N-B-R and D-M-M-V: S as in the first column, T = 3, σ = 0.2, r = 0.08,
K = 100 and δ = 0.08. The benchmark value was obtained considering the C-R-R model with n =
10,000 time steps. For each value of S, the resulting approximation errors are displayed in the second
rows within brackets.

S C-R-R N-B-R D-M-M-V

80
22.2050 22.2048 22.2051

(-) (2.0× 10−4) (1.0× 10−4)

90
16.2071 16.2068 16.2072

(-) (1.1× 10−4) (1.0× 10−4)

100
11.7037 11.7037 11.7040

(-) (1.0× 10−5) (3.0× 10−4)

110
8.3671 8.3669 8.3672

(-) (2.0× 10−4) (1.0× 10−4)

120
5.9299 5.9299 5.9299

(-) (1.0× 10−4) (1.0× 10−4)

As Table 2 shows, the approximations obtained with our method were coherent with
the ones obtained by applying the method in [22]. The resulting errors in the second
rows for each value of S were very small and comparable with that relative to the N-B-
R method. In particular, [22] numerically solved the one-dimensional reformulation of
Kim’s integral equations ([11]) using a modified version of the Nyström method. Such a
procedure allows for taking into account the singularity close to expiry presented by the
early exercise boundary. In our method, instead, we directly dealt with Equation (15). In
addition, our method may be easily extended to integral equations coming from more
complicated dynamics.

In [22], taking into account n = 32 points, an error of range of 10−4 was obtained
in about 14 s. Their calculations were performed on a PC with a 4.00 Intel Core i7 GHz
processor with 16 GB RAM (see Figures 3–6 as reported by [22]). With our algorithm, also
considering n = 110 points, we obtained an error of the same range in about 9 s. Moreover,
our calculations were performed using a machine with a less powerful processor, a MacBook
Pro with a 2.6 GHz Intel Core i7 processor with 16 GB of RAM. To test the convergence of
our algorithm, we report in Table 3 some values of the American put corresponding to as
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many as the approximated values of B(t). We considered: S = K = 100, T = 1, r = 0.08,
σ = 0.2 and δ = 0.08. In Column 1, we report the time steps. The errors were computed
as the difference between our values (D-D-M-V) with the ones obtained considering a
binomial tree (C-R-R) model with n = 10,000 used as a benchmark. The error size of order
10−4 obtained when increasing the value of n proves the quality and the precision of the
proposed method.

Table 3. Convergence analysis in approximating the American put price. The benchmark value,
equal to 7.5009, stems from a binomial tree (C-R-R model) with n = 10,000 steps. We considered
S = K = 100, T = 1, r = δ = 0.08, σ = 0.2.

n D-D-M-V Error

10 7.5059 0.0050

20 7.5028 0.0019

30 7.5020 0.0011

40 7.5017 8.0× 10−4

90 7.5012 3.0× 10−4

110 7.5012 1.0× 10−4

5. Conclusions

The present work proposed a new numerical method for the approximation of the
early exercise boundary of an American option. American options are financial contracts
allowing for the holder to buy or sell an underlying financial asset before the contract
expiration. Thus, the evaluation of an American option requires to consider that the
holder may have convenience to interrupt the contract at any time depending on the
value of the underlying asset; that is, a collection of optimal exercise prices, one for each
optimal exercise time, must be determined. Representing such a boundary by means of
a nonstandard Volterra integral equation, we propose a numerical scheme in order to
approximate the solution of the free boundary problem concerning the American option.
Our proposal allows for managing well-known numerical problems arising in the presence
of a singularity close to expiry and of a double integral. First, we provided theoretical
instruments that were at the core of the proposed method. Consequently, we compared
existing pricing models with results stemming from our method, showing the accuracy
of the latter. The direct solution of the integral equation suggests that our method can be
applied to more complicated cases coming up in finance.
Future research works will concern the use of an asset price process characterized by a
nonconstant volatility term. In particular, we aim to expand our proposal to the case of the
Heston model for American options, considering the associated multidimensional Volterra
integral equation for the boundary problem.
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