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Abstract: Visual pollution (VP) is the deterioration or disruption of natural and man-made landscapes
that ruins the aesthetic appeal of an area. It also refers to physical elements that limit the movability
of people on public roads, such as excavation barriers, potholes, and dilapidated sidewalks. In this
paper, an end-to-end visual pollution prediction (VPP) framework based on a deep active learning
(DAL) approach is proposed to simultaneously detect and classify visual pollutants from whole
public road images. The proposed framework is architected around the following steps: real VP
dataset collection, pre-processing, a DAL approach for automatic data annotation, data splitting as
well as augmentation, and simultaneous VP detection and classification. This framework is designed
to predict VP localization and classify it into three categories: excavation barriers, potholes, and
dilapidated sidewalks. A real dataset with 34,460 VP images was collected from various regions
across the Kingdom of Saudi Arabia (KSA) via the Ministry of Municipal and Rural Affairs and
Housing (MOMRAH), and this was used to develop and fine-tune the proposed artificial intelligence
(AI) framework via the use of five Al predictors: MobileNetSSDv2, EfficientDet, Faster RCNN,
Detectron2, and YOLO. The proposed VPP-based YOLO framework outperforms competitor Al
predictors with superior prediction performance at 89% precision, 88% recall, 89% F1-score, and
93% mAP. The DAL approach plays a crucial role in automatically annotating the VP images and
supporting the VPP framework to improve prediction performance by 18% precision, 27% recall, and
25% mAP. The proposed VPP framework is able to simultaneously detect and classify distinct visual
pollutants from annotated images via the DAL strategy. This technique is applicable for real-time
monitoring applications.

Keywords: Al-based visual pollution prediction (VPP); deep active learning (DAL); deep learning;
simultaneous VP detection and classification

MSC: 68T45

1. Introduction

In the beginning of 2018, the Kingdom of Saudi Arabia (KSA) launched the Quality
of Life (QoL) project under the Saudi Vision 2030 framework, contingent on the usage
of advanced Al technology to improve the quality of life of its residents by establishing
a more comfortable environment for their contemporary lifestyles. The program aims
to increase inhabitant engagement with numerous social and cultural activities based on
entertainment, culture, tourism, sports, and other sectors able to nurture an increased
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quality of life. Heightened participation in such activities is predicted to have a positive
economic and social impact by allowing for the establishment of numerous jobs and a
diverse range of activities being made available to Saudi residents [1]. As such, the cur-
rent standing of Saudi cities could be elevated to make them among the world’s most
livable cities [2]. The community targeted for this program consists of individuals residing
within the boundary of Saudi Arabia, including, but not limited to, citizens, residents,
visitors, and tourists. As an integral part of the KSA 2030 vision, a strategic economic and
social reform framework, municipalities across thirteen provincial regions in Saudi Arabia
have launched intensive remedial policies in an effort to secure high living standards for
residents of the Kingdom. As we know, the continuation of expansive and invasive anthro-
pogenic influences on the natural environment endangers all living organisms. As defined
by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
(IPBES), the five significant ecosystem propulsors and biodiversity losers in dire need
of swift and effective change are (1) climate change, (2) direct exploitation, (3) pollution,
(4) biological invasions, and (5) sea-use change [3]. As such, they are reversing the sig-
nificant environmental damage engendered by man, which is unequivocally the primary
source of discussion in influential environmental discourses throughout recent history.

As defined by toxicity-based literature, pollution is an offshoot of industrial and
economic progression, with acute consequences for the environment and its inhabitants.
Abiotic drivers, or the non-living components of an ecosystem, precipitated through human
activity result in inexhaustible levels of pollution released into both untouched and man-
made ecosystems. The degree of such drivers is, of course, in direct relation to the distance
between natural and urban areas—an interval that continues to diminish as the demand
for ecosystem inputs increases in direct correlation with the growth of human popula-
tions. Although much research on air, water, and land pollution exists, sensory pollution,
or human-induced stimuli that interfere with the senses, is a relatively unevaluated phe-
nomenon with severe repercussions. This pollution of “disconnection” has recently evolved
to include visual pollution (VP)—disturbances or obstructions in the natural environment.
Visual pollutants are the final benefactors to multimodal environmental deterioration when
examined alongside other forms of sensory pollution in urban environments. Visual pol-
lution (VP), as detailed in this study, refers specifically to disruptive presences that limit
visual ability on public roads, with an emphasis on excavation barriers, potholes, and
dilapidated sidewalks.

Visual pollution appears in digital images with varying irregular shapes, colors, and
sizes, as observed in Figure 1. This particular form of pollution is a relatively recent
concern when considering the current plethora of contaminants habitually spotlighted in
the academic literature [4]. Several factors, however, have driven an upsurge in visual
pollutants; the incessant construction of new buildings, the inevitable deterioration of
asphalt roads as well as sidewalks, and even weather conditions, for instance, are directly
connected to the rise in VP.

It is important to adhere to and follow government rules for the construction of
buildings or any other civil works in neighborhoods to minimize the occurrence of visual
pollution. In an effort to mitigate the adverse effects of such disagreeable elements, the
government of Saudi Arabia has launched several field campaigns that manually inspect
the country for visual pollutants and alert all construction protocol violators to swiftly
rectify any virulent activities in order to avoid disciplinary action [1]. However, this
non-automatic process is highly time-consuming, economically unfeasible, and mentally
as well as physically draining for employees. As such, our team endeavors to architect
Al technological processes applicable to real-time investigations of three distinct visual
pollutants: (1) excavation barriers, (2) potholes, and (3) dilapidated sidewalks. Identifying
and predicting VP, in particular, can be achieved by training convolutional neural networks
(CNNs) with various layers of artificial neurons in the context of image recognition and
vision computing [5]. Prior to You Only Look Once (YOLO) [6], all multi-stage object
detectors (R-CNN, Fast R-CNN, Faster R-CNN, and others) that exhibited state-of-the-art
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(SOTA) accuracy used regions to localize targets rather than assessing whole input images.
The YOLO architecture consists of a single neural network with a neck, a head, and a
backbone, with varying numbers of outputs in the head. When applied to real-time data,
these algorithms can also trade-off between accuracy and speed, resulting in unreliable
models. On the other hand, YOLO is a series of contemporary object detection models that
predicts bounding boxes and classification probabilities from complete images in single
evaluations. Because of its speed, precision, more robust network architecture, and efficient
training method, this model eventually superseded most traditional SOTA algorithms [7].
In recent years the YOLO detection series has been proven to be a great resource for cutting-
edge real-time object detection, as well as to have a significant amount of financial potential.
To use YOLOVS5 for visual pollution detection we would need to train a YOLOv5 model
to recognize specific types of visual pollution, such as excavation barriers, potholes, or
dilapidated sidewalks. This could be done by collecting a dataset of images that contain
these types of visual pollution and using them to train the model. Once the model has been
trained, it can be used to detect and classify visual pollution in new images or video frames.
One potential application of this approach could be to use YOLOVS5 for the automated
monitoring of public spaces for visual pollution, such as streets, parks, or sidewalks. This
could help identify areas where intervention is needed to address visual pollution and
improve an environment’s appearance. It could also be used to monitor the effectiveness of
efforts to reduce visual pollution over time. Due to its high speed and performance, we
employed the YOLO architecture as an objective backbone detector for the current study.

(d)

Figure 1. Examples of the three categories central to this study: (a,b) represent the barrier category,

(c,d) illustrate the sidewalk category, and (e,f) depict the pothole category. All RGB images were
collected from Saudi Arabia.
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The objective of this study is to assist government organizations with Al-based technol-
ogy that automatically predicts and recognizes visual pollution without user intervention.
The major contributions of this work are summarized as follows:

e  The proposed Al-based real-time visual pollution prediction (VPP) aims to simultane-
ously detect and categorize visual pollution (VP) from color images.

e Anend-to-end Al-based framework is trained and evaluated using a private dataset
in a multi-class classification scenario to simultaneously predict various pollutants.

e A new private VP dataset is collected by the Ministry of Municipal and Rural Af-
fairs and Housing (MOMRAH), Saudi Arabia. This dataset has various VP classes
and is called the MOMRAH benchmark dataset: excavation barriers, potholes, and
dilapidated sidewalks.

o  Deep active learning (DAL) supports MOMRAH experts in automatically annotating
the VP dataset for multiple tasks: detection with a bounding box and classification
with a class label. The annotation process is conducted at an object level, not just at an
image level. This is because some images carry multiple and different objects at once.

e A comprehensive training process is conducted to optimize and select the optimal
solution for the proposed VPP. We perform various emerging Al predictors, which are
MobileNetSSDv2, EfficientDet, Faster RCNN, Detectron2, YOLO-v7, and YOLOVS5.

e An ablation or adaptation study is conducted to check the reliability of the proposed
Al-based VPP framework when unseen images from different sources are used.

The rest of this paper is organized as follows: A review of the contemporary literature
relevant to this study is presented in Section 2. Technical details of the proposed VPP
framework are presented in Section 3. The results of the experimental study are reported
and discussed in Section 4. Finally, Section 5 presents our conclusions.

2. Related Works

The concept of visual pollution (VP) was identified in the mid-twentieth century, along-
side ongoing investigations of the malicious nature of air and water pollution. Contrary to
the plethora of academic literature concentrated on air and water pollutants, however, is
VP, a relatively unexplored issue essential to providing comfortable living environments
in a modernizing world. Initially, researchers defined VP as the impairment of a region’s
visual quality caused by unnecessary advertisements and signage [8]. Lately, however, this
concept has been expanded to include any element that results in landscape-based chaos; a
myriad of factors, including perpetual construction, the inevitable demise of asphalt roads,
erosion, and even a lack of commitment by residents in following garbage management
protocols all coincide with the current interpretation of VP [9]. Exposure to VP has also
been proven to beget several adverse mental and physical consequences. According to
research on the effect of VP on human physiology and psychology, the absence of VP can
reduce the perception of pain by increasing cortisol production in the body [1]. Recent
emphasis has been placed on managing visual pollutants via identification-based software,
such as a geographic information system (GIS), through which methods of cartographic
visualization can be adopted in mapping and, correspondingly, reducing VP [10]. Simul-
taneously, Delphie and ordering weighing methods have also been used in the academic
literature to manipulate a number of visual pollutants [10].

In addition, the analytical hierarchy process (AHP) is considered a multi-criteria
decision-making technique for dealing with subjective and numerous contradictory criteria
for investigating the effects of VP [8]. Artificial intelligence (Al) technology has recently
garnered attention in several research fields, including medicine and healthcare [11-14],
weather forecasting [15], energy control systems [16], army studies [17], and air as well as
water pollution prediction [10]. The colossal success Al technology has had in such topics
makes it highly effective in tackling various practical issues [13,18]. Deep learning feature
extraction, in particular, is key in architecting a convolutional neural network (CNN) able to
predict any feature-based anomaly. Figure 2 follows a contemporary timeline of advanced
Al-based techniques used for object detection mentioned in [19].
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Figure 2. State-of-the-art Al-based object detection techniques [19].

In 2011, Koch et al. presented a two-stage method to detect fissures in images of
asphalt roads [20]. Firstly, the image is segmented into two defect and non-defect regions,
and any potential pothole shapes are determined via geometric characteristics based on
said defect regions. The textural characteristics of the extracted regions are then compared
with the textures of the remaining normal regions. If the textures of the defect regions
are coarser and grainier than the normal surface, the region is classified as a pothole. An
accuracy of 86%, precision of 82%, and recall of 86% were observed. N. Ahmed et al,,
on the other hand, used a deep convolutional network made up of five convoluting and
max-pooling layers to classify VP into four categories: billboards and signage, network
and communication towers, telephone and communication wires, and street litter [5]. They
collected a dataset of 200 images per category from the Google Images search engine and
achieved 95% training accuracy and 85% validation accuracy in their results. Shu et al.
adopted a similar deep learning technique via the YOLOv5 model to detect pavement
cracks from a dataset of 400 street view images in multiple Chinese cities [21]. A detection
accuracy of 70% with a speed detection ability of 152 ms was encountered in identifying
cracks in both paved and non-paved street images. Yang et al. proposed a more contem-
porary detection methodology based around a feature pyramid and hierarchical boosting
network (FPHBN) to detect fissures [22]. This method can integrate contextual information
from low-level and high-level features in a feature pyramid to generate accurate maps
for fissure detection. They achieved an acceptable average intersection over union (AIU)
of 0.079, but the execution time for a single image was high—approximately 0.259 s. An
ensemble learning methodology was used by Liu et al. to visually detect smoke in an
effort to reduce the air pollution produced by industrial factories [10]. Three different
CNN architectures with five, eight, and eleven convolutional as well as pooling layers were
trained separately using two different visual smoke datasets. Smoke was then detected via
the ensemble majority voting strategy. The average detection results over two different
datasets were obtained with an overall accuracy of 97.05%, precision of 99.86%, recall of
96.16%, and an F1-measure of 97.97%. Wakil et al. developed a visual pollution assessment
(VPA) tool for predicting VP in an urban environment in Pakistan [23]. Their proposed
VPA tool has assisted regulators in assessing and charting VP consistently and objectively,
while also providing policymakers with an empirical basis for gathering evidence, hence
facilitating evidence-based and evidence-driven policies that are likely to have a significant
impact, especially in developing countries. In 2021, Wakil et al. presented a web-based
spatial decision support system (SDSS) to facilitate stakeholders (i.e., development control
authorities, advertisers, billboard owners, and the public) in balancing the optimal posi-
tioning of billboards under current governing regulations [24]. The SDSS system has been
functional in identifying urban hot spots and exploring suitable sites for new billboards,
therefore assisting advertising agencies, urban authorities, and city councils in better plan-
ning and managing existing billboard locations to optimize revenue and improve urban
aesthetics [24]. Chmielewski et al. proposed a methodological framework for the measure-
ment of VP using tangential view landscape metrics accompanied by statistically significant
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proofs [9]. The visible area metrics were found to be highly sensitive VP indicators; the
maximum visible distance metrics provided evidence for the destructive effect of outdoor
advertisements (OAs) on view corridors [9]. In this paper, an end-to-end deep learning
predictor is adopted, trained, and evaluated based on real datasets generated from the
KSA. The proposed prediction framework aims to simultaneously detect and classify visual
pollutants in three categories: excavation barriers, potholes, and dilapidated sidewalks.

3. Materials and Methods

The schematic diagram of the proposed VPP framework is demonstrated in Figure 3.
The proposed framework is able to directly predict the VP objects from the whole input
image without user interactions and interventions. This is key to developing a rapid frame-
work for real-time predicting purposes. Accurate and rapid object prediction is crucial for
real-time Al applications. In this paper, a comprehensive experimental study is conducted
and compares the performances of several object detection methods: MobileNetSSDv2 [25],
EfficientDet [26], Faster R-CNN [27], Detectron2 [28], and YOLO [6,12-14,29,30]. The best
predictor is selected to achieve the best prediction performance in a compact structure, which
is determined to be YOLOvS. Thus, the proposed VPP has a compact, lightweight deep
structure and could predict even multiple objects at once. Generally, deep learning detectors
consist of two main parts: the CNN-based backbone used for deep feature extraction, the
head predictor used to predict the class type, and the bounding box coordinators for the
objects [6]. Recently, deep learning detectors are developed by inserting some different
deep layers between the backbone and the head, and this part is called the neck network [6].
The VPP has a deep learning backbone for extracting deep high-level features based on
the concept of deep learning convolutional networks. Indeed, many deep networks in the
literature are used and have their capabilities for deep feature extraction proven, such as
VGG [31], ResNet [32], DenseNet [33], Swin Transformer [34], CSP with SPP [35], and others.

Prediction Model

Input VP Image

OutputPrediction

Dense

0 VP Localization

Potholes, Pr.=095

i

: 9 VP Classification

Input RGB
- dSfaL. . . -
um image with
M:_:h. grid cell ) - .
representation
End-user

Deep Feature Extractor

(a)

(b) (©)

Figure 3. Abstract view of the proposed visual pollution predictor (VPP) framework based on the
YOLOVS5 predictor. The process consists of three steps: (a) feeding an input image, (b) using a YOLO
prediction model, and (c) outputting a prediction with localization and classification.

The neck network is then a key link between the backbone and heads, and is designed
to better use the extracted deep features via the backbone network. It includes several
bottom-up and top-down deep learning paths for reprocessing and rationally using the
extracted features from the backbone network. Here, the output has multiple predictors,
or factors, for detection and classification tasks. Afterward, predictor layers are used to
predict the object’s existing probabilities. For detection, the bounding box predictors are the
center coordinators (x,y), width (w), and height (h). For classification, different neurons are
assigned to predict a VP object’s type to be a barrier, pothole, or sidewalk. All predictors
are stored in a tensor of prediction, as shown in Figure 3.
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3.1. Visual Pollution Real Dataset: MOMRAH VP Dataset

The dataset is collected from different regions in the Kingdom of Saudi Arabia (KSA)
via the Ministry of Municipal and Rural Affairs and Housing (MOMRAH) as a part of
a visual pollution campaign to improve Saudi Arabia’s urban landscape. To collect this
dataset, Saudi citizens and expatriates are requested to take pictures of visual pollutants
by using their smartphones and upload them to the government-created Balady mobile
application [4]. Our team received official permission from Saudi Arabia’'s MOMRAH
to use the collected data for this study. The VP real dataset is called the MOMRAH VP
dataset, and it has 34,460 RGB images for three different classes, which are excavation
barriers, potholes, and dilapidated sidewalks. The MOMRAH dataset is publicly published
to enrich the research domain with a new VP image dataset [36]. The data distribution over
three different classes is shown in Figure 4. Fortunately, some images have more than
one object, and this helps to increase the number of training object ROIs. Thus, the total
number of object ROIs per class are recorded to be 8417 for excavation barriers, 25,975 for
potholes, and 7412 for dilapidated sidewalks. Unfortunately, this dataset lacks annotation
labels for both detection and classification tasks since it is collected for the first time as a raw
dataset. To annotate all of the images for detection (i.e., bounding box) and classification
(i.e., classification label) tasks, a deep active learning strategy is used, where the initial
1200 VP images (i.e., 400 images per class) are manually annotated by four experts. The
DAL strategy of the data annotation is presented in Section 3.3.

30,000
B Total number of images W Training (70%)  WTesting (20%) @ Validation (10%)
25,000
3 20,000
Y
g 15,000
Q. 10,000
>
5,000
0 . . — )
Excavation Barriers Potholes Dilapidated Sidewalks
B Total number of images 6322 21,429 6709
M Training (70%) 4425 15,000 4696
[ Testing (20%) 1264 4286 1342
[ Validation (10%) 632 2143 671

Figure 4. Visual pollution real dataset (i.e., the MOMRAH VP dataset) distribution over three different
classes: excavation barriers, potholes, and dilapidated sidewalks. The dataset per class is split into
70% for training, 10% for validation, and 20% for testing.

3.2. Data Pre-Processing

The following pre-processing steps are performed to prepare the dataset for fine-
tuning the deep learning models within the proposed framework: irrelevant image removal,
normalization, resizing, and data splitting. Experts investigate the raw RGB images in the
MOMRAH VP dataset in-depth, and irrelevant, inaccurate, or unreliable images related
to the visual pollution topic are immediately excluded. Some examples of irrelevant
and excluded images are depicted in Figure 5. Since the normalization process could
improve the overall prediction performance, the VP images are normalized to bring their
intensity into the range of [0, 255] [13,18]. Meanwhile, all images are resized using bi-cubic
interpolation to scale their intensity pixels into the same range of 460 x 600.
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Figure 5. Some examples of the irrelevant images that are excluded during the pre-processing step.

3.3. Deep Active Learning (DAL) for Automatic Data Annotation

Active learning provides an effective method for people to help annotate data, as par-
ticipants only need to inspect the data they are interested in, while a learning algorithm can
automatically adaptively choose and prioritize other data for annotation. Data annotation
is especially expensive for object detection tasks. Each object detection frame typically has
tens of thousands of pixels, and annotators have to label them manually with boxes around
the objects. Annotation can be as simple as drawing a bounding box, but is still highly
time-consuming. In addition to the costs, monitoring and controlling the quality of the
annotations are more challenging. To summarize, human-in-the-loop may be necessary
for general object detection systems, but it is expensive and more difficult in regard to
controlling the quality of annotations.

Active learning uses annotated data to reduce the amount of work required to accom-
plish a target performance. It is used for object classification, image segmentation, and
activity recognition. Active learning begins by training a baseline model using a small, la-
beled dataset, which is then applied to an unlabeled dataset. It estimates, for each unlabeled
sample, whether this sample contains essential information that the baseline model has not
yet learned by using various query selection strategies (random, uncertainty (entropy), and
more). Once the samples containing the most important information have been identified
and labeled by the trained model and verified by a human, they can be added to the initial
training dataset to train a new model that is anticipated to perform better.

Several different strategies can be used for active learning. One common strategy is
called “query by committee,” which involves training a committee of multiple models on
the available labeled data and then having each model make predictions on the unlabeled
data. The model then selects the data points on which the models disagree the most and
requests labels for those points in order to resolve the disagreement. This method, query by
committee, can be effective because it allows the model to focus on the most informative
and uncertain data points, leading to faster and more efficient learning. Another common
strategy is “uncertainty sampling”, which involves selecting data points for which the
model is least certain of the correct label. In this method, data points with the highest
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entropy (a measure of uncertainty) or data points closest to the model’s decision boundary
are selected. Other active learning strategies can be used, such as “representative sampling”,
in which the model selects data points that are representative of the overall distribution of
the data, or “variance reduction”, in which the model selects data points that are expected
to have the most significant impact on reducing the variance in the model’s predictions. In
this work, we employed the representative sampling technique using the visual similarity
algorithm provided by the Voxel51 brain module.

The proposed deep learning VPP framework is developed to detect and classify the
VP objects into three classes: excavation barriers, potholes, and dilapidated sidewalks. To
train and develop such a VPP framework, all images in the dataset must be annotated for
detection and classification tasks. For the classification task, all images are annotated by
four experts in the ministry of MOMRAH by providing an associated class label for each
image. For the detection task, a detection label must be represented as a bounding box to
surround the whole object (i.e., ROI) inside the image with the coordinators of the start point
(x1,11), end point (xp,y2), width (w), and height (h), as shown in Figure 3a. To perform
this labeling, four experts are requested in parallel to manually annotate the best and
most clear 400 images from each class by using the CVAT toolbox [37]. Since the labeling
process is challenging and time-consuming, the deep active learning (DAL) strategy is
mainly involved and used to automatically annotate the rest of the VP images. The primary
process of the DAL strategy is depicted in Figure 6. The deep active learning strategy is
performed with the following steps: First, we select the best clear 400 images from each class,
and four experts become involved to manually annotate the object localization by using the
CVAT toolbox. Second, the best deep learning detector model is selected to be trained based
on the annotated small dataset (i.e., 400 images per class). Third, the trained DL model is
used to test the most relevant and similar images among the remaining unlabeled ones.
Fourth, based on the query strategy, the most relevant and exciting samples are selected via
the visual similarity approach to be checked by expert-in-the-loop. The selection procedure
is usually carried out by checking the high similarity among the initial samples in the first
round and the remaining unlabeled ones. The high-similarity instances are selected to
be systematically verified and reviewed by an expert. Indeed, the experts interact with
machine-in-the-loop to check, modify, and confirm the automated labeling process. The
experts have to check that all of the images received some label boxes and manually adjust
the boxes’ locations and class labels, add some other boxes for the unseeing objects, or even
delete the wrong detected boxes. Fifth, after the experts complete the labeling correction
process for the first round, the AI model is retrained again using the new trusted labeled
images (i.e., 400 + new confirmed subset). Finally, the VP images with lower similarity
ratios that could not be labeled in the first round are used as a testing set for the second
round of the DAL cycle. This way, the automatic DAL process is repeated until the stopping
criteria are satisfied by correctly annotating all of the VP images.

Figure 7 shows some examples of the deep active learning procedure for annotating
the images and building a benchmark dataset. Once the DAL process is completed and a
benchmark dataset is built, the images per class are randomly split into three different sets:
70% for training, 10% for validation, and 20% for testing. The training and validation sets
are used to train and fine-tune the Al models, while the evaluation strategy is performed
using the isolated testing set.
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Figure 7. Some examples of the deep active learning (DAL) procedure for image annotation. The
first row shows the automatic annotation via a machine during the first round, while the second row
depicts the same images but with an expert’s interventions and label corrections. Examples from the
three categories of excavation barriers, potholes, and dilapidated sidewalks are shown in numbers (a—e).
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3.4. Training Data Enlargement via an Augmentation Strategy

Training data augmentation is a well-proven technique used to enlarge the number of
training images for model generalization, avoid over-fitting, and solve the class imbalance
problem [38]. To effectively fine-tune deep learning models, a large number of images
is required [12,39]. The effectiveness augmentation strategy is mainly used to expand
the nature of the dataset. Thus, the deep learning model could be more robust due to
the varying image conditions. Augmentation based on the image photometric and/or
geometric distortions is recently used to increase the number of training images [6]. For
photometric distortion, we imperially adjust the images” hue, saturation, and value by
0.015, 0.7, and 0.4, respectively. For geometric distortion, 0.9 random scaling, 0.1 translation,
and 0.5 rotation lift-right are used. Moreover, the recent augmentation methods of Mosaic
and MixUp are used with probabilities of 1 and 0.1, respectively [6]. Finally, a total VP
training augmented dataset of 41,804 images is generated to fulfill the requirements of deep
learning models: 8417 excavation barriers, 25,975 potholes, and 7412 dilapidated sidewalks.

3.5. The Concept of VP Object Detection—VPP-Based YOLO

The Al-based deep learning method “You Only Look Once (YOLO)” has different
architectures, such as YOLOv5s, YOLOv5m, YOLOV5], and YOLOv5x. Basically, all ver-
sions of YOLOVS5 use the deep learning architecture of the cross-stage partial network
(CSP) Darknet with spatial pyramid pooling (SPP) layers [35] as a backbone, a path ag-
gregation network (PANet) [40] as a neck, and head detectors [41]. The difference among
these versions basically depends on the number of feature extraction modules and the
size as well as number of the convolution kernels at each specific location inside the deep
network [6]. The schematic diagram of the YOLOVS5 is depicted in Figure 8. We select
the YOLO predictor since it has an excellent reputation as a one-stage detector with very
high prediction speed [6,13,42]. Indeed, the YOLO predictor is mainly used as a detection
method regression methodology. It can handle whole input images and predict both object
localization as well as object classification type [41-43]. As shown in Figure 8, YOLOV5
consists of backbone, neck, and detector networks, or head predictors, representing the
final prediction output.

Neck Network Head Predictor

Scale 3
(72x72x3)

Scale 2
(36x36x%3)

Scale 1
(18x18x3)

I c3 l - Ij‘Coan =+ liSPBonlenecLI

Figure 8. Schematic diagram of VPP-based YOLOVS5 to detect and classify the real VP public road
images. The * indicates the convolutional process.
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In order to adapt to different augmented images, YOLOv5 has the capability to
integrate an adaptive anchor frame calculation on the input images. Thus, YOLO could
automatically initialize the anchor frame size when the input images are changed and
fed to the deep networks [42]. CSP and SPP are utilized for extracting deep feature maps
using multiple convolutional and pooling layers for the backbone network. In fact, the
CSP network is used to accelerate the learning process, while SPP is used to extract deep
features from different scales of the specific feature maps. Both CSP and SPP networks are
used to increase the prediction accuracy compared to older versions of YOLO [35]. Indeed,
many deep networks in the literature are used and have proven their capabilities for deep
feature extraction, such as VGG [31], ResNet [32], DenseNet [33], and Swin Transformer [34].
The feature pyramid deep learning structures of the feature pyramid network (FPN) and
the pixel aggregation network (PAN) are consecutively used for the neck network. The
FPN conveys the strongest semantic deep features from the top to the lower feature maps.
Simultaneously, the PAN is used to convey the strong localization of deep features from
lower to higher feature maps. Indeed, both deep learning networks are jointly utilized to
strengthen the extracted feature. Thus, the detection performance is increased due to the
benefits of both the FPN and PAN. For the final detection procedure, the head predictor is
utilized to detect the final target objects with different feature maps’ sizes [6]. The head
output is mainly designed to detect the final object localization and predict the object type
inside the inputted whole image.

3.5.1. Hyperparameters” Evolution

In deep learning, hyperparameters are parameters set prior to formal training. Appro-
priate hyperparameters could enhance a model’s performance. The YOLOV5 algorithm
had 23 hyperparameters that were primarily used to set the learning rate, loss function,
data enhancement parameters, and others. It was necessary to retrain the appropriate
hyperparameters, since all of the data in this study were significantly different from those
of the public dataset. YOLOv5 was able to perform hyperparameter optimization by using
a genetic algorithm that primarily employed mutation to produce offspring based on the
optimal combination of all predecessors, with a probability of 0.90 and a standard deviation
of 0.20. In this study, 320 generations of iterative training were set, and the model’s F1 and
mAP were used to evaluate and determine the optimal hyperparameters. The optimality
of the corresponding hyperparameters is denoted by the maximum value of the fitness
function in the evolutionary process.

3.5.2. Transfer Learning

Transfer learning, a popular technique in deep learning, could improve the efficiency
and robustness of the model training. Typically, external convolutional networks are
employed primarily for extracting generic features and concentrating on individual recog-
nition, such as color, shape, and edges. Deeper networks place a greater emphasis on
learning task-specific characteristics, primarily for classifying targets. Through the char-
acteristics of transfer learning, the detection algorithm utilized the pre-trained weight
during training, eliminating the need for random initialization. This training method could
decrease the model’s search space and increase training efficiency. The YOLOVS5 algorithm
utilized the pre-trained weight from the COCO dataset, which contained 1.2 million targets
in 80 categories. Although the pre-training weight contained many general features, the
COCO dataset differed significantly from this study’s recognition target. Therefore, it was
necessary to determine if transfer learning could detect potholes, sidewalks, and barrier
detection by using the model’s mAP.

3.6. Experimental Setting

For training, the strategy of multi-scale training is used to learn prediction across
different resolutions of the inputted VP images [40]. Moreover, a mini-batch size of 32 and
a number of epochs of 100 are utilized for training and validating the proposed Al models.
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A stochastic gradient descent (SGD) optimizer is used with an initial learning rate of 0.01,
a final one-cycle learning rate of 0.1, a momentum of 0.937, a weight decay of 5 x 1074,
warmup epochs of 3, a warmup momentum of 0.8, and a warmup initial bias learning rate
of 0.1. The predicted box loss gain, class loss gain, and object loss gain are designed to be
0.05, 0.3, and 0.7, respectively. Moreover, the IoU training threshold and anchor-multiple
thresholds are adjusted to be 0.2 and 4, respectively.

3.7. Implementation Environment

The comprehensive experimental study is achieved by using a PC with the follow-
ing specifications: an Intel(R) Core(TM) i7-10700KF CPU @ 3.80GHz, 32.0 GB of RAM,
six CPUs, and one NVIDIA GeForce RTX 3060 GPU.

3.8. Evaluation Strategy

We used the standard evaluation parameters regarding training loss, validation loss,
precision, recall, and mean average precision (mAP). The loss of YOLOvV5 was used to
evaluate the inconsistency between the model prediction results and the ground truths, and
it was composed of three components: bounding box loss, object loss, and classification loss.
In order to prevent the under-fitting or over-fitting of the VPP model, training loss (loss of
the training set) and validation loss (loss of the validation set) would be observed during
the training process to obtain the optimal detection model. The mAP metric comprises
the product of the accuracy and recall of the detected bounding boxes and ranges from
0 to 1, with higher values denoting superior performance. The mAP may represent the
model’s global detection performance, especially in comparison to F1. The mAP can be
obtained by calculating the area under the corresponding precision-recall curve, which is
the standard metric for evaluating an object detection algorithm. In evaluating an object
detection algorithm, the mAP is frequently used as the primary performance metric. Based
on the principle of IoU, the mAP is an excellent indicator of the network’s sensitivity. IoU
is the ratio of the overlap area between the ground truth and its predicted areas to the
union area. Precision and recall are calculated using true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) based on the multi-class confusion matrix. The
weighted average of precision and recall are utilized to calculate the F1-score (F1).

4. Experimental Results and Discussion

The experiment of this study is conducted via three evaluation scenarios. First, the
dataset initially labeled by experts (i.e., 400 images per class) is used to select the best pre-
diction Al model for our proposed VPP framework. The best Al model is also tested and
verified with various activation functions to achieve the best prediction performance. Si-
multaneously, the trainable hyperparameters of the selected model are carefully optimized
via different initialization strategies. Second, once the deep learning model is selected
and optimized, the deep active learning (DAL) strategy is used to automatically annotate
the remaining raw VP images in our private MOMRAH dataset. Finally, the proposed
VPP framework is trained and evaluated using the big data of the labeled VP images over
three trails. Meanwhile, the prediction performance of the VPP framework is directly com-
pared with that of other state-of-the-art prediction models using the same MOMRAH dataset.

4.1. The Optimization Results of the Proposed Al-Based VPP Framework

A comprehensive experimental study is conducted to optimize the capability of the
proposed Al-based VPP framework for selecting the best solution that leads to optimal
prediction performance. To perform this study, the initial curated benchmark dataset
(i.e., 400 images per class) annotated by the experts is used. We sequentially investigate
three factors that could support the proposed framework, providing better prediction
performance. First, various depth and width deep learning networks are investigated
using four different YOLO architectures, which are YOLOv5s, YOLOv5m, YOLOV5], and
YOLOvV5x. This is to select the optimal version of the YOLO detector that could achieve
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the best evaluation performance. Second, once the optimal YOLO version is selected,
six activation functions are used and investigated: LeakyReLU, ReLU, Sigmoid, Mish, SiLU,
and Tanh. Finally, we investigate three different initialization methods for the trainable
hyperparameters of the best Al predictor selected in the first step. All of the experimental
results regarding this optimization strategy are presented in the following sections.

4.1.1. Evaluation Results Based on the Various YOLO Structures’ Depth and Width

By evaluating four various YOLO networks, we find that YOLOv5x achieves the
best prediction performance and outperforms the other architectures. This could be due
to its largest convolutional deep learning structure compared with the smaller versions
(i.e., YOLOvV5s, YOLOv5m, and YOLOVSI), since it is known that deeper and wider deep
learning models can achieve better performance. To achieve this finding, all deep learning
YOLO predictors are separately trained and tuned using the initial curated dataset, which
consists of 400 VP images of each class (i.e., excavation barriers, potholes, and dilapidated
sidewalks). All models are trained using the same training settings of 250 epochs and the
default hyperparameter initialization method. Figure 9 depicts the optimized loss function
performance over 250 epochs during the training time of all of the deep learning models. It
is shown that all versions of the YOLO detectors could learn well and achieve better loss
values by increasing the number of epochs. YOLOvV5x is optimized well, achieving the
lowest loss function compared with the other YOLO versions, while YOLOv5s is fine-tuned
and achieves the lowest performance in terms of all of the loss functions, as shown in
Figure 9. Figure 10 shows the evaluation metrics of precision, recall, and mAP, which were
recorded for the same training settings of the four versions of the YOLO detectors. It is
clearly shown that all of the evaluation metrics during the training time improve with an
increase in the training epochs. This means that the deep learning detectors learned well
without any over-fitting to the seen training data.
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Figure 9. Training parameter optimization results of the proposed VPP framework based on various
deep learning YOLO structures (i.e., YOLOv5s, YOLOv5m, or YOLOV®SI) in terms of train/valid
detected box, object, and cls loss functions.
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Figure 10. Evaluation performance of the proposed VPP framework based on various deep learning
YOLO structures (i.e., YOLOv5s, YOLOv5m, or YOLOVSI) in terms of precision, recall, and mAP.

The best detection performance of all varieties of the YOLO detectors over three trials
are presented in Table 1. It is obviously shown that YOLOv5x could achieve the best
prediction performance, with 70% precision, 62% recall, an F1-score 66%, and 67% mAP.
On the other hand, YOLOv5x is the heaviest deep learning model, with a model size of
169.26 MB and 88,453,800 trainable parameters. This means that its volume and number of
parameters could characterize the model’s complexity, requiring more GPU memory and a
long time for fine-tuning all of the parameters. In contrast, YOLOv5s has the smallest deep
learning architecture, with a model size of 14.08 MB and 72,318 parameters. Comparing the
aforementioned experiments, it is clear that YOLOv5x is a superior deep-learning model
that could achieve the best prediction performance over three classes of potholes, sidewalks,
and barrier detection.

Table 1. The evaluation performance of all versions of the YOLO detectors as an average over three trails.

Al Model Precision Recall F1-Score mAP
YOLOvV5s 0.65 0.50 0.57 0.55
YOLOvV5m 0.69 0.57 0.62 0.61
YOLOvV51 0.72 0.59 0.65 0.65
YOLOvV5x 0.70 0.62 0.66 0.67

4.1.2. Evaluation Results of the Best YOLO Candidate with Various Activation Functions

Once YOLOv5x is selected as the best candidate for the proposed VPP framework, we
conduct another optimization study to select the optimal activation function that could
support YOLOV5X, achieving better prediction results. Six activation functions are used to
achieve this goal: LeakyReLU, ReLU, Sigmoid, Mish, SiLU, and Tanh. YOLOv5x is sepa-
rately trained and evaluated six times according to each activation function. Meanwhile,
YOLOV5x is fine-tuned using the initial curated dataset over 250 epochs with the default
hyperparameter initialization strategy. The training and evaluation results over 250 epochs
using all of the activation functions are compared, as shown in Figures 11 and 12.
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Figure 11. Training and validation loss functions of the proposed VPP framework based on the
best candidate of the selected YOLOv5x over 250 epochs. The deep learning YOLOvV5X is separately
trained using six different activation functions: LeakyReLU, ReLU, Sigmoid, Mish, SiLU, and Tanh.

100 200

Epochs

o

o
o
!

o
[N)
5

o
)
!

100 200

Epochs

o -

metrics/recall

metrics/mAP_0.5:0.95

0.6 A

o
ES
L

R

©
N
L

0.0

100 200

Epochs

o

o
IS
1

o o
N w
i

o
=
L

g
o
!

R

100 200

Epochs

o

YOLOV5_LeakyRelLUOO
YOLOV5_LeakyRelUO1
YOLOV5_Mish
YOLOV5_RelU
YOLOvV5_Sigmoid
YOLOV5_SiLU
YOLOvV5_Tanh

Figure 12. Evaluation prediction performance of the proposed VPP framework using different
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From the empirical results, the selected activation functions of LeakyReLU, Sigmoid,
Mish, and SiLU could similarly support the YOLO model to achieve better prediction
performance than Tanh and ReLu. The worst evaluation performance is achieved using
the Tanh activation function. To conclude, we choose to use the Mish default activation
function for conducting the rest of our experiments in this study.

4.1.3. Influence of Hyperparameter Optimization on Prediction Performance

To further improve the prediction performance of YOLOv5x, an additional experimen-
tal study is conducted to investigate the most efficient training hyperparameter initialization
strategy. The YOLOv5x model is separately trained using three different hyper-parameters
and initialization strategies, which are hyp.scratch-low (https:/ /github.com /ultralytics/
yolov5/blob /2da2466168116a9%fa81f4acab744dc9fe8f90cac/data/hyps/hyp.scratch-low.yaml
(accessed on 23 June 2022)), hyp.scratch-med (https://github.com/ultralytics/yolov5
/blob/2da2466168116a9fa81f4acab744dc9fe8f90cac/data/hyps/hyp.scratch-med.yaml
(accessed on 23 June 2022)), and hyp.scratch-high (https://github.com/ultralytics/yolov5
/blob/2da2466168116a%fa81f4acab744dc9fe8f90cac/data/hyps/hyp.scratch-high.yaml
(accessed on 23 June 2022)). YOLOV5 has around 30 hyperparameters utilized for a variety
of training configurations. These values are specified in *.yaml files located in the/data
directory. Better initial predictions will provide better ultimate outcomes; thus, it is essential
to establish these parameters correctly before evolving. The same training settings and
deep learning YOLOv5x structure are used for each instance of training. By conducting
this study, the training and validation loss function values could be reduced with the best
evolved hyperparameters that can also support YOLOv5x to achieve better prediction
performance results. Figures 13 and 14 depict the training evaluation results of YOLOv5x
using various hyperparameters and initialization strategies.
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Figure 13. Training and validation loss functions of the proposed VPP framework over 250 epochs.
The deep learning YOLOvV5X is separately trained using three different hyperparameters and initial-
ization strategies: hyp.scratch-low, hyp.scratch-med, and hyp.scratch-high.
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Figure 14. Evaluation prediction performance of the proposed VPP framework using three different
hyperparameters and initialization strategies: hyp.scratch-low, hyp.scratch-med, and hyp.scratch-high.

The quantitative average evaluation results of the best YOLO model using three
hyperparameters and initialization strategies are summarized in Table 2. As a result of
varying training settings, the prediction performance in terms of mAP is increased from
53% using hyp.scratch-low to 71% with hyp.scratch-high. Indeed, the hyperparameter
optimization process shows a significant improvement with 18% mAP of the prediction
performance. It is important to investigate the multiple factors that could evolve the
hyperparameters to boost the model’s prediction performance.

Table 2. The evaluation performance of YOLOv5x with three different hyperparameters and initial-
ization strategies.

Al Model Precision Recall F1-Score mAP_0.5
hyp.scratch-low 0.61 0.50 0.55 0.53
hyp.scratch-med 0.70 0.58 0.63 0.62
hyp.scratch-high 0.74 0.66 0.70 0.71

By using such training remedies and training setting optimization the prediction
performance of the proposed VPP framework is significantly improved. Comparing the
results in Tables 1 and 2, we can clearly show an improvement in performance by 15% and
5% in terms of Fl-score and mAP, respectively.

4.2. Prediction Evaluation Performance during the Deep Active Learning (DAL) Strategy

After selecting the best Al model (i.e., YOLOv5x) and optimizing the model’s training
activation functions and hyperparameters, the DAL strategy is used to automatically
annotate the reset of the unlabeled VP images in our MOMRAH private database. For the
DAL query image selection strategy, we use the visual similarity approach of voxel51 brain,
which can easily query and sort images to automatically find similar image examples with
initial annotated ones through an app’s point-and-click interface.

For the first DAL cycle, the new subset of unlabeled images is selected based on higher
similarity with the previous labeled set, which is the initial annotated VP images. The
new subset of selected images is then automatically labeled via the DAL strategy based on
the previous fine-tuned Al model using the initial annotated images. Then, the new and
initial labeled image sets are merged and used to fine-tune the deep learning model again
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for the next DAL cycle. This means that the number of annotated images for the coming
DAL cycle will be increased, which makes the prediction results better than those of the
previous cycle. For each DAL cycle, we select 500 new images based on high similarity
with the previous labeled images. As shown in Figure 15, the prediction performance of
the Al model is dramatically increased with an increase in the number of labeled images of
each DAL cycle. Indeed, the visual similarity approach is compared with other approaches,
such as random sampling and entropy-based sampling for instance selection and finding
images or objects within similar examples. For each selection approach the DAL strategy
based on YOLOV5Xx is separately conducted, and the prediction results over all of the
cycles are presented in Figure 15. This means that YOLOv5x is fine-tuned for each DAL-
based query selection approach using the same deep learning structure and optimized
training settings as concluded in Section 4.1. Each point in Figure 15 represents the mean
of three trials utilizing different shuffled initial labeled images. In the last active learning
cycle, the prediction performance of 89% mAP is achieved using the visual similarity
approach, which is better than the random baseline approach by 9.88%. The entropy
selection approach achieves prediction performance with mAP of 85.05%, outperforming
the random baseline approach with mAP of 80.65%. Indeed, the entropy method could not
capture the uncertainty of bounding box regression, which is the essential part of object
detection. Thus, we decide to use the annotation results using the visual similarity selection
approach to conduct our experimental results in this study. We can conclude that the query
selection approach plays a crucial role in improving the final prediction performance of the
proposed VPP framework.
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Figure 15. Active learning results of the object detection via the proposed VPP framework used to
automatically annotate the VP objects in the VP images in our MOMRAH database.

4.3. Prediction Evaluation Results Using the Whole Annotated Dataset

Another study is conducted after annotating all of the VP images in our MOMRAH
database. This is to investigate the capability of the proposed Al-based VPP framework using
the manipulated MOMRAH big data and check the prediction performance improvements.
Figures 16 and 17 illustrate the prediction behavior of the proposed Al framework using
the best Al model (i.e., YOLOv5x). Up to the tenth epoch, the loss values of the box, object,
and classification loss functions decrease dramatically for the validation dataset, exhibiting a
rapid decline. Meanwhile, the prediction performance reached its peak in terms of evaluation
metrics with 88% precision, 89% recall, and 92% mAP. Such performance is achieved as the
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best training weights, which are fine-tuned at epoch number 50 by using the early stopping
strategy. The prediction performance is improved in comparison with the small initial dataset
by 18% precision, 27% recall, and 25% mAP. This means that the DAL annotation process of
the VP images is a key to achieving such promising evaluation performance.
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Figure 16. Training and validation loss functions of the proposed VPP framework based on YOLOv5x
over 50 epochs using whole DAL-annotated VP images.
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Figure 17. Evaluation prediction performance of the proposed VPP framework based on YOLOv5x
using whole DAL-annotated VP images.
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4.4. Evaluation Comparison Results

This section presents an evaluation comparison of the proposed VPP framework using
various state-of-the-art Al-based object detectors: MobileNetSSDv2 [25], EfficientDet [26],
Faster R-CNN [27], Detectron2 [28], and YOLO [6,12,14,29,30]. All of these Al detectors are
trained and evaluated using our annotated MOMRAH dataset in a multi-class prediction
scenario. Meanwhile, the same training settings are used to fine-tune these deep learn-
ing detectors. Such target detection methods are selected to find the optimal prediction
performance of the proposed VVP framework applicable for real-time VP applications.
Table 3 shows the evaluation comparison results of the proposed VPP framework based on
five different Al detectors. It is clearly shown that the optimal prediction performance is
achieved using YOLOvV5x, with 88% precision, 89% recall, and 92% mAP. Comparing the
detection capabilities of several object detection methods, the proposed method achieved
the best balance between detection performance and detection speed, while also being
hardware-friendly and hence more practical. After optimization, the proposed VPP frame-
work could recognize 319 frames per second (FPS), which is better than other predictors.
Recently, YOLOvV7 was released after we finalize our methodology and experimental stud-
ies; however, we also evaluated it as the most current version of YOLO [7], which provided
good performance in terms of mAP and FPS. In the future, YOLOv7 will be considered
as the backbone of the suggested framework for more prediction improvements. Such
impressive results provide us with evidence that the proposed VPP framework based on
the YOLO predictor is the best solution, since it shows an encouraged capability to be
applicable for real-time applications.

Table 3. Direct evaluation prediction performance of the proposed VPP framework using our
annotated MOMRAH dataset. Different state-of-the-art deep learning object detectors are used for
this study: MobileNetSSDv2, EfficientDet, Faster RCNN, Detectron2, and YOLO.

Inferencing

Al Predictor Precision Recall F1-Score mAP@0.5 . FPS
Time (Msec)

MobileNetSSDv2 0.70 0.58 0.63 0.62 600 13.2
EfficientDet 0.74 0.66 0.70 0.72 583.1 8.32
Faster R-CNN 0.84 0.77 0.80 0.80 540.2 98.2

Detectron2 0.87 0.86 0.86 0.89 342.0 120.2
YOLOvV5x 0.88 0.89 0.88 0.92 22.7 319
YOLOv7 0.89 0.88 0.89 0.93 18.5 325

Moreover, some qualitative evaluation results are demonstrated in Figure 14 to show
the performance of the proposed VPP-based framework using different Al predictors. The
final model predictor could correctly identify all types of visual pollution. Therefore, such
a sophisticated detective system might be used in real-time monitoring applications. As
shown in Figure 18 and Table 3, the proposed VPP framework has the best prediction
performance using the YOLOv5x perdition model. The lowest evaluation performance is
recorded using MobileNetSSDv2, since an average of 62% mAP is achieved. Meanwhile,
the predictors YOLOv5x and Detectron2 have almost similar prediction behaviors, with
slightly better performance in the case of YOLO by 1% precision, 3% recall, and 3% mAP.
As is presented in the last row of Figure 18, the proposed VPP framework has the capability
to predict multiple objects in a simultaneous manner regardless of the class type. Both
potholes and barriers are perfectly predicted via YOLOv5x with very high confidence
scores of 93%, while EfficientDet fails to detect pothole objects. In cases where the input
frame has no objects (i.e., not polluted), the VPP framework will still work and tell us that
there is no pollution on this image. Therefore, no object bounding box or confidence score
will be generated. This is a general aspect of any machine-based learning system (robotics,
CAD systems, VP frameworks, and so on).
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potholes

Sidewalks

Barriers and potholes

Ground Truth
(GT)

MobileNetSSDv2 EtficientDet Faster RCNN Detectron2 YOLO-V5x
prediction prediction prediction prediction predicdon

Figure 18. Qualitative evaluation results of the proposed VPP framework for VP detection and
classification using Al predictors: MobileNetSSDv2, EfficientDet, Faster RCNN, Detectron2, and
YOLO. The prediction object surrounding the box with its confidence score is superimposed on the
original image for each AI predictor. The confidence score or classification probability is highlighted
inside a small white box besides a detected object.

For indirect comparison with the existing research findings, we summarize in Table 4
some relative studies that have been conducted for VP prediction. Major research studies
were conducted to identify solely potholes from road images. For our study, we propose
a comprehensive Al-based framework to predict multiple objects simultaneously, such
as excavation barriers, potholes, and dilapidated sidewalks. Additionally, we show our
performance using precision, recall, and F1-score alongside the impressive mAP evaluation
index, which is important for providing us with an impression about model prediction
reliability and feasibility. Such an indirect compression always lacks a fair work comparison
since the datasets, execution environments, parameter settings, and Al models are totally
different. However, our study is compared with recent Al studies to understand the
objective of the research area and investigate the work limitations as well as future work.
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Table 4. Comparison evaluation results of the proposed VPP framework against the latest works
available in the literature.

Evaluation Performance (mAP) (%)

Reference Dataset Target Classes Methodology
Precision Recall F1-Score mAP
Aparna et al. Rogd thermal Pothole Classification via 81.15 . _ .
(2019) [43] images CNN-based ResNet
M. H. Yousaf Private dataset: Classification via
etal. (2018) 120 pavement Pothole SVM 71.59 - - -
[44] images
Ji-Won Baek . .
etal. (2020) Private road Pothole YOLO-based 83.45 - - .
[45] damage images algorithm
1 2020 TEEE Global Longitudinal crack,
Pham et al. transverse crack,
(2020) [28] Rw%‘ijﬁigicup alligator crack, and ~ [oSter-RCNN - - 51.40 -
& pothole
Private Excavation fllel::igzl:le:r:l;
Proposed * MOMRAH b:;:;zrisllap(i):lt:elf]s’ classification via 89.0 88.0 89.0 93.0
Dataset si dewI:llks Al-based VPP
framework

* The evaluation result of the proposed VPP is recorded using YOLOV?7.

4.5. Work Limitation and Future Work

The scarcity of annotated VP images in a multi-class manner for both detection and
classification tasks is always a challenge for supervised Al models. The deep active learning
strategy is used for the automatic labeling process but still needs a lot of labor attention,
concentration, and effort, since experts must be involved with the machine to correct the
automatic labels. Including more classes in our dataset is another challenge, since the
individuals that collect the VP images always have different mobile phones with different
camera settings, which leads to diversity in image settings.

We have a future plan to continue improving prediction performance using advanced
Al approaches such as explainable Al (XAI) to also provide explainable results besides
label predictions. Meanwhile, the latest emerging Al techniques, such as transformer-based
and knowledge distillation, could be good candidates for more prediction improvement
once they are integrated with YOLO in a hybrid scenario, as in our preliminary study [46].
Another plan is to increase the number of classes of visual pollution (VP) to improve the
proposed VPP framework to be able to predict several objects in different environments.

4.6. Ablation Study

Our private dataset is publicly published with three classes of excavation barriers,
potholes, and dilapidated sidewalks. Unfortunately, we could not find similarly catego-
rized public datasets from different sources with multiple classes to perform an ablation
study using multiple classes. However, to conduct an ablation study using unseen VP
images from different resources, we found a public dataset called “Pothole detection
dataset” [47] but with a single pothole class with 1482 VP images. The proposed VPP frame-
work is re-tested and verified using all VP pothole images. We achieved 81% precision,
75% recall, and 70% mAP, which is more reasonable and acceptable performance, as shown
in Figure 19. Moreover, transfer learning is a recent emerging strategy that is expected to
assist in producing better predication evaluation results than those received by training
from scratch. As mentioned above, transfer learning is a great technique for rapidly re-
training a model on new data while retraining the whole network. The proposed model is
initialized with weights from a pretrained COCO model (YOLOv5X), where the backbone
layers serve as feature extractors by passing the freeze argument while training. Therefore,
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the domain adaptations are automatically archived when evaluating the trained model on
different datasets.

1.0
—— pothole 0.701

== all classes 0.701 MAP@0.5

0.8

0.6

Precision

0.4 1

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 19. Precision—recall curve on a public dataset which only has images of potholes.

5. Conclusions

This paper proposes an Al-based VPP framework to detect and classify different
VP objects in a multi-class simultaneous and classification scenario. To train and evalu-
ate the proposed VPP model, the deep active learning (DAL) approach plays a crucial
role in annotating our MOMRAH dataset’s VP images. The DAL strategy is applied via
three different query image selections: random, entropy-based, and visual similarity, achiev-
ing mAP performances of 80.65%, 85.05%, and 89%, respectively. Using annotated big data
via DAL, the prediction performance of the proposed VPP framework is improved by 18%
precision, 27% recall, and 25% mAP. Indeed, the VPP framework is constructed based on
five state-of-the-art Al predictors: MobileNetSSDv2, EfficientDet, Faster RCNN, Detectron2,
and YOLO. A comprehensive experimental evaluation study is conducted to select the
best Al predictor. The derived evaluation results show that VPP-based YOLO outperforms
other predictors, achieving mAP of 92% compared with the figures of 62%, 72%, 80%, and
92% for MobileNetSSDv2, EfficientDet, Faster RCNN, and Detectron2, respectively. Based
on the recognition objects, the hyperparameters of the best detector are determined via a
comprehensive optimization strategy where transfer learning is used to improve predic-
tion performance. This study compared the backbone of YOLOv5 networks with various
widths and depths, and the results demonstrated that, under identical setting conditions,
YOLOv5x had superior usability in terms of detection performance, model weight size, and
detection speed. This method achieved an optimal balance between detection performance
and detection speed while being hardware-friendly, making it more applicable. Over public
roads, the optimized YOLOVb5x achieved 92 percent mAP in detecting barriers, potholes,
and sidewalks.
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