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Abstract: The advanced smart home environment presents an important trend for the future of human
wellbeing. One of the prerequisites for applying its rich functionality is the ability to differentiate
between various user categories, such as gender, age, speakers, etc. We propose a model for an
efficient acoustic gender and age classification system for human–computer interaction in a smart
home. The objective was to improve acoustic classification without using high-complexity feature
extraction. This was realized with pitch as an additional feature, combined with additional acoustic
modeling approaches. In the first step, the classification is based on Gaussian mixture models. In the
second step, two new procedures are introduced for gender and age classification. The first is based
on the count of the frames with the speaker’s pitch values, and the second is based on the sum of the
frames with pitch values belonging to a certain speaker. Since both procedures are based on pitch
values, we have proposed a new, effective algorithm for pitch value calculation. In order to improve
gender and age classification, we also incorporated speech segmentation with the proposed voice
activity detection algorithm. We also propose a procedure that enables the quick adaptation of the
classification algorithm to frequent smart home users. The proposed classification model with pitch
values has improved the results in comparison with the baseline system.

Keywords: acoustic classification; acoustic signal processing; Gaussian mixture model; pitch analysis;
smart home

MSC: 68T10

1. Introduction

The intensive development of information communications technology (ICT) has
spread into all sections of everyday life, including the human living environment. Real-
life smart home systems already include successful automation and control support for
the variety of scenarios that human users are confronted with. Currently, the majority
of smart home users belong to the category of early adopters, but it is expected that the
future development of the technology will increase its broad acceptance in the general
population [1,2].

An important functionality in a smart home environment is the detection of the user’s
presence in a room. This can be fulfilled in different ways, focusing on non-invasive
methods, wherein users do not need to wear any dedicated device. One of the traditional
methods is passive infrared (PIR) motion detection, which yields relatively simple and
robust sensors. The disadvantage of this technology is its inability to distinguish between
different user categories, such as gender, age, speakers’ identity [3], etc. Another method
that cannot cope with user categories is speech activity detection (SAD) [4], which provides
the smart home system with information about a user’s presence solely from the captured
speech signal.

Human–computer interaction (HCI) can, in advanced smart home environments, pro-
vide rich functionality if it can differentiate between various user categories. To distinguish
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between them, machine learning classification can be used. The classification accuracy and,
in particular, system complexity largely depends on the category characteristics and intra-
category variance. The decision regarding which type of user classification (e.g., gender)
to apply is based on HCI scenarios and requested functionalities that need to be applied
in the smart home environment. The resulting HCI system in a smart home environment
can act accordingly, applying user scenarios, adapting functionality, or deploying entity
personalization. The area of personalization [5] covers a large number of possible scenar-
ios. Some smart home entities that are frequently included in the personalization process
include the user interface, media and users’ content, a recommendation system, AAL
functions, etc. The main personalization objective is to achieve better usage acceptability
and higher quality of experience. To be able to carry out such category-based presence
detection, a more sophisticated approach must be used than IR motion detection or SAD.
One possibility is to use image processing [6], and another is to use more complex audio
processing. The advantage of presence detection using audio as a modality is its lower
computational complexity, lower cost, and better acceptability among users. The user’s
acceptability is tightly connected with the data privacy question. In the case of audio, a
well-considered design can lead to local processing, without the need to use cloud-based
speech processing services.

Based on the above characteristics of the advanced HCI interface, we propose an
acoustic classification model that determines the age and gender of the speaker from the
captured speech signal. Such a classification approach can be used in a smart home envi-
ronment for precise presence detection. Broadly accepted smart home usage scenarios were
analyzed and a decision was made to classify users into three categories: male, female, and
child. This represents an effective combination of all speakers’ characteristics. A special
characteristic of the proposed model is the inclusion of the category of children in the classi-
fication, which is not typically represented in speech technologies. This aspect is important
due to the smart home user interface design and content-processing process. In the case of
children, the personalization steps must be more intensive and age-oriented, emphasizing
domain control and the adequacy of the information available to them. The first objective
of the proposed acoustic classification model is to provide accurate performance for all
three defined categories using pitch processing. Pitch is one of the signal processing values
that can contribute most extensively to classification accuracy, as it depends significantly
on the speakers’ characteristics. We propose an algorithm for efficient pitch calculation.
We also propose two-step solutions for including pitch in the classification to enable adap-
tation in the second step. The second objective of the proposed model is to simplify the
development of acoustic age and gender classification for presence detection in a smart
home environment. The motivation was to reuse available speech recognition modules
from a smart home environment. This results in less complex speech technology methods
that can even be used by resource-constrained devices.

Using speech as an input modality has both advantages and disadvantages. The
speech signal propagates through the room, which means that the capture devices need not
focus directly on the user. This can significantly improve the system’s usability. There are
two shortcomings present for speech modality. The first one is the sensitivity of the speech
signal in relation to other audio sources co-existing in the room. The disturbing audio
sources’ types vary according to the scenario: background music/TV, home appliances,
other speakers, domestic animals, street noise, etc. The second one is the issue of the
privacy of uttered information, which can be successfully handled by local processing in
the scope of the embedded systems. The speech-based presence detection system can be
combined with other presence detection entities, such as PIR motion detection sensors.
This can result in improved performance, as the modalities of signals and noises differ. The
end result is the limiting of shortcomings connected with the pure speech-oriented system.

The paper is organized as follows. Section 2 presents a literature review from two
perspectives: gender classification and smart home systems. Section 3 first presents the
proposed model and then describes the theory of acoustic gender classification, with an
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emphasis on approaches used in the experiments. Then, the system design applied in the
experiments is presented. The speech processing results are presented in Section 4. The
discussion is provided in Section 5, and the conclusion is provided in Section 6.

2. Literature Review

The objective of this work was to establish a back-end smart home service, which
could be used for detecting the presence of users solely via speech modality and classify
them accordingly. Thus, the addressed related work also covers two fields. The first one is
the field of digital signal processing and gender classification from speech. The second one
is the field of smart home systems and services.

The topic of acoustic gender classification is an area in spoken language technology
with a long history. The first systems emerged decades ago [7–9], mainly as sub-components
of automatic speech recognition systems. The basic idea—of how to detect gender from
acoustic signals—is usually pursued via the spectral and temporal characteristics of the
captured speech signal [10]. To be able to carry out gender classification, two approaches
need to be combined: first, the representative features are extracted from the captured
audio signal [11], and second, the appropriate machine learning approach is used to
classify them [12].

The acoustic feature extraction procedure is a key factor in successful gender classi-
fication. Various approaches, such as mel-frequency cepstral coefficients (MFCC) [13,14],
pitch [15], and RASTA [15], have been used for the gender classification task. In gen-
eral, MFCC feature extraction usually provides good classification results. The speech
rate, pauses, loudness, intonation, and voice quality can be categorized as paralinguistic
features. Similar to acoustic features, paralinguistic features can also be used for gender
classification [16], with the objective of broadening the data available for classification. This
can improve the overall classification accuracy.

An important issue in the case of gender classification from speech is its robustness
against the acoustic background and other degradation events. The background signal
and noise can reach high energy levels and, consequently, significantly disturb system
operation in smart home scenarios. Islam [17] showed that GFCC features also significantly
improve the robustness and effectiveness of gender classification in a harsh environment.

One of the baseline approaches to addressing gender classification is Gaussian mixture
models (GMMs) [18]. The GMM gender classification approach can show high precision
with relatively low complexity, which is important for smart home scenarios, where lim-
ited embedded resources are frequently available. Ranjan et al. [19] also showed that
GMM gender classification achieves good results in different languages, or even in a
multilingual environment.

Hidden Markov models (HMMs) have been used for gender and age classification [20],
and also for the classification of various human activities in natural environments [21]. The
use of HMMs introduces another model’s architecture to the classification task, which can
improve the robustness, accuracy, and reusability of real-life systems. The combination of
several statistical approaches is presented in [22], where universal modeling (UM) based
on GMM clustering was used.

Another machine learning approach used for gender classification is support vector
machines (SVMs). Bocklet et al. [23] showed that SVM can achieve high-accuracy gender
recognition results. The i-vector approach proposed by Dehak [24] was also applied
successfully for gender classification in complex spoken scenarios [19].

Deep neural networks (DNNs) were used for gender classification by various authors [25,26].
The main objective was to improve accuracy and combine the gender classification system
with the main automatic speech recognition system using the same architecture. Prior to
DNNs, other neural network methods, such as multi-layer perceptrons (MLPs) [27], were
also successfully implemented for gender classification.

The majority of gender classification systems found in the literature only deal with
adult speech, thus classifying between males and females (and unknown). In the case
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of a smart home, distinguishing between adult and child can also be important. The
Paralinguistic Special Session of Interspeech 2010 [28] addressed this topic. The aGender
speech database [29], which is applied for the classification task, originated from long
conversational telephone sessions, and the speakers were classified into three gender
categories and seven combined categories. Meinedo and Trancoso [30] presented a system
that used a combination of four different corpora with the fusion of acoustic and prosodic
features, and this was able to classify gender with an 84.3% average recall. Yücesoy and
Nabiyev [29] carried out gender classification on the aGender speech database with a
combination of three subsystems at the score level. The experimental system provided a
90.39% classification success rate for the gender category. This result shows that there are
still challenges in the area of gender classification when children’s speech is incorporated
into experiments.

With the development of algorithms, systems, and terminal equipment, the number
of possible use cases increased, and nowadays, gender classification systems can be used
successfully in the smart home environment [31]. Speech activity detection, which can
be seen as a simplified gender classification approach for the smart home, was addressed
by SASLODOM, part of the EVALITA 2014 challenge [32], wherein three different SAD
systems were presented. The best system achieved a 2.0% SAD error rate at the frame level,
which is already usable in real-life scenarios applicable to SAD. Gender classification can
also be helpful for social robots as part of the smart home environment [33]. The availability
of extended speech databases also enables a combined approach, whereby age and gender
were processed in parallel [34,35].

The literature review presents a general overview of approaches to carrying out the
gender classification task. In our work, the emphasis will be placed on particular solutions
for acoustic presence detection, as well as gender and age classification, in the smart home
environment, where the combination of accuracy and required system resources plays an
important role.

3. Materials and Methods

This section presents the proposed procedure used for gender and age classification
from input speech signals. First, we present the entire process of preprocessing and
extracting the necessary information from the input speech signal so that, in the end,
we can determine the presence of a male, female, or child in the environment through
classification procedures. Then, we present, in more detail, the voice activity detection
(VAD) algorithm and the procedure for determining the pitch value from the input speech
signal. The pitch value of an individual speaker gives essential information about whether
the speaker is a male, female, or child. Therefore, we chose the pitch value as one of the
more essential features in our proposed procedure. We presented the VAD algorithm and
the pitch value determination in one of our previous works [36]. We enhance the procedures
in this paper to improve the algorithm’s performance, which we also describe in more
detail in this section’s second and third subsections. Next, we present the feature extraction
algorithm included in our setup. The training of Gaussian mixture models (GMMs) is
presented thereafter.

3.1. Proposed Gender and Age Classification

Here, we present the proposed gender and age classification procedure in detail.
Figure 1 will form the basis for describing the details of the proposed procedure. We want
to extract information about a person’s gender (male or female) and age (adult or child)
from the speech signal spoken by a person present in an intelligent environment. The input
speech signal is divided into overlapping frames. All further information extraction is from
the frames. In the speech signal, most information about gender and age is present in the
voiced frames of the speech signal. The voice activity detection (VAD) algorithm detects
the voiced frames in the speech signal. The voiced frames of the speech signal are the basis
for determining the speaker’s pitch value. The next step in the procedure is calculating
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the 12 mel-frequency cepstral coefficient (C1–C12) features and energy, as specified in the
standard [37]. After that, we carried out the composition of the feature vectors that were
finally used. Because we did not want to change the size of the feature vector, we decided
to replace coefficient C12 with the pitch value. To improve the effectiveness of gender and
age classification, we have also calculated the first and second derivatives of the feature
vector coefficients. Once we derived the final feature vector and the pitch value for each
frame, we began classifying the person’s gender and age.
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Figure 1. The proposed gender and age classification procedure.

We propose a gender and age classification procedure comprising two steps [38]. We
decided on a two-step classification process because, in the second step, based on the
analysis of the pitch value of the speakers present in an intelligent environment, we can
improve the classification. In the first step, gender and age classifications are based on
Gaussian mixture models (GMMs). For each frame, three probabilities, P(M), P(F), and
P(C), are determined, representing the probabilities of a male, a female, or a child. The
higher probability determines to which gender or age the frame belongs. Next, the frame
counters (NP(M), NP(F), and NP(C)) are determined for all three classification categories. For
each frame, only one frame counter is incremented; that is, the one whose frame has a
higher probability. The frame counter with the higher value indicates which gender or
age the entire input speech signal belongs to, and it is presented as the winner, WP, of
the classification based on GMMs. We completed the classification process if any frame
counter value stood out and was at least four counts greater than the other two. In this
case, we considered the GMM-based classification as a final conclusion of gender and age
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classification. However, if the difference between the two frame counters was less than
four, we continued with the second classification step. The right decision block in Figure 1
presents this decision.

In the second step, we propose two procedures of gender and age classification. These
are (a) classification based on the normalized pitch value counts and (b) classification based
on the normalized pitch value sums. The normalized pitch values are obtained in both
procedures by analyzing the speech recordings used to train the GMMs. All frames in
which we can determine the pitch value were used for analysis. First, we established three
groups of male, female, and child speakers. After that, we divided the pitch values into
intervals of 10 Hz. In the 80 Hz interval, there are pitch values between 80 and 90 Hz;
the 90 Hz interval covers all pitch values between 90 and 100 Hz, etc. The male speakers’
recordings exhibited the most pitch values between 110 and 120 Hz. All the counted pitch
values from the male, female, and child speakers were normalized according to the highest
value observed by the male speaker.

For the classification based on the normalized pitch value counts, we analyzed the
occurrence of the normalized pitch values for the male, female, and child speakers. For each
frame, three count areas, C(M), C(F), and C(C), were determined, representing the areas
for a male, a female, or a child speaker. If the normalized pitch value for a current frame
was below 160 Hz, it belonged to the count area C(M); if it was between 160 and 230 Hz,
it belonged to the count area C(F), and if it was above 230 Hz, it belonged to count area
C(C). Here, we also determined the frame counters (NC(M), NC(F), and NC(C)) for all three
classification categories. For each frame, only one frame counter was incremented—the one
whose frame belongs to a particular count area. The frame counter with the higher value
was used to determine to which gender or age group the entire input speech signal belonged
and was presented as the winner, WC, of the classification based on the normalized pitch
value counts.

The classification based on the normalized pitch value sums also uses the analysis
results. We have defined three sums: for male NΣ(M), female NΣ(F), and child NΣ(C) speakers.
For each frame in which we could detect the pitch value in the speech signal, we added the
normalized values obtained from the analysis to the sums of each speaker. For example,
a pitch value of 173 Hz was determined within a particular frame. This pitch value was
between 170 and 180 Hz, so a 170 Hz interval was selected for all classification groups.
Consequently, the normalized value of 0.14 was added to the NΣ(M), the normalized value
of 0.37 was added to the NΣ(F), and the normalized value of 0.08 was added to the NΣ(C).
Here, can be seen that a normalized value of 0.37, which was added to the NΣ(F), was the
largest compared to the other two values. This is understandable since this normalized
value is located between 160 Hz and 230 Hz, which belongs to the female speakers’ count
area C(F). The most significant sum value of three sums (NΣ(M), NΣ(F), and NΣ(C)) was
used to classify to which gender or age the entire input speech signal belonged, and was
presented as the winner, WΣ, of the classification based on the normalized pitch value sums.

The second classification step ends with collecting information about the winners (WC,
WP, and WΣ) of all three described classification procedures and majority voting, MV. We
performed all three classification procedures on the same speech signal. The results of all
three might be the same, but sometimes they give different results. When the results are
the same, the majority vote equals three. Then, all classification procedures can be used
to determine whether the speaker in the recording is a male, a female, or a child. In such
a case, the final decision of the second classification step is simple. If the majority vote is
equal to two, this means that at least two processes give an identical classification. In this
case, the final classification is the same as the majority vote winner. However, if all three
classification procedures give different results, the majority vote is equal to one. In such
a case, the final classification of gender and age is based on the first classification step or
GMM-based classification.

We will use the proposed gender and age classification system in a smart home
environment. There is always the question of how to update and improve such a system.
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In this paper, we propose another procedure that would allow for the fast adaptation of
the system to users who appear frequently in a smart home environment. The idea of the
procedure is based on the fact that the classification based on GMM remains the same.
It means that the test set does not influence the trained GMMs. The change is that the
system monitors the correctness of the classification and records pitch values on the basis
of the frame of the user in the smart home environment. When we have a sufficiently large
number of captured pitch values for users, we use these values to adapt the gender and age
classification system to them. This sufficiently large number of pitch values can be taken
from the analysis. An experiment has been performed to confirm the adaptation procedure,
and the results are provided in Section 4.

3.2. Voice Activity Detection Algorithm

An essential contribution of the voice activity detection (VAD) algorithm is real-time
noise energy estimation. Such an algorithm can be used in smart home environments
where the noise level can vary significantly. Frame energy and zero-crossing measures
are used for the VAD on each acoustic frame. A speech signal is cut into 50 percentage
overlapped frames with durations of 25 milliseconds. Owing to the fact that the speech
signal is sampled with a frequency of 16 kHz, the duration of each frame can be presented
as a 400-sample window. To explain the process of VAD decision determination, we will
use Figure 2. The frequency spectrum (Figure 2a) and signal representation in the time
domain (Figure 2b–f) of the specific values are provided for a captured spoken sample in
which the digit sequence “seven six one three” is uttered.

The frame energy, Ef, values are presented as a blue line in Figure 2b. The frame
energy, Ef, value is calculated as in (1) from the N samples of the input signal, s.

E f =

N
∑

i=1
(s[i])2

N
(1)

We did not use the logarithmic function in calculating the frame energy, because it
would be more difficult to define the threshold that determines the presence of speech. The
noise area energy values, En, are presented in Figure 2c. The value En is calculated for each
frame as in (2) from the 10 values of the cyclic noise buffer, Nbuff.

En =

9
∑

i=0
Nbu f f [i]

10
(2)

The value En is calculated as an average value within a cyclic noise buffer, Nbuff, that
contains the frame energy, Ef, of the last 10 noisy frames.

The energy values, Ef, of the first 10 frames in the captured audio signal are mapped
into the cyclic noise buffer, Nbuff. After the first 10 frames, only the noisy frames with the
weighted energy values, Ef, are added in the last place of the cyclic noise buffer, Nbuff. The
decision regarding which energy value, Ef, contains noise is presented in

Nbu f f [9] =


E f ; E f ≤ 2 · En

E f /2; 2 · En < E f ≤ 4 · En

E f /4; 4 · En < E f ≤ 8 · En

(3)

As can be seen in (3), the cyclic noise buffer, Nbuff, is not updated when the current
frame energy value, Ef, is 8 times larger than the noise area energy value, En, in the same
frame. This limit has been determined empirically. If the cyclic noise buffer, Nbuff, is not
updated, then the noise area energy value, En, is also not updated according to (2). This
is also presented in Figure 2c. This coincides with the beginning of the speech occurrence
(digit “seven”) in the captured audio signal and can be seen in Figure 2a.
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Figure 2. VAD decision determination: (a) Captured audio signal frequency spectrum. (b) Frame
energy values and threshold energy values. (c) Noise area energy values. (d) Threshold energy values.
(e) Zero-crossing measure values and threshold zero-crossing values. (f) VAD decision.

The next step in determining the VAD decision is to determine the threshold energy
value, ETh. The threshold energy value, ETh is calculated as in (4) with the help of factor, f,
and the noise area energy value, En.

f =


100; En ≤ 100
100− 0.1 · En; (En > 100) ∧ (En < 900)
10; En ≥ 900

ETh = f · En

(4)

The achieved result can be seen in Figure 2d. It is evident from the decision procedure
that we used a different factor value, f, to determine the threshold energy value, ETh. If the
noise area energy value, En, is small (smaller than or equal to 100), it is necessary to raise
the threshold energy value, ETh. If the value of factor f is 10, then a slight increase in frame
energy value Ef would lead to the wrong VAD decision, since the zero-crossing values
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(Figure 2e) in the non-speech areas are also large. Therefore, we need to use a larger factor
value, f, (in our case it is 100) so that wrong VAD decisions are less probable. On the other
hand, if the noise area energy value, En, is large (larger than or equal to 900), it is necessary
to reduce the threshold energy value, ETh. Such high energy values of En occur if there is
no silence at the beginning of the captured audio signal and speech occurs immediately. If
the value of factor f is 100, then the threshold energy value, ETh, would be too high, which
would mean that the VAD algorithm would not detect the voiced speech segments in the
captured audio signal. Therefore, in this case, we set a smaller factor value, f, (in our case,
10) so that the VAD algorithm can detect the speech segments in the captured audio signal.
The high noise area energy value, En, decreases as soon as the conditions in (3) are met.
However, if the noise area energy value, En, is between 100 and 900, then the value of factor
f, as well as the threshold energy value, ETh, changes linearly according to (4). Typically, for
the captured audio signal, the time domain representations of the noise area energy values,
En, (Figure 2c) and the threshold energy values, ETh, (Figure 2d) are identical but multiplied
by the constant factor, f, used. The time domain representations of the threshold energy
values, ETh, in Figure 2d are presented with a red line. The same value is also presented
with a red line in Figure 2b.

We can derive additional information for better VAD decisions from the zero-crossing
measure value, ZCm. The enormous zero-crossing measure value in the frame represents the
frame containing noise, or unvoiced speech, in the audio signal. For example, consonants
in the speech signal belong to unvoiced speech. Figure 2a shows the frequency spectrum of
the digit sequence “seven six one three”, and the words seven and six contain the consonant
“s”. In word seven, the consonant “s” is present from frame 18 to frame 30, while in word
six it is present from frame 53 to frame 63, and from frame 75 to frame 84. The value of
the zero-crossing measure is presented as a blue line in Figure 2e. The ZCm values in the
unvoiced speech and noise signal regions are large and much more significant than those
in a voiced speech signal region. The zero-crossing threshold value, ZCTh, determines
the segments of unvoiced speech and segments of the voiced speech signal. We set this
value to 50, which is presented in Figure 2e as a red line. As mentioned before, one frame
contains 400 samples. Having the value ZCTh set at 50 means that the signal crosses the
zero value at every 8 samples. This also means that the signal reaches its positive peak at
every 16 samples. In this case, for a sampling frequency of 16 kHz, the pitch value would
be 1000 Hz, which is almost impossible.

The proposed VAD decision is calculated from frame energy value Ef, zero-crossing
measure value ZCm, threshold energy value ETh, and zero-crossing threshold value ZCTh,
as presented in (5). For each frame, the VAD decides if it contains voiced speech or not.
Figure 2f shows the VAD decision on the captured audio signal. Voiced frames are then
used for pitch value determination.

VAD =


1; (E f > ETh) ∧ (ZCm < ZCTh)

0; (E f > ETh) ∧ (ZCm ≥ ZCTh)

0; E f ≤ ETh

(5)

3.3. Pitch Definition

A pitch value, or speaker’s fundamental frequency, can be determined from the speech
signal’s time domain representation or the frequency spectrum. Our pitch determination
process is based on a periodic pattern, which can be found in the time domain representation
of the speech signal. A repeating periodic pattern can be found in all vowels, sonorant
consonants (/n/, /m/, /l/, etc.), and also in voiced obstruents (such as /b/, /d/, /g/) [39].
To facilitate the interpretation of the pitch determination process, we will use time domain
representation of the vowel /i/ in word six of the captured audio signal with the digit
sequence “seven six one three”. The frequency spectrum of this digit sequence is presented
in Figure 2a. The time domain representation of the 65th frame of this sequence is presented
in Figure 3a. The blue line represents speech signal samples, and we can see a repeating
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periodic pattern. In the next paragraph, we will present the procedure by which the peaks
are detected in each frame. The pitch can then be calculated from the difference between
correct peaks.
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Figure 3. The time domain representation of the 65th frame in the digit sequence “seven six one
three”: (a) Search for peaks in one speech signal frame. (b) Extraction of peaks, where 15 samples left
and right of the peak are set to 0. (c) All samples smaller than 75% of maximum/minimum value are
set to 0.

When we define pitch value, we must first define the highest maximum value between
positive samples’ values and the lowest minimum value between negative samples’ values.
The samples’ highest maximum and lowest minimum values in the frame are presented
as red lines in Figure 3a. After that, we must define positive and negative peaks. The
current peak maximums or minimums are detected in samples where greater than 75% of
the maximum or minimum value is detected in the frame. The maximums are searched
from the highest maximum to 75% of their value. The 15 samples left and right of the
positive or negative peaks are set to 0. Figure 3b shows the result of this procedure. In the
end, all other samples below 75% of the highest maximum or lowest minimum are set to 0.
Figure 3c shows this result. If we look at the positive peaks that we have found, we can
see that the first, second, third, and fifth are detected correctly. The fourth positive peak is
incorrect. For negative peaks, two peaks (third and fifth) are defined incorrectly.

Finding the difference or the number of samples between the peaks is the next step in
the procedure. As can be seen in Figure 3c, the difference is represented by the variable
τ. Differences are calculated between all adjacent peaks. Positive and negative peaks’
positions and the calculated differences between adjacent peaks can be seen in Table 1.
Only the differences between the first and the second peak and between the second and
the third peak of the positive peaks, and the difference between the first and the second
peak of the negative peaks, gave correct results that could be used to determine the correct
pitch value. After the calculation, the differences are sorted from the highest to the lowest
value. To determine the pitch, the maximum calculated difference is used, along with
those that deviate from this value by 10% or less. In the presented frame, only the first two
differences from the positive peaks are used (see Table 1, values 106 and 107), as well as
the first difference from the negative peaks (see Table 1, value 106). The average difference
is determined from the differences that are used. The fundamental frequency, F0, or pitch
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value can be calculated as in (6), where fsamp is the sampling frequency and τ is the average
difference between the peaks.

F0 =
fsamp

τ
(6)

Table 1. Positive and negative peaks’ positions in the 65th frame in the digit sequence “seven six one
three” and differences calculated between adjacent peaks.

Positive peak position Difference between adjacent peaks

64 106

170 107

277 31

308 76

384

Negative peak position Difference between adjacent peaks

49 106

155 31

186 75

261 31

292 77

369

This method of determining a pitch is only applicable when a repeating periodic
pattern is detected in the speech signal. In any case, such a signal is not present when
the VAD algorithm does not detect the presence of a voiced segment in the speech signal.
When we know the pitch of the speech signal’s voiced segments, then this information can
be used to detect the speaker’s gender in two ways. One is that we use different levels
of thresholds for determining a speaker’s gender, while the other is to use the pitch as
a feature for training different models. In this paper, Gaussian mixture models (GMMs)
are used for the model training process. When training GMMs, specific cases may arise
wherein it is not possible to train them if all the training values are not defined. In the noisy
or silent segments in the audio signal, and in the unvoiced speech segment, we do not have
information about the pitch, because it cannot be determined in these segments. Now the
question concerns which value to set in these audio signal segments. Our approach here is
that these values should be smaller than the value of the pitch that may occur in the voiced
part of the speech signal. We decided that this value should be less than 40 Hz. For the
modeling process, it is not appropriate that this value be constant for the whole unvoiced
speech signal segment. Therefore, we determined the apparent value of the fundamental
frequency, F0, or pitch value as in (7), where Fmax is the maximum apparent value of the
pitch, frameLength is the length of the frame, and averagePeak is the average value of the
peaks’ positions in the frame.

F0 =
Fmax · averagePeak

f rameLength
(7)

From Figure 4, we can determine these values. If the value frameLength is 400, the
value Fmax is set to 40, while the value of averagePeak is calculated by summing the positions
of the three positive peaks (218, 329, and 348) and the positions of the two negative peaks
(201 and 313). This gives the calculated average value of 281.8. The apparent pitch value is
then taken as 28.18 Hz.
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Figure 4. The time domain representation of the frame at the boundaries of the transition from the
unvoiced to the voiced segment of the audio signal: (a) The time domain representation of the signal.
(b) Extracted peaks in the time domain representation.

The proposed Equation (7) makes it possible to determine the apparent pitch in the
unvoiced speech signal segments. We also used (7) when we could not define the pitch
in the voiced speech signal segment. This occurs at the boundaries of the transition from
the voiced to the unvoiced segment of the speech signal, and vice versa. Figure 4 shows
an example in which we could not determine the pitch from the detected peaks correctly.
We decided to use (7) when the procedure did not detect any positive or negative peaks
between 0 and 200, or between 200 and 400 samples. This equation and procedure (7) are
also used in cases when we detect the following:

(a) Less than two positive or negative peaks;
(b) Twice as many positive or negative peaks between 0 and 200 as between 200 and

400 samples;
(c) Twice as many positive or negative peaks between 200 and 400 as between 0 and

200 samples;
(d) Two peaks where the difference between them is greater than 200 or less than 25 samples.

3.4. GMM Training

The Gaussian mixture models (GMMs) belong to the group of statistical speech recog-
nition methods that apply the weighted sum of the Gaussian probability density functions
as components. Each component is defined by the mean vector, mixture weights, and
covariance matrix, which is, in the case of speech processing, frequently diagonal. The
GMMs are trained in an iterative way with the Baum–Welch algorithm [40], which ap-
plies the expectation-maximization (EM) algorithm to determine the maximum likelihood
estimation of the unknown models’ parameters on a set of training feature vectors.

To train GMMs, we used 12 mel-frequency cepstral coefficient (C1–C12) features. We
replaced the coefficient C12 with the pitch value and added the energy coefficient. We
thus derived 13 coefficients in the feature vector. The most significant coefficients’ values
in the feature vector are the values of the energy coefficient, and these are in the range
of 20. However, since pitch values can also be up to 500 and over, we decided to divide the
pitch values by 10 so that these coefficient values would not be too high. To improve the
effectiveness of gender and age classifications, we have also calculated the first and second
derivatives of the feature vector coefficients.

The next step is to determine the number of models we have trained. The VAD
algorithm gives us the information wherein the audio recordings are speech signals and
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there is also silence. Based on this information, we trained four GMMs. On the speech
signal parts, we trained the models for a male, a female, and a child (a boy or a girl), and
for the rest of the signal, we trained silence. We used the hidden Markov model toolkit [40]
for the GMMs’ training. The GMMs’ training procedure is provided in Figure 5.
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Figure 5. The GMM training procedure with up to 32 Gaussian mixtures per state.

When training GMMs, we started with a prototype model, which defines the required
model topology. The topology of a single GMM is presented as a single-state model, and
has the form of the required model, except that means are set to 0, variances are set to 1,
and mixture weights are set to 1. The next step is to provide initial estimates for the feature
vector single model parameters using a set of observation sequences for each model (male,
female, child, and silence, if used). The next step is to perform two basic Baum–Welch
re-estimations of the single model parameters using a set of observation sequences. Then,
we used the procedure to increase the number of Gaussian mixtures. In the following,
we again perform Baum–Welch re-estimation of the parameters, but it is now completed
three times. The last two steps are repeated all the way to training GMMs with up to
32 Gaussian mixtures.

3.5. Experimental Design

For the experimental design, we used the speaker-independent connected digits
American English speech database TIDIGITS [41]. This speech database is widely used for
speech technology research, and it is one of the few that also includes utterances spoken by
children in an equally balanced way. The original audio recordings were collected in a quiet
environment and digitized at a 20 kHz sampling rate. For the needs of this research and
the needs of the developed application, which will be used in the smart home environment,
we downsampled the original audio recordings to the 16 kHz sampling frequency. The
complete speech database contains 326 speakers, of which 111 are male, 114 are female,
and 101 are child speakers (50 boys and 51 girls). In our research, we did not separate
child speakers by gender. The age of male speakers is between 21 and 70 years, females are
between 17 and 59, and children are between 6 and 15 years. The recordings of the speech
database are divided into a training and a test set, which is proposed by the authors of the
speech database. The training material contains 163 speakers, of which 55 are male, 57 are
female, and 51 are child speakers—together representing 12,549 audio recordings. For the
test material, 163 speakers remained, of which 56 were men, 57 were female, and 50 were
children, which together represented 12,547 audio recordings. The speakers pronounced
the following English digits in the recorded database: zero, one, two, ..., nine, and oh.
Almost all of the speakers pronounced 77 isolated or connected digits, of which 22 were
isolated, and digit sequences two, three, four, five, and seven digits long were uttered
11 times.

4. Results

In this section, we will first present a pitch value analysis of each recording in a
speech database using the procedure for determining the pitch value presented in this
paper. This analysis helps us in the later interpretation of the results. For those frames in
the audio recording for which we were able to determine the pitch value, we compared
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their values. The pitch value most often detected is determined as the pitch value of the
speaker’s voice in the audio recording. The analyses are presented in Figure 6. As can be
seen from the analysis, the male speaker’s pitch value was the least distributed. Most of
the recordings with the male speakers had a pitch value of 110 Hz for both the training and
test set materials. The pitch values in recordings with female and child speakers were more
dispersed. When we look at the analysis results of the children’s recordings in Figure 6c,
we can see that most of the speakers in the training set of the audio recordings had slightly
higher pitch values than most speakers in the test set of the recordings, where their pitch
values were somewhat lower. Thus, the pitch values of the child speakers in the test set
recordings were closer to the pitch values of the female speakers that were used in the
recordings for the training set. If we look only at the pitch values, we can see frequent
confusion between child and female speakers in the gender and age classifications.
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Figure 6. The count of the files with the same pitch values for the recordings with (a) male, (b) female,
and (c) child speakers.

We will continue with presenting the results of the speaker’s gender and age classifica-
tion derived from experiments. The accuracy results of gender and age classification, and
the statistical analyses of the results with confidence intervals, are presented in Table 2. The
associated confusion matrices with recall results are provided in Table 3. The experiments
and associated notations used in Tables 2 and 3 are explained in the following list, where
(c)–(e) were experiments that were compared with the algorithms presented in the paper:
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(a) The classification was based on the count of the pitch values in all frames with
calculated pitch values. We performed a classification regarding whether it belongs
to a male, female, or child speaker. This decision is presented as a classification
based on the normalized pitch value counts. For this classification, we used the
notation Pitch value counts;

(b) The classification was based on the normalized pitch value counts in all frames
in which we could determine the pitch value. We have defined three sums of the
normalized pitch value counts for male, female, and child speakers. This decision
is presented as a classification based on the normalized pitch value sums. For this
classification, we used the notation Pitch value sums;

(c) The classification was completed on the basis of the trained three states of the left-to-
right monophone HMMs, the topology of which is described elsewhere [40]. In this
case, we used three HMMs for male, female, and child speakers and one additional
state, a silence HMM. HMMs were trained on the recordings with 11 mel-frequency
cepstral coefficients (C1–C11), the pitch value divided by 10, logarithmic energy, and
the first and second derivatives of those coefficients. For this classification, we used
the notation Three-state monophone HMMs—MFCC_Pitch_E_D_A;

(d) The classification was completed on the basis of the trained sixteen states of the word
HMMs, the topology of which is presented elsewhere [42]. In this case, we used
three sixteen-state HMMs for male, female, and child speakers and one additional
3-state silence HMM. HMMs were trained on the recordings with 11 mel-frequency
cepstral coefficients (C1–C11), the pitch value divided by 10, logarithmic energy, and
the first and second derivatives of those coefficients. For this classification, we used
the notation Sixteen-state word HMMs—MFCC_Pitch_E_D_A;

(e) The classification was based on an idea presented in previous work [22], where
universal modeling (UM) based on GMM clustering was used. In this case, we
used three types of features. The first type of feature was 13 mel-frequency cepstral
coefficients (C0–C12); the second type of feature was MPEG-7 low-level descriptors
(LLDs), as presented in [21]; and the third type of feature was perceptual wavelet
packets (PWP), as presented in [43]. For this classification, we used the notation
Universal modeling based on GMM clustering;

(f) GMMs were trained on segmented recordings with 12 basic mel-frequency cepstral
coefficients (C1–C12), logarithmic energy, and the first and second derivatives
of those coefficients. For this classification, we used the notation GMMs with
segmentation—MFCC_E_D_A;

(g) GMMs were trained on segmented recordings with 11 mel-frequency cepstral coeffi-
cients (C1–C11), the pitch value divided by 10, logarithmic energy, and the first and
second derivatives of those coefficients. For this classification, we used the notation
GMMs with segmentation—MFCC_Pitch_E_D_A;

(h) The proposed final gender and age classification was based on a combination of
the classifications used in all three experiments (a), (b), and (g). This proposed
classification is presented in Section 3.1. For this classification, we used the notation
Proposed algorithm with segmentation;

(i) The experiment applies in the same way as in experiment (h), with the exception that,
in this case, an adaptation of the proposed gender and age classification algorithm
is made. With a sufficiently large number of pitch values of the users, we can adapt
the normalized pitch value counts and sum. In the last paragraph of Section 3.1, we
propose a procedure that would allow for the fast adaptation of the system to the
users who occur most frequently in the smart home environment and would use such
a gender and age classification system. For this classification, we used the notation
Proposed algorithm with segmentation and pitch adaptation.
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Table 2. Accuracy results obtained by gender and age classification of the speaker and statistical
analysis of the results with a 95% confidence interval.

Gender and Age Classification of the Speaker Acc [%] Mean [%] 95% CI [min max]

(a) Pitch value counts 78.02 78.00 [77.33 78.66]
(b) Pitch value sums 80.98 80.99 [80.32 81.65]
(c) Three-state monophone HMMs—MFCC_Pitch_E_D_A 90.44 90.44 [89.94 90.95]
(d) Sixteen-state word HMMs—MFCC_Pitch_E_D_A 87.18 87.19 [86.63 87.70]
(e) Universal modeling based on GMM clustering [22] 93.32 93.31 [92.88 93.74]
(f) GMMs with segmentation—MFCC_E_D_A 89.32 89.31 [88.77 89.86]
(g) GMMs with segmentation—MFCC_Pitch_E_D_A 91.38 91.39 [90.88 91.85]
(h) Proposed algorithm with segmentation 91.46 91.47 [91.00 91.89]
(i) Proposed algorithm with seg. and pitch adaptation 92.25 92.25 [91.79 92.69]

Table 3. Confusion matrix results obtained by gender and age classification with recall results.

Male Female Child Recall [%]

(a) Pitch value counts

Male 4217 94 0 97.8
Female 514 3034 841 69.1
Child 185 1124 2538 66.0

(b) Pitch value sums

Male 4262 49 0 98.9
Female 142 3571 676 81.4
Child 41 1479 2327 60.5

(c) Three-state monophone HMMs—MFCC_Pitch_E_D_A

Male 4270 31 10 99.0
Female 52 4010 327 91.4
Child 0 780 3067 79.7

(d) Sixteen-state word HMMs—MFCC_Pitch_E_D_A

Male 4282 19 10 99.3
Female 58 3136 1195 71.5
Child 3 323 3521 91.5

(e) Universal modeling based on GMM clustering [22]

Male 4279 23 9 99.3
Female 76 4080 233 93.0
Child 12 485 3350 87.1

(f) GMMs with segmentation—MFCC_E_D_A

Male 4108 159 44 95.3
Female 190 3811 388 86.8
Child 24 535 3288 85.5

(g) GMMs with segmentation—MFCC_Pitch_E_D_A

Male 4264 43 4 98.9
Female 88 4014 287 91.5
Child 2 657 3188 82.9

(h) Proposed algorithm with segmentation

Male 4271 36 4 99.1
Female 91 4026 272 91.7
Child 3 665 3179 82.6

(i) Proposed algorithm with segmentation and pitch adaptation

Male 4276 29 6 99.2
Female 62 4085 242 93.1
Child 5 628 3214 83.5
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The accuracy, Acc, presented in Table 2 is defined in (8), where H is the sum of all
correct classifications for male, female, and child speakers, divided by the number of all
classifications, N.

Acc =
H
N
· 100[%] (8)

The correct classifications for male, female, and child speakers are marked in bold as
integer values in Table 3. In Table 3, the results are provided with a different evaluation
metric called Recall, which is defined in (9), where HR is the number of correct classifications
for male, female, or child speakers in the row divided by the number of all classifications,
NR, in the row for the corresponding class.

Recall =
HR
NR
· 100[%] (9)

The number of all classifications, NR, in the row for the male speakers is 4,311, for the
female speakers is 4,389, and for the child speakers is 3,847. From the confusion matrices in
Table 3, the calculated Recall value can be seen easily. For each classification, the integer
value in the row marked in bold is divided by the number of all possible classifications, NR,
in the row for a particular class.

5. Discussion

In this section, we will comment on the results of the experiments in the previous
section. First, we will describe the results in Table 2. In addition to the accuracy results, the
statistical analysis results with the given confidence interval are also provided. Bootstrap-
ping with 1000 replications was performed for each experiment. As we can see, there were
no significant differences between the mean values and the accuracy of the defined test set.
If we compare the proposed algorithm with segmentation (experiment h) and the proposed
algorithm with segmentation and pitch adaptation (experiment i), it can be seen that the
first’s accuracy was outside of the second’s confidence interval. Thus, we can conclude that
the obtained results were statistically significant and not due to chance in the selected test
set of the TIDIGITS database [41]. The experiments presented in Table 3 under (a) and (b)
mainly obtained their information from the pitch value when determining the speaker’s
gender and age classification from the recordings. The confusion matrices’ results show
that, in both cases, the male speaker in the recording was never incorrectly classified as
a child speaker. However, the maximum number of confusions in both experiments was
present when a female speaker was classified in the recordings even though there was
actually a child speaker in the recording. These gender and age classification errors were
derived from the pitch values in the training and test sets of the speech database itself, the
values of which are presented in Figure 6. The pitch values were determined on the basis of
the entire audio recording and the pitch value, which was in the majority of frames in the
audio recording, as presented in Figure 6. The pitch values in the children’s test set material
(Figure 6c) overlapped more severely with the pitch values in the training set material of the
female speakers (Figure 6b). Figure 6c shows that the pitch values in the test set were more
diffused than in the training set. Experiments (c) and (d) were both based on HMMs. The
first used three-state monophone HMMs, and the second used sixteen-state word HMMs.
The sixteen-state word HMMs provided worse accuracy (Table 2), most likely due to the
use of pitch value as a coefficient in the feature vector. This conclusion is based on the fact
that pitch values could only be defined in the voiced speech segment of the word and not
through the duration of the whole word, where there were also consonants. Experiment (e)
was carried out according to instructions provided elsewhere [22]. Here, the best accuracy
was achieved (Table 2), and the recall classification was very good (Table 3)—especially for
the child speakers, although the classification of a child speaker was still the most problem-
atic. Such good results were based on more advanced modeling techniques and the use of
a larger number of features, such as MPEG-7 low-level descriptors (LLDs), as presented
elsewhere [21], and perceptual wavelet packets (PWPs), as presented elsewhere [43]. Our
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motivation in this paper was to get closer to these results using less complex procedures
that would be more suitable for embedded systems in smart home environments. In the
following four experiments—(f)–(i)—we used segmentation based on the proposed VAD
algorithm. Experiment (f) was taken as a baseline since it used only MFCC_E_D_A features
without pitch values. Comparing experiments (f) and (g), Table 2 shows a more than 2%
accuracy improvement in classification performance when the pitch value was used as
an additional feature. In the subsequent two experiments—(h) and (i)—an additional
contribution can be seen, as we used the classification split into two steps, as proposed in
Section 3.1. A more significant contribution was made by the last experiment, (i), when
we adapted pitch values. With this experiment, we wanted to present the procedure by
which the classification system can be quickly adapted to the normalized pitch values of
the users in a smart home environment. As can be seen from experiment (i) in Table 2,
the accuracy was better when we performed the adaptation of the proposed classification
algorithm with a new set of normalized pitch values. The results in Table 3 show that the
recall values of the female speakers for this experiment were the highest of all experiments.
After reviewing all the experiments provided in Tables 2 and 3, we can conclude that the
biggest problems lie in the classification of female and child speakers. In the classification
of male speakers, it is possible to achieve very good results, the values of which were
above 99%.

The presented gender and age classification solution can be derived via an embedded
system or as a microphone array that captures the signal, and processing is completed on a
server. From the user’s perspective, how accurately users can be detected by such systems
is important. It is required that the system classify the gender and age of the user correctly
as often as possible. The speech database used in the tests included 163 speakers, most
of whom pronounced 77 isolated or connected digits. Table 4 presents an analysis of the
results wherein four parts were identified. First, we checked the number of speakers in
which the gender and age classification of the speaker was correct for all audio recordings.
In the second and third parts of the analysis, we checked the number of speakers for whom
the gender and age were classified incorrectly in 1 to 10 recordings or classified incorrectly
in 11 to 20 recordings. If incorrect gender and age classification occurred, the requirement
was that the number of these errors be as small as possible. In the fourth and final part
of the analysis, we checked the number of speakers in which the gender and age of the
speaker were classified incorrectly in 21 to 77 recordings. In this case, in most tests, there
were 13 to 17 speakers for which the gender and age were classified incorrectly. When
we analyzed these 17 speakers, we found that 11 of them appeared in all tests. There
were no male speakers among them, which is also understandable since the male speaker
classification was, in most cases, correct. There were eight child speakers and three female
speakers for whom gender and age classifications were incorrect in all tests. For these
11 speakers, most confusions in gender and age classification were between the female
speaker and child speaker, and vice versa. Of these 11 speakers, 5 speakers were almost
entirely incorrectly classified by gender and age in all experiments, which represents 3%
of the test material. For these speakers, we can say that they present a challenging task,
due to their characteristics, and they will almost always be classified as errors. As can
be seen from Table 4, the gender and age classification is presented for all three classes
separately (M for male, F for female, and C for child). The column labeled with S represents
the sum of values in individual classes. To understand the table better, let us remember
that the number of male, female, and child speakers in the test set were 56, 57, and 50,
respectively. In experiment (d), for 75 speakers, classification was correct for all audio
recordings of these speakers. This represents the best result, but this experiment has as
many as 31 speakers for which the gender and age of the speaker were classified incorrectly
in 21 to 77 audio recordings. Good results were achieved in experiment (e) due to the very
complex methodology, while the results of the proposed algorithm with segmentation and
pitch adaptation (experiment (i)) were very similar. However, if we compare experiments
(h) and (i), we can see that the adaptation of the system helped to improve the classification
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of the female speaker. The number of female speakers for which the female gender was
classified correctly in all recordings increased from 10 to 14.

Table 4. Gender and age classification analysis (M—male, F—female, C—child, S—sum of all gender
and age classifications) for all 163 speakers.

The Number of Speakers for
Which the Gender and Age of
the Speaker Were Classified:

Correctly in
All Recordings

Incorrectly in
1 to 10 Recordings

Incorrectly in
11 to 20 Recordings

Incorrectly in
21 to 77 Recordings

Experiments:
Gender and age: M F C S M F C S M F C S M F C S

(a) Pitch value counts 49 0 4 53 4 16 19 39 1 17 6 24 2 24 21 47
(b) Pitch value sums 50 11 1 62 4 26 16 46 0 6 10 16 2 14 23 39
(c) Three-state monophone
HMMs—MFCC_Pitch_E_D_A 46 9 9 64 9 37 21 67 1 7 9 17 0 4 11 15

(d) Sixteen-state word
HMMs—MFCC_Pitch_E_D_A 49 2 24 75 6 11 18 35 1 20 1 22 0 24 7 31

(e) Universal modeling based on
GMM clustering [22] 46 12 14 72 10 33 24 67 0 6 4 10 0 6 8 14

(f) GMMs with
segmentation—MFCC_E_D_A 30 6 16 52 20 30 19 69 4 11 5 20 2 10 10 22

(g) GMMs with segmentation—
MFCC_Pitch_E_D_A 44 11 10 65 11 30 21 62 1 10 8 19 0 6 11 17

(h) Proposed algorithm
with segmentation 45 10 12 67 10 31 19 60 1 11 9 21 0 5 10 15

(i) Proposed alg. with
segmentation and
pitch adaptation

46 14 11 71 10 35 23 68 0 6 4 10 0 2 12 14

The direct comparison of achieved results with other combined age and gender acous-
tic classification systems is difficult, as experiments were not conducted on the same speech
databases (type and amount of speech, language), and also the evaluation conditions dif-
fered. A general comparison for the male, female, and child speaker classifications shows
that accuracy in previous work [29] was 90.39%, while the proposed system achieved
92.25%, which is a statistically significant improvement. The gap in results between adults
and child classes is, in the case of [29], as high as ~35% (classification success: child (60.96%)
compared to female (94.50%) or male (96.09%)), while there is a gap in the case of the
proposed system i) of between ~10% and ~15% (recall: child (83.5%) compared to female
(93.1%) or male (99.2%)). It can be concluded that the inclusion of pitch values improved
the classification modeling balance between the child and adult categories.

We performed additional analyses because we wanted to find out how many digits
were in the recording when there was an error in the speaker’s gender and age classification.
Table 5 shows the average number of digits in the audio recordings when the gender and
age of the speaker were classified incorrectly. If we compare Tables 4 and 5, we can see
that, for 163 speakers, in most cases, errors occurred in 1 to 10 recordings. The number
of digits that appeared in these incorrectly classified recordings was, on average, 1.64. In
other words, 1 to 2 digits were pronounced in these recordings. The conclusion is that the
maximum number of errors occurs in recordings that have small speech content.

Table 5. The average number of digits in the recordings when the gender and age of the speaker were
classified incorrectly.

The gender and age of the speaker were classified incorrectly in 1 to 10 recordings. 1.63
The gender and age of the speaker were classified incorrectly in 11 to 20 recordings. 2.38
The gender and age of the speaker were classified incorrectly in 21 to 77 recordings. 3.12
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The use of such gender and age speaker classification, based on the acoustic detection
of the speaker’s presence in the room, is intended primarily for use in intelligent environ-
ments of smart homes. The objective is to adapt and personalize services and content to
particular user classes. If such a gender and age classification is used in the embedded
system, energy consumption is also important. Therefore, we suggest using such a detector,
in combination with a PIR motion detection sensor, to turn on the proposed system when
a person enters the room. Once gender and age speaker classification, based on acoustic
detection, has confirmed the gender or age of the speaker in the room with a high probabil-
ity, the system can be switched off automatically. Of course, there is still the question of
how to act if more people (e.g., an adult and a child) are present in the room. If the acoustic
presence detector detects two persons in the room, belonging to different classes (e.g., one
is an adult and the other is a child), it is not the task of the acoustic presence detector to
define how the smart home environment should react in this case. The issue is resolved at
a higher level of the decision support system in the smart home environment, which is not
part of the focus of this paper.

6. Conclusions

The presented acoustic presence detection system can be applied in a smart home
environment, either as a stand-alone solution or in combination with a PIR motion detection
sensor. In this paper, we presented a method for gender and age classification of the speaker,
which is based on three different methods completed in two steps. In the first step, the
gender and age classification is based on GMMs. Basically, it counts the frames and
calculates which frame has a greater probability of belonging to one of the gender and age
(male, female, or child) classifications. If the difference between the highest two counted
frames belonging to a male, female, or child speaker is less than 4, the second step of gender
and age classification is performed, whereby two additional gender and age classification
procedures are carried out. The first is based on the count of the frames with normalized
pitch values, and the second is based on the sum of the frames with normalized pitch
values, which belong to one of the speakers. If all three, or at least two, of the decisions
match, then we choose the gender and age that is in the majority. However, if all three
decisions are different, we adopt the classification based on GMMs.

Comparative experiments carried out in this paper have shown that algorithms with a
large number of different features (some of which are also computationally complex) and
more advanced modeling techniques provide slightly better results than in the presented
gender and age classification algorithm. However, the proposed classification algorithm
was developed for use in a smart home environment, where only simple and efficient
classification algorithms are acceptable.

When analyzing the results, we came to the important conclusion that most of the
incorrect classifications of the speaker’s gender and age occurred in cases where we had a
small amount of speech material to analyze. This was, in our case, when only one or two
words were captured in the audio recording. We also proposed a procedure that allows
us to quickly adapt the gender and age classification algorithm to the frequent users of
such a system in smart home environments. The proposed adaptation procedure further
improved the performance of speaker gender and age classifications. After performing an
extensive set of experiments, we can infer that the proposed method for gender and age
classification with adaptations to users could be a potential candidate for integration into
real-life smart home environments.

In future work, we will further improve the classification accuracy for children’s
speech using other low-complexity feature extraction methods, as we aim to use embedded
systems for smart home environments.
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