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Abstract: U-statistics are a fundamental class of statistics derived from modeling quantities of
interest characterized by responses from multiple subjects. U-statistics make generalizations the
empirical mean of a random variable X to the sum of all k-tuples of X observations. This paper
examines a setting for nonparametric statistical curve estimation based on an infinite-dimensional
covariate, including Stute’s estimator as a special case. In this functional context, the class of “delta
sequence estimators” is defined and discussed. The orthogonal series method and the histogram
method are both included in this class. We achieve almost complete uniform convergence with the
rates of these estimators under certain broad conditions. Moreover, in the same context, we show
the uniform almost-complete convergence for the nonparametric inverse probability of censoring
weighted (I.P.C.W.) estimators of the regression function under random censorship, which is of its
own interest. Among the potential applications are discrimination problems, metric learning and the
time series prediction from the continuous set of past values.

Keywords: nonparametric estimation; regression-type models; U-statistics; conditional distribution;
functional estimation; delta sequences; kernel estimation; machine learning problems

MSC: 60F05; 60G15; 60G10; 62G05; 62G07; 62H12

1. Introduction

The regression problem has been studied by statisticians and probability theorists for
many years to keep up with the various problems and topics brought up by technological
and computational advances, resulting in the creation of many advanced and complex
techniques. Among the problems addressed are modeling, estimation method applications,
and tests. In this paper, we are interested in nonparametric regression estimation. Unlike
the parametric framework, where one must estimate a finite number of parameters based
on a specified structural model a priori, nonparametric estimation does not require any
specific structure; instead, it allows the data to speak for themselves. However, as natural
drawbacks, nonparametric procedures are more susceptible to estimation biases and losses
in convergence rates than parametric methods. Since their introduction, kernel nonpara-
metric function estimation approaches have garnered a significant amount of attention; for
references to research literature and statistical applications in this area, consult [1–7] and
the references therein. Popular as they may be, they represent only one of the numerous
methods for developing accurate function estimators. These include nearest-neighbor,
spline, neural network, and wavelet approaches. In addition, these techniques have been
applied to a vast array of data types. This article will focus on constructing consistent
estimators for the conditional U-statistics for functional data based on the delta sequence.
The theory of U-statistics and U-processes, which was initially introduced in the seminal
work of [8], has garnered a significant amount of interest over the course of the last few
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decades as a result of the diverse applications to which it has been applied. U-statistics can
be utilized to solve complex statistical problems. Among the examples are nonparametric
regression, density estimation, and goodness-of-fit tests. Furthermore, U-statistics con-
tribute to the study of estimators with various degrees of smoothness (including function
estimators). [9], for instance, analyzes the product limit estimator for truncated data apply-
ing a.s. uniform bounds for P-canonical U-processes. [10] introduces two new normality
tests based on U-processes. Using the findings of [11–13] provided new normality tests
that used as test statistics weighted L1-distances between the standard normal density and
local U-statistics that were based on standardized observations. These tests were used
to determine whether or not the data was normally distributed. Ref. [14] worked on the
estimate of the mean of multivariate functions under the premise of possibly heavy-tailed
distributions and presented the U-based median-of-means. U-processes are also necessary
for a wide variety of statistical applications, such as the examination of qualitative aspects
of functions in nonparametric statistics [15,16] as well as establishing limiting distribu-
tions of M-estimators (see, for example, [17–19]). In [20] the authors consider the problem
of detecting distributional changes in a sequence of high dimensional data by using the
weighted cumulative sums of U-statistics stemming from Lp norms. In [21], the authors
proposed tests based on U-statistics for testing the equality of marginal density functions.
In the paper [22], the following problem is considered: Is it possible, given a sample of
random variables that are independent, identically distributed, and have a finite variance,
to build an estimator of the unknown mean that performs almost as well as if the data were
normally distributed? The argument that was presented in the previous work is based on a
new deviation inequality for the U-statistics of order that is permitted to rise with sample
size. This inequality is the most important part of the argument. The first asymptotic results
for the scenario in which the underlying random variables are assumed to be independent
and distributed in an identical fashion were presented by [23,24] and [8] (amongst oth-
ers), respectively. In contrast, the asymptotic results under weak dependency assumption
were demonstrated in [25], in [26] or more recently in [27] and in more general settings
in [28–31]. The interested reader may refer to [17,32] for an excellent collection of references
on U-statistics and U-processes. We also refer to [19] for a profound understanding of the
theory of U-processes.

In the present work, we consider the conditional U-statistics introduced by [33], that
can be considered as generalizations of the Nadaraya-Watson ([34,35]) regression function
estimates. To be more precise, let us consider the sequence of independent and identically
distributed random vectors {(Xi, Yi), i ∈ N∗} with Xi ∈ Rd and Yi ∈ Rd′ , d, d′ ≥ 1. Let
ϕ : Rd′k → R denote a measurable function. Within the scope of this work, our primary
focus is on the estimation of the conditional expectation or regression function, as follows:

r(k)(ϕ, t) = E(ϕ(Y1, . . . , Yk) | (X1, . . . , Xk) = t), for t ∈ Rdk,

whenever it exists, i.e., E(|ϕ(Y1, . . . , Yk)|) < ∞. Now, we are going to present a kernel
function K : Rd → R with support contained in [−B, B]d, B > 0, fulfilling:

sup
x∈Rd
|K(x)| =: κ < ∞ and

∫
K(x)dx = 1. (1)

Ref. [33] established a new category of estimators for r(k)(ϕ, t), called conditional U-
statistics, that is defined for each t ∈ Rdk to be:

̂̂r(k)n (ϕ, t; hn) =

∑
(i1,...,ik)∈I(k,n)

ϕ(Yi1 , . . . , Yik )K
(

t1 − Xi1
hn

)
· · ·K

(
tk − Xik

hn

)

∑
(i1,...,ik)∈I(k,n)

K
(

x1 − Xi1
hn

)
· · ·K

(
xk − Xik

hn

) , (2)
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where:
I(k, n) =

{
i = (i1, . . . , ik) : 0 ≤ ij ≤ n and ij 6= ir if j 6= r

}
,

is the set of all k-tuples of different integers between 1 and n and {hn}n≥1 is a sequence
of positive constants that, at a certain rate, converge to the value zero, nhdk

n → ∞. In the
particular case k = 1, the r(k)(ϕ, t) reduces to r(1)(ϕ, t) = E(ϕ(Y)|X = t) and the estimator
developed by Stute is now known as the Nadaraya-Watson estimator r(1)(ϕ, t), given by:

̂̂r(1)n (ϕ, t, hn) =
n

∑
i=1

ϕ(Yi)K
(

Xi − t
hn

)/ n

∑
i=1

K
(

Xi − t
hn

)
.

The work of [36] focused on the estimation of the rate of the uniform convergence in t of̂̂r(k)n (ϕ, t; hn) to r(k)(ϕ, t). In [37], the limit distributions of ̂̂r(k)n (ϕ, t; hn) are analyzed and
compared to those produced by Stute. Under suitable mixing conditions, ref. [38] extend
the results of [33] to weakly dependent data and uses their findings to evaluate the Bayes
risk consistency of the corresponding discriminating rules.

As alternatives to the standard kernel-type estimators, [39] presented symmetrized
nearest neighbor conditional U-statistics. This work has observed a major advancement
because of the contributions of [40], where a far more strong version of consistency can
be found; to be specific, uniform in t and in bandwidth consistency (i.e., hn, hn ∈ [an, bn]

where an < bn → 0 at some specific rate) of ̂̂r(k)n (ϕ, t; hn). Additionally, uniform consistency
is achieved across ϕ ∈ F for a suitably restricted class of functions F , extended in [41–44]
and [45]. The key component of their findings is the local conditional U-process studied
in [11].

The case of functional data is the primary focus of this research. We present an
excerpt from [46]: "Functional data analysis (FDA) is a branch of statistics concerned with
analyzing infinite-dimensional variables such as curves, sets, and images. It has undergone
phenomenal growth over the past 20 years, stimulated partly by significant data collection
technology advances that have brought about the “Big Data” revolution. Often perceived
as a somewhat arcane area of research at the turn of the century, FDA is now one of the most
active and relevant fields of investigation in data science”. For an introduction to the subject
of FDA, we refer to the books of [47,48], which contain different case studies in economics,
archaeology, criminology, and neurophysiology, as well as fundamental analysis techniques.
It is important to note that the extension of probability theory to random variables with
values in normed vector spaces (such as Banach and Hilbert spaces), in conjunction with
extensions of certain classical asymptotic limit theorems, predates the recent literature on
functional data. This fact can be demonstrated by tracing back the history of the subject
(see for instance, [49]). Ref. [50] investigated density and mode estimation for data with
values in a normed vector space. At the same time, he brought attention to the issue
of the curse of dimensionality, which affects functional data, and he suggested potential
remedies to the problem. In the context of regression estimation, ref. [48] considered the
nonparametric models. We may refer also to [51–53]. Recently, Modern theory has been
applied to the treatment of functional data. For instance, ref. [54] provided the consistency
rates of several functionals of the conditional distribution, such as the regression function,
the conditional cumulative distribution, and the conditional density, amongst others,
uniformly over a subset of the explanatory variable. Other examples include conditional
density, which is a measure of the density of the conditional distribution, and conditional
cumulative distribution, which is a measure of the conditional cumulative distribution. [55]
also investigated the consistency rates for some functionals nonparametric models, such
as the regression function, the conditional distribution, the conditional density, and the
conditional hazard function, uniformly in bandwidth (UIB consistency) extended to the
ergodic setting by [56]. In the paper [57], the topic of local linear estimation of the regression
function in the case when the regressor is functional was investigated, and the results
indicated robust convergence (with rates) consistently across bandwidth parameters. In
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the work of [58], the k-nearest neighbors (kNN) estimate of the nonparametric regression
model for heavy mixing of functional time series data was explored. Under some mild
conditions, a uniform and practically perfect convergence rate of the k-nearest neighbors
estimator was established. In the work [59], the authors offer a variety of solutions for
limiting laws for the conditional mode in the functional setting for ergodic data; for some
current references, see the following: [45,60–65].

We will consider a general method for functional estimation by using the delta se-
quences. Delta sequences (also called “approximate identities” or “summability kernels”)
arise in a wide variety of subfields within mathematics. Still, the applications that pertain to
the theory of generalized functions are likely the most significant ones. The regularization
of generalized functions is the major application for delta sequences. The proposed meth-
ods generalize several nonparametric estimation methods, including the kernel estimators
given in (2) of [33]. To be more precise, the broad class of delta-sequence estimators includes
the histogram estimators, Chentsov’s projection estimators [66], and nearest-neighbor esti-
mators, among others. Certain types of these sequences were already studied by [67], who
called them “δ-function sequences”. They established, among other things, the asymptotic
unbiasedness and the asymptotic variance of estimators based on them but did not con-
sider convergence rates. Ref. [68] obtained the rate of strong consistency and the rate of
asymptotic bias for estimators associated with delta sequences arising from the Fejér kernel
of the Fourier series. The delta sequence method of density estimation of [69] is extended to
certain non-i.i.d. cases in [70], where it is assumed that the observations are taken from a sta-
tionary Markov process. Ref. [71] considered the delta-sequence estimator for the marginal
distribution of a strictly stationary stochastic process satisfying some mixing conditions.
In [72], the author investigated the local and global convergence rates of delta-sequence
type estimators of the density function, its derivative, and its mode. Ref. [73] proved the
uniform strong consistency of delta-sequence estimators. Ref. [74] partially generalized
the usual nonparametric estimators of a regression function by using an estimator based
on quasi-positive delta sequences. Ref. [75] considered a general nonparametric statistical
curve estimation setting called the class of “fractional delta sequence estimators”. Ref. [76]
used the delta method to investigate the correlation model. [77] looked at the problem of
estimating the density function of functional data with values in an infinite-dimensional
separable Banach space using the method of delta sequences; for further information,
we can also look into [78]. The copula estimation using the delta sequences methods is
considered in [79]. The problem of the nonparametric minimax estimation of a multivariate
density at a given point by the delta sequences was investigated in [80]. Ref. [81] used the
delta sequence to propose an essential application to the classification problem of the value
of the discrete random variable.

The goal of the current study is to present and investigate the delta sequences esti-
mators for the conditional U-statistics for functional data, more specifically for random
elements taking values in an infinite-dimensional separable Banach space, such as the space
of continuous functions on the interval [0, 1] endowed with the supremum norm. This will
allow the delta sequences estimators for the conditional U-statistics for functional data to
be utilized for functional data analysis. Examples of functional data that can appear in
these spaces include stochastic processes with continuous sample paths on a finite interval
associated with the supremum norm and stochastic processes whose sample paths are
square-integrable on the real line. Both of these types of stochastic processes can occur on
the real line. The dimensionality problem must be addressed in a nonparametric functional
data analysis in two ways: first, by working with data that have an infinite number of
dimensions, and second, by making universal assumptions about the infinite number of
dimensions for the probability distribution of variables in nonparametric modeling. This
structure’s twofold infinity of dimensions is the basis for all subsequent developments in
the discipline. Our previous work, delivered in the multivariate setting and cited as [82], is
extended here in the present study. Although the concept behind our estimation approach
is similar to that presented in [82] (containing the Stute estimator), we make allowances for
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the infinite dimensionality of the covariate. have determined the asymptotic characteristics
of the multivariate delta sequence estimators, ref. [82]. Their findings do not directly apply
to the current situation since we are working with a covariate with an unlimited number
of dimensions. As a result, we must utilize other reasoning in our proofs to deal with
the broader framework. These findings are beneficial in their own right, but they are also
necessary for the inquiry being conducted in this work. To “simply” combine ideas from
other publications would not be sufficient to solve the issue, as will be demonstrated in
the following paragraphs. To be able to deal with delta sequence U-statistic estimators for
functional data, you will need to resort to intricate mathematical derivations. Compared
to the previous studies written on delta sequence estimators, the current paper considers
the setting of an unbounded function ϕ, which adds a significant amount of complexity to
the proof. The general assumptions that are required for the derivations of the asymptotic
results for the conditional U-statistics delta sequence estimators are presented in this study.

The format of this article is structured as follows. Section 2 is devoted to introducing
the delta sequences and the definitions we need in our work, where we introduce the
new family of estimators. Section 3 gives the paper’s main results concerning the uniform
convergences. In Section 4, we present a significant application for the censored data
context of its interest. In Section 5, we provide some applications, including the Kendall
rank correlation coefficient in Section 5.1, the discrimination in Section 5.2, the the metric
learning in Section 5.3 and the time series prediction from a continuous set of past values
in Section 5.4. Some final observations and possible developments in the future are moved
to Section 6. To maintain a smooth flow throughout the presentation, all proofs have
been compiled in Section 7. A selection of significant technical findings is presented in
Appendix A.

2. Preliminaries and Estimation Procedure

Let (Ω,F ,P) denote a probability space, (X , d(·, ·)) denote an infinite-dimensional
separable Banach space equipped with a norm ‖.‖ such that d(u, v) = ‖u− v‖ and B be the
σ-algebra of Borel subsets of X . Let us consider a sequence {Xi, Yi : i ≥ 1} of independent
identically distributed random copies of the random element (X, Y), where X is a random
element defined on (Ω,F ,P) taking values in (X ,B) and Y takes values in some abstract
space (Y ,B′). Ref. [83] introduced the functional conditional U-statistics when x ∈ Xm

some semi-metric space as a generalization of Stute’s estimator by:

r̂(m)
n (ϕ, x; hK) =

∑
(i1,...,im)∈I(m,n)

ϕ(Yi1 , . . . , Yim)K
(

d(x1, Xi1)

hK

)
· · ·K

(
d(xm, Xim)

hK

)

∑
(i1,...,im)∈I(m,n)

K
(

d(x1, Xi1)

hK

)
· · ·K

(
d(xm, Xim)

hK

) . (3)

As we mentioned, the delta-sequences procedures can be considered a more general class,
including kernel estimation techniques. Therefore, we can naturally obtain a more general
class of functional conditional U-statistics by replacing the kernel K(·) in Equation (3)
with positive delta sequences δm(·, ·) (see Definition 1), which allows us to introduce
the following conditional U-statistic for each x = (x1, . . . , xk) ∈ X k and ϕ : Y k → R a
measurable function, by
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r̂(k)n (ϕ, x; mn) =



∑
(i1,...,ik)∈I(k,n)

ϕ(Yi1 , . . . , Yik )δmn

(
x1, Xi1

)
· · · δmn

(
xk, Xik

)
∑

(i1,...,ik)∈I(k,n)
δmn

(
x1, Xi1

)
· · · δmn

(
xk, Xik

) ,

if ∑
(i1,...,ik)∈I(k,n)

δmn

(
x1, Xi1

)
· · · δmn

(
xk, Xik

)
6= 0,

n!
(n− k)!k! ∑

(i1,...,ik)∈I(k,n)
ϕ(Yi1 , . . . , Yik )

if ∑
(i1,...,ik)∈I(k,n)

δmn

(
x1, Xi1

)
· · · δmn

(
xk, Xik

)
= 0,

(4)

which we consider estimating the regression function

r(k)(ϕ, x) = E(ϕ(Y1, . . . , Yk) | (X1, . . . , Xk) = x), for x ∈ X k, (5)

whenever it exists, i.e, E(|ϕ(Y1, . . . , Yk)|) < ∞.

Remark 1. It is worth noting that X may admit a probability density function f (·) in relation to a
σ-finite measure µ on (X ,B) in such a way that (for instance, refer [77,78,84]):

P(X ∈ A) =
∫

A
f (x)µ(dx), for every A ∈ B such that 0 < µ(A) < ∞. (6)

The concept of this remark is elaborated upon in [77] and its references. We denote by
(Ω,F ,P) a probability space and a nondecreasing family of sub- σ-algebras of F is denoted
by {Ft}t≥0. Let {W(t)}t≥0 denote a standard Wiener process defined on (Ω,F ,P) in such
a way that Wt is Ft-measurable. We highlight that the probability measure µW on the space
C0(0, T) is connected with a Borel σ-algebra generated by the supremum norm topology is
induced by the standard Wiener process. Let {X(t)}0≤t≤T be a diffusion process defined
the stochastic differential equation:

dX(t) = a(t, X(t))dt + b(t, X(t))dW(t),

where X(0) = x0 for 0 ≤ t ≤ T. By imposing some assumptions on the functions a(·, ·) and
b(·, ·), we can establish that the probability measure µX on the space C0(0, T) induced by the
process X is absolutely continuous with respect to the probability measure µW . In addition,
applying Girsanov’s Theorem permits the computation of the Radon-Nikodym derivative
of µX with respect to µW . The probability density of X on the space C0(0, T) is the µW
derivative, for instance, see [85]. From this point of view, the main motivation leading to
the analysis of functional data is the inference of stochastic processes; the reader is referred
to [85,86]. For the purposes of drawing conclusions, we make the assumption that the
entirety of the process can be observed. However, if the process can only be observed at
discrete times, either on a tiny grid or when the data are sparse, then other approaches, such
as parametric inference for discrete data, need to be devised. For instance, for the diffusion
processes, these new methods are necessary (cf. [85,87,88]). Observe that if A = B(x, κ) for
(x, κ) ∈ X ×R∗+, then (6) allows for the small ball probability to be considered.

Assume also that SX is a pseudo-compact subset of X satisfying the following prop-
erty: for any ε > 0, there exists t` ∈ X , 1 ≤ ` ≤ dn such that

SX ⊂ Sn :=
dn⋃
`=1

B(t`, ε), (7)
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and there exists κ > 0 such that dnεκ is a constant C > 0. Here, the open ball with center t`
and radius ε is denoted by B(t`, ε).

It is worth mentioning that the hypothesis (7) is essential for assuming a geometrical
link between the number dn of balls and their radius ε. In addition, this condition is fulfilled
in usual nonparametric problems when X = Rp is endowed with the Euclidean metric
on Rp (because κ = p suffices). However, this topological characteristic does not hold for
any abstract semi-metric space, as [89] explains. Before we can use the delta-sequences
approach to estimate the value of the regression operator r(k)(·) in the model (5), we must
first have the following definition.

Definition 1. A sequence of non-negative functions {δmn(x, y) : mn ≥ 1} = {δm(x, y), m ≥ 1}
defined on X k × X k is called a delta-sequence with respect to the measure µ if the following
properties are satisfied:

(C.1) For each γ in such a way that 0 < γ ≤ ∞:

lim
m→+∞

sup
x∈Sk

X

∣∣∣∣∫B(x,γ)
δm(x, y)µ(dy)− 1

∣∣∣∣ = 0, (8)

where B(x, γ) :=
k

∏
j=1

B(xj, γ), for all x = (x1, . . . , xk).

(C.2) There exists a positive constant C1, in such a way that

sup
(x,y)∈Sk

X×X k
δm(x, y) ≤ C1sm < ∞, (9)

where 0 < sm → ∞ as m→ ∞ and lim
m→∞

m
sm log(m)

= ∞.

(C.3) There exist C2 > 0, β1 > 0 and β2 > 0, in such a way that

|δm(x1, y)− δm(x2, y)| ≤ Csβ2
m d(x1, x2)

β1 for all x1, x2, y ∈ X k, (10)

where
d(x, y) :=

1
k

d(x1, y1) + · · ·+
1
k

d(xk, yk),

for all x = (x1, . . . , xk) and y = (y1, . . . , yk) ∈ X k.

(C.4) For any γ > 0:
lim

m→∞
sup
x∈Sk

X
y∈B̄(x,γ)

δm(x, y)d(x, y) = 0, (11)

where the complement set of the open ball B(x, γ) is denoted by B̄(x, γ).

Notice that the conditions (C.1)–(C.4) of Definition 1 are modelled after a similar set
of conditions for kernel-type estimators. The condition (C.2) corresponds to the bound of
δm over Sk

X ×X k whereas the condition (C.3) is pertains to the uniform Lipschitz property
of δm(x, y). Contrarily, the condition (C.4) is and it is not an assumption on the bound
of d(x, y) over Sk

X × Sk
X but an assumption on the limiting behaviour of δm(x, y)d(x, y) as

m→ +∞.

Proposition 1. Let {δm,1(x1, y1)}, . . . ,
{

δm,k(xk, yk)
}

each be non-negative delta-sequence with
respect to the measure µ, then

δm(x, y) :=
k

∏
j=1

δm,j(xj, yj), (12)

is also a non-negative delta sequence.
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This proposition is similar to Proposition 2.2 [69] when X = Rd, which means that the
product of non-negative delta-sequences is also a positive delta sequence. The proposition
provides a flexible way to construct delta sequences in high dimensions in a similar way to
kernel type estimation. Unless otherwise specified, we will set

δm(x, y) :=
k

∏
j=1

δmn(xj, yj)

for all x and y ∈ X k. This notation will unburden our results in the forthcoming theorems.

2.1. Examples of Delta Sequence

In this section, following the notation of [78], we provide guidelines for constructing
and recovering some well-known estimators in literature.

Example 1. Kernel estimator
Let X = C0(0, 1) denote the space of the real-valued continuous functions that vanishes at 0.
Suppose that X is equipped with the uniform topology that is induced by the supremum norm, i.e., if
x ∈ C0(0, 1) then x is continuous on (0, 1) with x(0) = 0 and that

‖x‖ = sup
t∈(0,1)

|x(t)|.

The Wiener measure on the space X induced by the standard Wiener process is denoted by µ. Let
us define

δm(x, y) =
1

µ(B(x, 1/m))
1B(x,1/m)(y),

where as usual 1A denotes the indicator function of the set A. Set for all x = (x1, . . . , xk) and
y = x = (y1, . . . , yk) ∈ X k

δm(x, y) =
k

∏
j=1

δm(xj, yj),

then, by Proposition 1, δm(x, y) is a non-negative delta sequence, and the conditional U-statistic is
defined in this case by

r̂(k)n (ϕ, x; mn) =

∑
i∈I(k,n)

ϕ(Yi1 , . . . , Yik )
k

∏
j=1
1B(xj ,1/m)(Xij)

∑
i∈I(k,n)

k

∏
j=1
1B(xj ,1/m)(Xij)

=

∑
i∈I(k,n)

ϕ(Yi1 , . . . , Yik )
k

∏
j=1
1B(xj ,1)

(
d(xj, Xij)

1/m

)

∑
i∈I(k,n)

k

∏
j=1
1B(xj ,1)

(
d(xj, Xij)

1/m

) ,

which can be considered as the naive kernel estimator of r(k)(·). We can observe clearly that δm(·, ·)
in this example satisfies the condition (C.1). In fact

lim
m→+∞

sup
x∈Sk

X

∣∣∣∣∣
∫
B(x,γ)

k

∏
j=1

1
µ(B(xj, 1/m))

1B(xj ,1)

(d(xj, yj)

1/m

)
µ(dy1) · · · µ(dyk)− 1

∣∣∣∣∣
= lim

m→+∞
sup
x∈Sk

X

∣∣∣∣∣ k

∏
j=1

1
µ(B(xj, 1/m))

µ
(

B(xj, γ) ∩ B(xj, 1/m)
)
− 1

∣∣∣∣∣
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= lim
m→+∞

sup
x∈Sk

X

∣∣∣∣∣ k

∏
j=1

1
µ(B(xj, 1/m))

µ
(

B
(

xj, min(γ, 1/m)
))
− 1

∣∣∣∣∣,
this quantity tends to zero when m is sufficiently large.

For a bandwidth hx
n, that is a sequence of positive numbers, define

δm(x, y) =
1
hx

n
Kn(d(x, y)),

where Kn(·) is a sequence of functions fullfilling (C.1)–(C.4).

Example 2. Histogram estimator
Let Pn =

{
An,j, j ∈ Jn

}
be a partition of the set F (cf. [90]), such that

|Jn| = mn, max
j∈Jn

µ
(

An,j
)
→ 0 and n min

j∈Jn
µ
(

An,j
)
→ ∞ as n→ ∞.

Denote
δm(x, y) = ∑

j∈Jn

1
µ
(

An,j
)1An,j(x)1An,j(y).

We can now construct the histogram and regressogram estimators in the conditional U-statistics

framework by taking δm(x, y) =
k

∏
i=1

δm(xi, yi).

Example 3. Orthogonal series estimator
Let

{
ep
}

p≥1 be a complete orthonormal system of the space X , comprising eigenfunctions of a
compact operator in the square integral functions space (L2(X ) , say). Define

δm(x, y) =
m

∑
p=1

ep(x)ep(y) for x, y ∈ F.

As stated in [91], δm(·, ·) in this case are delta sequences. Now using Proposition 1, we can observe
that

δm(x, y) =
k

∏
i=1

δm(xi, yi)

are also a positive delta sequences.

For more examples of delta sequences, we refer to [69,92].

2.2. Conditions and Comments

In order to study the consistency of the proposed estimator, let us first state the
following conditions:

(C.5) We assume that dn = nζ for ζ > 0 and

εβ1 sβ2
m <

√
sm log(m)

m
.

(C.6) Suppose that m→ ∞ and that

∃0 < τ < 1 in such a way that nτ ≤ m ≤ n, for large n.
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(C.7) We assume the following usual boundedness condition:

sup
y∈Y k
|ϕ(y)| = M < ∞.

(C.7’) The function ϕ is unbounded and fullfils for some q > 2 :

µq := sup
t∈Sk
X

E(ϕq(Y)|X = t) < ∞.

(C.8) For every γ ≥ 0:

sup
x∈Sk

X

∣∣∣∣∫B̄(x,γ)
δm(x, y)µ(dy)− 1

∣∣∣∣ = O(Dm),

where Dm =
{

d(x, y), x ∈ Sk
X and y ∈ X k, such that δm(x, y) > 0

}
= o(1) as m→

+∞.

(C.9) The regression operator r(k)(ϕ, ·) is Lipschitzian in the following sense: ∃C3 > 0 in
such a way that, for any x1 ∈ Sk

X and x2 ∈ X k, we have

|r(k)(ϕ, x1)− r(k)(ϕ, x2)| ≤ C3d(x1, x2).

2.3. Comments on the Assumptions

Similar to conditions (C.1)–(C.4), assumption (C.5) is also modelled after some kernel-
type conditions, and it allows us to select β1 and β2 in condition (C.3). Due to the infinite
nature of the problem, additional constraints are required to achieve uniform consistency
across the pseudo-compact set. Ref. [89], discussed the assumption (7). This condition holds
trivially for any finite-dimensional Euclidean space and remains valid for projection-based
metric spaces with infinite dimensions. Condition (C.7) concerning the boundedness of the
function ϕ(·) is essential to establish exponential bounds, this, coupled with the technical
condition (C.6), allows us to obtain the almost complete convergence later in the proofs.
Note that we can replace condition (C.7) with a more general one, that is, condition (C.7’),
to obtain the results when the function ϕ(·) is unbounded. Finally, to establish precise rates
of almost complete convergence in the functional context, additional conditions related
to the topological nature of the problem are required. Mainly the assumption (C.8) and
(C.9), where the latter condition concerning the Lipschitz property of the operator r(k)(·) is
standard when studying with uniform consistency.

Remark 2. Note that the condition (C.7) can be replaced by more broad hypotheses at specific times
of Y, as shown in [93]. That is

(C.7’)We denote by {M(x) : x ≥ 0} a nonnegative continuous function, increasing on [0, ∞),
and such that, for some s > 2, ultimately as x ↑ ∞,

(i) x−sM(x) ↓; (ii) x−1M(x) ↑ . (13)

For each t ≥M(0), we defineMinv(t) ≥ 0 byM(Minv(t)) = t. We assume further that:

E(M(|ϕ(Y)|)) < ∞.

The following choices ofM(·) are of particular interest:

(i) M(x) = xp for some p > 2;
(ii) M(x) = exp(sx) for some s > 0.
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The boundedness assumption on ϕ(·) can be substituted by a finite moment assumption (C.7’),
but doing so will add a significant amount of additional complexity to the proofs; for further
information, check the most recent reference [42,45,62,94,95] for more details.

3. Some Asymptotic Results

In this subsection, we will discuss the uniform consistency of the functional conditional
U-statistic, which is defined by (4). First, let us provide basic notation

X := (X1, . . . , Xk) ∈ X k, Y := (Y1, . . . , Yk) ∈ Y k,

Xi := (Xi1 , . . . , Xik ), Yi := (Yi1 , . . . , Yik ),

Gϕ,x(X, Y) := ϕ(Y)δm(x, X) for x ∈ Sk
X ,

un(ϕ, x, mn) = u(k)
n (Gϕ,x) :=

(n− k)!
n! ∑

i∈I(k,n)
Gϕ,x(Xi, Yi).

It is clear that, for all x ∈ X k :

r̂(k)n (ϕ, x; mn) =
un(ϕ, x, mn)

un(1, x, mn)
,

and un(ϕ, x, mn) is a classical U-statistic with the U-kernel Gϕ,x,mn(x, y). Therefore, to es-

tablish the uniform consistency of r̂(k)n (ϕ, x; mn) to r(k)(ϕ, x) we need to study the uniform
consistency of un(ϕ, x, mn) to E(un(ϕ, x, mn)). In this case, we will be considering a suitable
centering parameter different from the expectation E

(
r̂(k)n (ϕ, x; mn)

)
; hence, we define:

Ê
(

r̂(k)n (ϕ, x; mn)
)
=

E(un(ϕ, x, mn))

E(un(1, x, mn))
. (14)

The notation and facts that are presented below should be included in the continuation of
this discussion. For a kernel L of k ≥ 1 variables, we define

U(k)
n (L) =

(n− k)!
n! ∑

i∈I(k,n)
L
(
Xi1 , . . . , Xik

)
Suppose that L is a function of ` ≥ 1 variables, symmetric in its entries. Then, the Hoeffding
projections (see [8,19]) with respect to P, for 1 ≤ k ≤ `, are defined as

πk,`L(x1, . . . , xk) = (∆x1 − P)× · · · ×
(
∆xk − P

)
× P`−k(L),

and
π0,`L = EL(X1, . . . , X`),

for some measures Qi on S, we denote

Q1 · · ·QkL =
∫

Sk
L(x1, . . . , xk)dQ1(x1) · · · dQk(xk),

and ∆x denote Dirac measure at point x ∈ X . Then, the Hoeffding decomposition give the
following

U(`)
n (L)−EL =

`

∑
k=1

(
`
k

)
U(k)

n (πk,`L),
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which is easy to check. For L ∈ L2

(
P`
)

this denotes an orthogonal decomposition and
E(πkL | X2, . . . , Xk) = 0 for k ≥ 1; which is, the kernels πk,`L are canonical for P. Moreover,
πk,`, k ≥ 1, are nested projections, that is, πk,` ◦ πk′ ,` = πk,` if k ≤ k′, and

E(πk,`L)2 ≤ E(L−EL)2 ≤ EL2.

For example,

π1,`h(x) = E(h(X1, . . . , X`) | X1 = x)−Eh(X1, . . . , X`).

Remark 3. The function Gϕ,x,mn is not necessarily symmetric; when we need to symmetrize them,
we have:

Gϕ,x(x, y) :=
1
k! ∑

σ∈Ik
k

Gϕ,x,mn(xσ, yσ) =
1
k! ∑

σ∈Ik
k

ϕ(yσ)δmn(xσ, yσ),

where xσ = (xσ1 , . . . , xσk ) and yσ = (yσ1 , . . . , yσk ). After symmetrization, the expectation

E
(
Gϕ,x,mn(x, y)

)
= E

(
Gϕ,x,mn(x, y)

)
,

and the U-statistic
u(k)

n (Gϕ,x,mn) = u(k)
n (Gϕ,x,mn) := un(ϕ, x, mn)

do not change.

3.1. Uniform Consistency of Functional Conditional U-Statistics

Let (zn) for n ∈ N, be a sequence of real r.v.’s. We say that (zn) converges almost-completely
(a.co.) toward zero if, and only if, for all

ε > 0,
∞

∑
n=1

P(|zn| > ε) < ∞.

Moreover, we say that the rate of the almost-complete convergence of (zn) toward zero is
of order un (with un → 0 ) and we write zn = Oa.co.(un) if, and only if, there exists ε > 0
such that

∞

∑
n=1

P(|zn| > εun) < ∞.

This kind of convergence implies both the almost-sure convergence and the convergence in
probability. The following result concerns the uniform deviation of the estimate un(ϕ, x, mn)
with respect to E(un(ϕ, x, mn)) when the function ϕ is bounded.

Theorem 1. Under the conditions (C.1)–(C.4), and if conditions (C.5), (C.7) are satisfied, then we
have:

sup
x∈Sk

X

|un(ϕ, x, mn)−E(un(ϕ, x, mn))| = Oa.co

(√
sm log(m)

m

)
.

We present a more general result concerning the case when the function ϕ is unbounded
in the sense of the condition (C.7’). That being said, the preceding theorem constitutes an
important step in the truncation method used in the proof of the following theorem.

Theorem 2. Under the conditions (C.1)–(C.4), and if conditions (C.5), (C.6) and (C.7’) are satis-
fied, then we have:

sup
x∈Sk

X

|un(ϕ, x, mn)−E(un(ϕ, x, mn))| = Oa.co

(√
sm log(m)

m

)
.
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The following result handles the uniform deviation of the estimator r̂(k)n (ϕ, x; mn) with
respect to Ê

[
r̂(k)n (ϕ, x; mn)

]
in the case of the function ϕ is bounded or unbounded.

Theorem 3. Under the conditions (C.1)–(C.4), and if conditions (C.5), (C.6) and condition (C.7)
(or (C.7’)) are satisfied, then we have:

sup
x∈Sk

X

∣∣∣r̂(k)n (ϕ, x; mn)− Ê
[
r̂(k)n (ϕ, x; mn)

]∣∣∣ = Oa.co

(√
sm log(m)

m

)
,

where (sm)m∈N∗ is a sequence of positive real numbers, in such a way that m(sm log(m))−1 → ∞
as n→ ∞.

Theorem 4. Under the conditions (C.1)–(C.4) and (C.9) , we have:

sup
x∈Sk

X

∣∣∣Ê[r̂(k)n (ϕ, x; mn)
]
− r(k)(ϕ, x)

∣∣∣→ 0.

The following corollary is more or less straightforward, given Theorems 3 and 4.

Corollary 1. Under the conditions of Theorems 3 and 4 it follows that, as m tends to infinity:

sup
x∈Sk

X

∣∣∣r̂(k)n (ϕ, x; mn)− r(k)(ϕ, x)
∣∣∣→ 0, a.co.,

where (sm)m∈N∗ is a sequence of positive real numbers, in such a way that m(sm log(m))−1 → ∞
as n→ ∞.

3.2. Uniform Strong Consistency with Rates

This section is devoted to the uniform version with the rate of Theorem 1’s result.
More specifically, our objective is to obtain the uniform almost-complete convergence of
r̂(k)n (·) on some subset Sk

X of X k satisfying condition (7). In the following theorem, we
establish the bias order.

Theorem 5. Under the conditions (C.1)–(C.4), and if conditions (C.8) and (C.9) are satisfied, then
we have:

sup
x∈Sk

X

∣∣∣Ê(r̂(k)n (ϕ, x; mn)
)
− r(k)(ϕ, x)

∣∣∣ = O(Dm). (15)

The almost-complete convergence is then given by the corollary that follows, which
uses a rate of r̂(k)n (·).

Corollary 2. Under the conditions of Theorems 3 and 5 it follows that:

sup
x∈Sk

X

∣∣∣r̂(k)n (ϕ, x; mn)− r(k)(ϕ, x)
∣∣∣ = O(Dm) + Oa.co

(√
sm log(m)

m

)
. (16)

4. Conditional U-Statistics for Censored Data

Consider a triple (Y, C, X) of random variables defined in R×R×X . Here Y is the
variable of interest, C is a censoring variable, and X is a concomitant variable. Throughout,
we will use [96] notation and we work with a sample {(Yi, Ci, Xi)1≤i≤n} of independent
and identically distributed replication of (Y, C, X), n ≥ 1. Actually, in the right censorship
model, the pairs (Yi, Ci), 1 ≤ i ≤ n, are not directly observed, and the corresponding
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information is given by Zi := min{Yi, Ci} and ∆i := 1{Yi ≤ Ci}, 1 ≤ i ≤ n. Accordingly,
the observed sample is

Dn = {(Zi, ∆i, Xi), i = 1, . . . , n}.

This type of censoring is commonly applied to the survival data collected during clinical
trials as well as the failure time data collected during reliability studies, for example. To be
more specific, the majority of statistical experiments end up producing incomplete samples,
even when the conditions are carefully monitored. For instance, clinical data for surviving
the majority of diseases are typically censored due to the presence of other competing risks
to life that ultimately result in death. In the sequel, we impose the following assumptions
upon the distribution of (X, Y). Denote by I a given compact set in X with nonempty
interior and set, for any α > 0,

Iα = {x : inf
u∈I
‖x− u‖ ≤ α}.

For −∞ < t < ∞, set

FY(t) = P(Y ≤ t), G(t) = P(C ≤ t), and H(t) = P(Z ≤ t),

the right-continuous distribution functions of Y, C and Z, respectively. For any right-
continuous distribution function L defined on R, denote by

TL = sup{t ∈ R : L(t) < 1}

the upper point of the corresponding distribution. Now, consider a pointwise measurable
class F of real measurable functions defined on R, and assume that F is of VC-type. We
recall the regression function of ψ(Y) evaluated at X = x, for ψ ∈ F and x ∈ Iα, given by

r(1)(ψ, x) = E(ψ(Y) | X = x),

when Y is right-censored. To estimate r(1)(ψ, ·), we make use of the Inverse Probability
of Censoring Weighted (I.P.C.W.) estimators that have recently gained popularity in the
censored data literature (see [97,98]). The key idea of I.P.C.W. estimators is as follows.
Introduce the real-valued function Φψ(·, ·) defined on R2 by

Φψ(y, c) =
1{y ≤ c}ψ(y ∧ c)

1− G(y ∧ c)
. (17)

Assuming the function G(·) to be known, first note that

Φψ(Yi, Ci) = ∆iψ(Zi)/(1− G(Zi))

is observed for every 1 ≤ i ≤ n. In addition, under Assumption (I) below

(I) C and (Y, X) are independent.

We have

r(1)(Φψ, x) := E(Φψ(Y, C) | X = x)

= E
{
1{Y ≤ C}ψ(Z)

1− G(Z)
| X = x

}
= E

{
ψ(Y)

1− G(Y)
E(1{Y ≤ C} | X, Y) | X = x

}
= r(1)(ψ, x). (18)

Therefore, every estimate of r(1)(Φψ, ·) that can be constructed using completely observed
data is also an estimate of r(1)(ψ, ·). This characteristic permits the natural application of
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the majority of statistical procedures known to produce estimates of the regression function
in the uncensored case to the censored case. Estimates of the kernel type, for instance, are
exceptionally straightforward to build. Set, for x ∈ I , h ≥ 0, 1 ≤ i ≤ n,

ω
(1)
n,K,h,i(x) := δmn(x, Xi)

/ n

∑
j=1

δmn

(
x, Xj

)
. (19)

Making use of the Equations (17)–(19), whenever G(·) is known, we define the kernel
estimator of r(1)(ψ, ·) by

r̆(1)n (ψ, x; hn) =
n

∑
i=1

ω
(1)
n,K,h,i(x)

∆iψ(Zi)

1− G(Zi)
. (20)

Since the function G(·) is unknown, it is to be estimated. Let G∗n(·) denote the Kaplan-Meier
estimator of the function G(·) [99]. To be precise, adopting the conventions

∏
∅

= 1

and 00 = 1 and setting

Nn(u) =
n

∑
i=1
1{Zi ≥ u},

we have

G∗n(u) = 1− ∏
i:Zi≤u

{
Nn(Zi)− 1

Nn(Zi)

}(1−∆i)

, for u ∈ R.

Given this notation, we will examine the next estimate of r(1)(ψ, ·)

r̆(1)∗n (ψ, x; hn) =
n

∑
i=1

ω
(1)
n,K,h,i(x)

∆iψ(Zi)

1− G∗n(Zi)
, (21)

the reader is invited to see the papers of [96,97]. The convention 0/0 = 0 is used, this
quantity is well defined, since G∗n(Zi) = 1 if and only if Zi = Z(n) and ∆(n) = 0, where Z(k)
is the kth ordered statistic related with the sample (Z1, . . . , Zn) for k = 1, . . . , n and ∆(k)
is the ∆j corresponding to Zk = Zj. When the variable of interest is right-censored, it is
often impossible to estimate the function of the (conditional) law on the whole support
(see [100]). Ref. [101] introduces a right-censored version of an unconditional U-statistic
with a kernel of degree m ≥ 1 based on the notion of a mean-preserving reweighting
technique. Ref. [102] have demonstrated the almost sure convergence of multi-sample
U-statistics under random censorship and presented an application by analyzing the
consistency of a novel class of tests meant to evaluate distribution equality. Ref. [103]
presented improvements to the traditional U-statistics to counteract potential biases caused
by right-censoring of the outcomes and the existence of confounding factors. Ref. [104]
suggested an alternative method for estimating the U-statistic by employing a substitution
estimator of the conditional kernel given observed data. We also refer to [44,45,105]. To
our best knowledge, estimating the conditional U-statistics in the censored data setting is a
current open problem, and it gives the main motivation for the study of this section.

The function described by (17) has a natural expansion given by

Φψ(y1, . . . , yk, c1, . . . , ck) =
∏k

i=1{1{yi ≤ ci}ψ(y1 ∧ c1, . . . , yk ∧ cm)

∏k
i=1{1− G(yi ∧ ci)}

.

We have an analogous relationship to (18) based on the formula:

E(Φψ(Y1, . . . , Yk, C1, . . . , Ck) | (X1, . . . , Xk) = x)
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= E
(

∏k
i=1{1{Yi ≤ Ci}ψ(Y1 ∧ C1, . . . , Yk ∧ Ck)

∏k
i=1{1− G(Yi ∧ Ci)}

| (X1, . . . , Xk) = x

)

= E
(

ψ(Y1, . . . , Yk)

∏k
i=1{1− G(Yi)}

E
(

k

∏
i=1
{1{Yi ≤ Ci} | (Y1, X1), . . . (Yk, Xk)

)
| (X1, . . . , Xk) = x

)
= E(ψ(Y1, . . . , Yk) | (X1, . . . , Xk) = x).

An analogue estimator to (4) in the censored situation is given by

r̆(k)n (ψ, x; mn) = ∑
(i1,...,ik)∈I(k,n)

∆i1 · · ·∆ik ψ(Zi1 , . . . , Zik )

(1− G(Zi1) · · · (1− G(Zik ))
ω
(k)
n,δ,mn ,i(x), (22)

where, for i = (i1, . . . , ik) ∈ I(k, n),

ω
(k)
n,δ,mn ,i(x) =

δmn

(
x1, Xi1

)
· · · δmn

(
xk, Xik

)
∑

(i1,...,ik)∈I(k,n)
δmn

(
x1, Xi1

)
· · · δmn

(
xk, Xik

) . (23)

The estimator we shall examine is provided by

r̆(k)∗n (ψ, x; mn) = ∑
(i1,...,ik)∈I(k,n)

∆i1 · · ·∆ik ψ(Zi1 , . . . , Zik )

(1− G∗n(Zi1) · · · (1− G∗n(Zik ))
ω
(k)
n,δ,mn ,i(x). (24)

In a similar way as in [44], we arrive to the following conclusion.

Corollary 3. Assume that the condition (I) and the assumptions of Theorems 3 and 5 are satisfied.
Then, we have

∣∣∣r̆(k)∗n (ψ, x; mn)− r(k)(ϕ, x̃)
∣∣∣ = O(Dm) + Oa.co

(√
sm log(m)

m

)
, a.s.

This last result is a direct consequence of Corollary (2) and the law of iterated logarithm
for G∗n(·) obtained in [106] gives

sup
t≤τ
|G∗n − G(t)| = O

(√
log log n

n

)
almost surely as n→ ∞.

At this point, we may refer to [44,45,105].

5. Applications
5.1. Kendall Rank Correlation Coefficient

To test the independence of one-dimensional random variables Y1 and Y2 [107] pro-
posed a method based on the U-statistic Kn with the kernel function:

ϕ((s1, t1), (s2, t2)) = 1{(s2−s1)(t2−t1)>0} − 1{(s2−s1)(t2−t1)60}· (25)

Its rejection on the region is of the form
{√

nKn > γ
}

. In this example, we consider a
multivariate case. To test the conditional independence of ξ, η : Y = (ξ, η) given X, we
propose a method based on the conditional U-statistic:

r̂(2)n (ϕ, t) =
∑n

i 6=j ϕ
(
Yi, Yj

)
δm(t1, Xi)δm(t2, Xj)

∑n
i 6=j δm(t1, Xi)δm(t2, Xj)

,
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where t = (t1, t2) ∈ I ⊂ R2 and ϕ(·) is Kendall’s kernel (25). Suppose that ξ and η are d1
and d2-dimensional random vectors, respectively, and d1 + d2 = d. Furthermore, suppose
that Y1, . . . , Yn are observations of (ξ, η), we are interested in testing:

H0 : ξ and η are conditionally independent given X. vs Ha : H0 is not true. (26)

Let a = (a1, a2) ∈ Rd such as ‖a‖ = 1 and a1 ∈ Rd1 , a2 ∈ Rd2 , and F(·), G(·) be the
distribution functions of ξ and η, respectively. Suppose Fa1(·) and Ga2(·) to be continuous
for any unit vector a = (a1, a2) where Fa1(t) = P

(
a>1 ξ < t

)
and Ga2(t) = P

(
a>2 η < t

)
and

aT
1 means the transpose of the vector ai, 1 6 i 6 2. For n = 2, let Y(1) =

(
ξ(1), η(1)

)
and

Y(2) =
(

ξ(2), η(2)
)

such as ξ(i) ∈ Rd1 and η(i) ∈ Rd2 for i = 1, 2, and :

ϕa
(

Y(1), Y(2)
)
= ϕ

((
a>1 ξ(1), a>2 η(1)

)
,
(

a>1 ξ(2), a>2 η(2)
))

.

An application of Corollary 2 gives

sup
x∈S2

X

∣∣∣r̂(2)n (ϕa, x; mn)− r(2)(ϕa, x)
∣∣∣ = O(Dm) + Oa.co

(√
sm log(m)

m

)
. (27)

5.2. Discrimination Problems

Now, we apply these findings to the discrimination problem outlined in Section 3
of [108], refer to also to [109]. We will employ a similar setup and notation. Let ϕ(·) be any
function taking at most finitely many values, say 1, . . . , M. The sets

Aj = {(y1, . . . , yk) : ϕ(y1, . . . , yk) = j}, 1 ≤ j ≤ M

subsequently, produce a partition of the feature space. Predicting the value of ϕ(Y1, . . . , Yk)
is equivalent to making a guess about which set will be in the partition to which (Y1, . . . , Yk)
belongs. For any discrimination rule g, we have

P(g(X) = ϕ(Y)) ≤
M

∑
j=1

∫
x̃:g(x̃)=j}

maxMj(x̃)dP(x̃),

where
Mj(x̃) = P(ϕ(Y) = j | X = x̃), x̃ ∈ Rd.

The inequality described above becomes equality if

g0(x̃) = arg max
1≤j≤M

Mj(x̃).

g0(·) is known as the Bayes rule, and the associated error probability

L∗ = 1− P(g0(X) = ϕ(Y)) = 1−E
{

max
1≤j≤M

Mj(x̃)
}

is called the Bayes risk. Each of the unknown Mj functions can be reliably estimated using
one of the techniques described in the prior sections. Let, for 1 ≤ j ≤ M,

M
j
n(x̃) =

∑
(i1,...,ik)∈I(k,n)

1{ϕ(Yi1 , . . . , Yik ) = j}δmn

(
x1, Xi1

)
· · · δmn

(
xk, Xik

)
∑

(i1,...,ik)∈I(k,n)
δmn

(
x1, Xi1

)
· · · δmn

(
xk, Xik

) , (28)
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Set
g0,n(x̃) = arg max

1≤j≤M
M

j
n(x̃).

Let us define
L∗n = P(g0,n(X) 6= ϕ(Y)).

The discrimination rule g0,n(·) is asymptotically Bayes’ risk consistent

L∗n → L∗.

This is a consequence of the relation

|L∗ − L∗n| ≤ 2E
[

max
1≤j≤M

∣∣∣Mj
n(X)−Mj(X)

∣∣∣].

5.3. Metric Learning

Metric learning seeks to adapt the metric to the data and has garnered a great deal of
attention in recent years; for instance, see [110,111] for an account of metric learning and
its applications. This is driven by a wide variety of applications, spanning from informa-
tion retrieval via bioinformatics to computer vision as the primary source of inspiration.
For the purpose of demonstrating the applicability of this idea, we will now discuss the
metric learning problem for supervised classification as shown in [111]. Let us consider
independent copies (X1, Y1), . . . , (Xn, Yn) of a X ×Y valued random couple (X, Y), where
X is some feature space and Y = {1, . . . , C}, with C ≥ 2 say, a finite set of labels. Let D be
a set distance measures D : X ×X → R+. The purpose of metric learning in this context
is, intuitively speaking, to identify a metric under which pairs of points with the same
label are close to each other, while those with different labels are far away from each other.
A natural way to characterize the risk associated with a metric D is as follows

R(D) = E
[
φ
((

1− D
(
X, X′

)
·
(
21
{

Y = Y′
}
− 1
))]

, (29)

where φ(u) is a convex loss function upper bounding the indicator function 1{u ≥ 0},
for instance, the hinge loss φ(u) = max(0, 1− u). To estimate R(D), we consider the usual
empirical estimator

Rn(D) =
2

n(n− 1) ∑
1≤i<j≤n

φ
((

D
(
Xi, Xj

)
− 1
)
·
(
21
{

Yi = Yj
}
− 1
))

, (30)

which is one sample U-statistic of degree two with kernel given by:

ϕD
(
(x, y),

(
x′, y′

))
= φ

((
D
(
x, x′

)
− 1
)
·
(
21
{

y = y′
}
− 1
))

.

The convergence to (29) of a minimizer of (30) has been studied in the frameworks of
algorithmic stability ([112]), algorithmic robustness ([113]) and based on the theory of
U-processes under appropriate regularization ([114]).

5.4. Time Series Prediction from Continuous Set of Past Values

Let {Zn(t), t ∈ R}n≥1 denote a sequence of processes with value in R. Let s denote a
fixed positive real number. In this model, we suppose that the process is observed from
t = 0 until t = tmax, and assume without loss of generality that tmax = nT + s < τ.
The method ensures splitting the observed process into n fixed-length segments. Let us
denote each piece of the process by

Xi = {Z(t), (i− 1)T ≤ t < iT}.
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The response value is therefore Yi = Z(iT + s), and this can be formulated as a regression
problem:

ϕ(Z1(τ + s), . . . , Zk(τ + s)) = r(k)(Z1(t), . . . , Zk(t)), for τ − T ≤ t < τ. (31)

provided that we make the assumption that a function of this kind, r, does not depend on i
(which is satisfied if the process is stationary, for example). Because of this, when we get to
time τ, we can use the following predictor, which is directly derived from our estimator,
to make a prediction about the value that will be at time τ + s

r̂(k)n (ϕ, z; mn) =

∑
(i1,...,ik)∈I(k,n)

ϕ(Zi1(τ + s), . . . , Zik (τ + s))δmn

(
z1, Xi1

)
· · · δmn

(
zk, Xik

)
∑

(i1,...,ik)∈I(k,n)
δmn

(
z1, Xi1

)
· · · δmn

(
zk, Xik

)
where z = (z1, . . . , zk) = {(Z1(t), . . . , Zk(t)), for τ − T ≤ t < τ}. Corollary 2 provides
mathematical support for this nonparametric functional predictor and extends previous
results in numerous ways in [48,78]. Notice that this modelization encompasses a wide
variety of practical applications, as this procedure allows for the consideration of a large
number of past process values without being affected by the curse of dimensionality.

5.5. Example of U-Kernels

Example 4. Hoeffding’s D From the symmetric kernel,

hD(z1, . . . , z5)

:=
1
16 ∑

(i1,...,i5)∈P5

[{
1
(
zi1,1 ≤ zi5,1

)
− 1
(
zi2,1 ≤ zi5,1

)}{
1
(
zi3,1 ≤ zi5,1

)
− 1
(
zi4,1 ≤ zi5,1

)}]
×
[{

1
(
zi1,2 ≤ zi5,2

)
− 1
(
zi2,2 ≤ zi5,2

)}{
1
(
zi3,2 ≤ zi5,2

)
− 1
(
zi4,2 ≤ zi5,2

)}]
.

We obtain Hoeffding’s D statistic, which is a rank-based U-statistic of order 5.

Example 5 (Blum-Kiefer-Rosenblatt’s R). The symmetric kernel

hR(z1, . . . , z6)

:=
1
32 ∑

(i1,...,i6)∈P6

[{
1
(
zi1,1 ≤ zi5,1

)
− 1
(
zi2,1 ≤ zi5,1

)}{
1
(
zi3,1 ≤ zi5,1

)
− 1
(
zi4,1 ≤ zi5,1

)}]
×
[{

1
(
zi1,2 ≤ zi6,2

)
− 1
(
zi2,2 ≤ zi6,2

)}{
1
(
zi3,2 ≤ zi6,2

)
− 1
(
zi4,2 ≤ zi6,2

)}]
,

gives Blum-Kiefer-Rosenblatt’s R statistic (see [115]), which is a rank-based U-statistic of order 6,
refer also to [116–120].

Example 6. Bergsma-Dassios-Yanagimoto’s τ∗ [121] introduced a rank correlation statistic as a
U-statistic of order 4 with the symmetric kernel

hτ∗(z1 , . . . , z4)

:=
1
16 ∑

(i1,...,i4)∈P4

{
1
(
zi1,1, zi3,1 < zi2,1, zi4,1

)
+ 1
(
zi2,1, zi4,1 < zi1,1, zi3,1

)
−1
(
zi1,1, zi4,1 < zi2,1, zi3,1

)
− 1
(
zi2,1, zi3,1 < zi1,1, zi4,1

)}
×
{

1
(
zi1,2, zi3,2 < zi2,2, zi4,2

)
+ 1
(
zi2,2, zi4,2 < zi1,2, zi3,2

)
−1
(
zi1,2, zi4,2 < zi2,2, zi3,2

)
− 1
(
zi2,2, zi3,2 < zi1,2, zi4,2

)}
.

Here
1(y1, y2 < y3, y4) := 1(y1 < y3)1(y1 < y4)1(y2 < y3)1(y2 < y4).
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Example 7. Two generic vectors y = (y1, y2) and z = (z1, z2) in R2 are said to be concordant if
(y1 − z1)(y2 − z2) > 0. For m, k = 1, . . . , p, define

τmk =
1

n(n− 1) ∑
1≤i 6=j≤n

1
{(

Xim − Xjm
)(

Xik − Xjk

)
> 0

}
.

Then, Kendall’s tau rank correlation coefficient matrix T = {τmk}
p
m,k=1 denotes a matrix-valued U-

statistic, for wich the kernel is bounded. It is obvious that τmk quantifies the monotonic dependency
between (X1m, X1k) and (X2m, X2k) and it is an unbiased estimator of

P((X1m − X2m)(X1k − X2k) > 0),

that is, the probability that (X1m, X1k) and (X2m, X2k) are concordant.

Example 8. The Gini mean difference. The Gini index provides another usual measure of dispersion.
It corresponds to the case where E ⊂ R and h(x, y) = |x− y|:

Gn =
2

n(n− 1) ∑
1≤i<j≤n

∣∣Xi − Xj
∣∣

6. Concluding Remarks

In this paper, the conditional U-statistics regression operator estimation methods for
random elements taking values in an infinite-dimensional separable Banach space are gener-
alized to the delta-sequences techniques. The space of continuous functions on the interval
(0, 1) with the supremum norm illustrates a separable Banach space. Notably, the method
of delta-sequences unifies the kernel method of the probability density function estimation,
the histogram method, and a few other methods, including the method of orthogonal series
for appropriate choices of orthonormal bases in the one-dimensional and finite-dimensional
cases. We have obtained strong uniform consistency results in abstract settings under some
conditions on the model. The general framework that we consider extends the existing
methods to higher-order statistics; this has a significant impact both from a theoretical
and practical point of view. In a future investigation, considering the limiting law of the
conditional U-statistics regression estimators based on the delta sequence will be of interest.
A natural extension of the present investigation is to consider the serial-dependent setting
such as the mixing (see [61,62,122]) or the ergodic processes (see [56,123]). In a future
investigation of the functional delta sequence local linear approach estimators, it will be
natural to think about the possibility of obtaining an alternative estimator that benefits from
the advantages of both methods, the local linear method and the delta sequence approach.
This is because both methods have their own distinct advantages. Many methods have
been developed and established to construct, in asymptotically optimal ways, bandwidth
selection rules for nonparametric kernel estimators, particularly for the Nadaraya-Watson
regression estimator. We quote several of these methods, including [44,45,124]. This param-
eter needs to have an appropriate value chosen for it to ensure that satisfactory practical
performances are achieved, either in the typical situation of finite dimensions or in the
framework of infinite dimensions. On the other hand, to the best of our knowledge, no
such studies are currently conducted to treat generic functional conditional U-statistics.
This exemplifies a potential new avenue for research in the future.

7. Mathematical Development

This section contains the proof of our results. The preceding notation is also used in
the subsequent text. Keeping in mind the relation (7), we can conclude that, for each x =
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(x1, . . . , xk) ∈ Sk
X , there exists `(x) = (`(x1), . . . , `(xk)) where ∀1 ≤ i ≤ k, 1 ≤ `(xi) ≤ dn

and such that

x ∈
k

∏
i=1

B(x`(xi)
, εn) and d(xi, x`(xi)

) = arg min
1≤`≤dn

d(xi, x`).

We denote for each x = (x1, . . . , xk) ∈ Sk
X and x`(x) = (x`(x1)

, . . . , x`(xk)
):

k

∏
i=1

B(x`(xi)
, εn) =: B(x`(x), εn).

Hence, for each x ∈ Sk
X , we can reformulated the U-statistic as

|un(ϕ, x; mn)−E[un(ϕ, x; mn)]|

≤
∣∣∣un(ϕ, x; mn)− un(ϕ, x`(x); mn)

∣∣∣
+
∣∣∣E[un(ϕ, x`(x); mn)]−E[un(ϕ, x; mn)]

∣∣∣
+
∣∣∣un(ϕ, x`(x); mn)−E[un(ϕ, x`(x); mn)]

∣∣∣.
Proof of Theorem 1. We need to establish that there exists some η > 0, in such a way that

∑
n≥1

P

 sup
x∈Sk

X

√
m

sm log(m)
|un(ϕ, x, mn)−E(un(ϕ, x, mn))| ≥ η

 < ∞. (32)

To do that, we need to obtain an exponential bound for

P

 sup
x∈Sk

X

|un(ϕ, x, mn)−E[un(ϕ, x, mn)]| > η

√
sm log(m)

m

.

We first remark that we have

|un(ϕ, x, mn)−E[un(ϕ, x, mn)]|

=
(n− k)!

n!

∣∣∣∣∣∣ ∑
i∈I(k,n)

{
ϕ(Yi1 , . . . , Yik )

k

∏
j=1

δmn(xj, Xij)−E
[

ϕ(Yi1 , . . . , Yik )
k

∏
j=1

δmn(xj, Xij)

]}∣∣∣∣∣∣
=

(n− k)!
n!

∣∣∣∣∣∣ ∑
i∈I(k,n)

{
Gϕ,x(Xi, Yi)−E

[
Gϕ,x(Xi, Yi)

]}∣∣∣∣∣∣
=

(n− k)!
n!

∣∣∣∣∣∣ ∑
i∈I(k,n)

H(Xi, Yi)

∣∣∣∣∣∣,
where

H(X, Y) = Gϕ,x(X, Y)−E
[
Gϕ,x(X, Y)

]
.

In order to get the desired result, we apply Lemma A1 on the function H(·, ·). Throughout
the rest of the proof, we suppose the function Gϕ,x is symmetric. Moreover, it is clear that
the function H(·, ·) is bounded by 2MC1sm by condition (C.2) and the fact that the function
ϕ(·) is bounded by the condition (C.7). We obviously remark that,

θ = E[H(X, Y)] = 0
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by design, and

σ2 = Var(H(X, Y)) ≤ 2(MC1sm)
2.

For any η > 0 and m large enough, we obtain that

P
(
|un(ϕ, x, mn)−E[un(ϕ, x, mn)]| > η

√
sm log(m)

m

)

≤ 2 exp

[
− n((sm log(m))/m)η2

4(MC1sm)2 + 4
3 MC1smη

√
(sm log(m))/m

]
. (33)

We can write

P

 sup
x∈Sk

X

|un(ϕ, x; mn)−E[un(ϕ, x; mn)]| > 2η

√
sm log(m)

m


≤ P

 sup
x∈Sk

X

∣∣∣un(ϕ, x; mn)− un(ϕ, x`(x); mn)

+E[un(ϕ, x`(x); mn)]−E[un(ϕ, x; mn)]
∣∣∣ > η

√
sm log(m)

m

)
(34)

+P

 sup
x∈Sk

X

∣∣∣un(ϕ, x`(x); mn)−E[un(ϕ, x`(x); mn)]
∣∣∣ > η

√
sm log(m)

m

. (35)

Taking into account the condition (C.3), we have∣∣∣un(ϕ, x; mn)− un(ϕ, x`(x); mn)
∣∣∣

≤ (n− k)!
n! ∑

i∈I(k,n)

∣∣∣∣∣ϕ(Yi1 , . . . , Yik )

{
k

∏
j=1

δmn(xj, Xij)−
k

∏
j=1

δmn(x`(xj)
, Xij)

}∣∣∣∣∣
≤ M

(n− k)!
n! ∑

i∈I(k,n)

∣∣∣δmn(x, Xi)− δmn(x`(x), Xi)
∣∣∣

≤ M
(n− k)!

n! ∑
i∈I(k,n)

C2sβ2
m d(x, x`(x))

β1

≤ MC2sβ2
m d(x, x`(x))

β1

≤ MC2sβ2
m ε

β1
n .

Consequently, we obtain uniformly on x ∈ Sk
X :

sup
x∈Sk

X

∣∣∣un(ϕ, x; mn)− un(ϕ, x`(x); mn)
∣∣∣ ≤ O(sβ2

m ε
β1
n ) = O

(√
sm log(m)

m

)
, (36)

by condition (C.5). We deduce from (36) that:∣∣∣E[un(ϕ, x`(x); mn)]−E[un(ϕ, x; mn)]
∣∣∣

=
∣∣∣E[un(ϕ, x`(x); mn)− un(ϕ, x; mn)

]∣∣∣
≤ E

∣∣∣[un(ϕ, x`(x); mn)− un(ϕ, x; mn)
]∣∣∣. (37)
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The passage from (37) to (37) follows by applying Jensen’s inequality further to some
properties of the absolute value function. Now using the fact that the function ϕ(·) is
bounded and that the function δm is Lipschitz in addition for any constant a, E[a] = a, we
can directly conclude that

sup
x∈Sk

X

∣∣∣E[un(ϕ, x`(x); mn)]−E[un(ϕ, x; mn)]
∣∣∣ ≤ O

(
sβ2

m ε
β1
n

)
= O

(√
sm log(m)

m

)
.

For some η > 0 and for sufficiently large n and large m, we have

P

 sup
x∈Sk

X

∣∣∣un(ϕ, x; mn)− un(ϕ, x`(x); mn)

+E[un(ϕ, x`(x); mn)]−E[un(ϕ, x; mn)]
∣∣∣ > η

√
sm log(m)

m

)
= 0.

Continue, now, with (35), supposing that the kernel function Gϕ,x`(·) is symmetric, we have
to decompose the U-statistic by making use of the [8] decomposition, we infer that

un(ϕ, x`; mn)−E[un(ϕ, x`; mn)]

=
k

∑
p=1

k!
(k− p)!

u(p)
n

(
πp,k(Gϕ,x`,mn)

)
= ku(1)

n
(
π1,k(Gϕ,x`)

)
+

k

∑
p=2

k!
(k− p)!

u(p)
n

(
πp,k(Gϕ,x`)

)
. (38)

Let us first start with the linear term. We have

ku(1)
n
(
π1,k(Gϕ,x`)

)
=

k
n

n

∑
j=1

π1,k(Gϕ,x`)(Xi, Yi).

From Hoeffding’s projection, we have

π1,k(Gϕ,x`)(x, y)

=
{
E
[
Gϕ,x`((x, X2, . . . , Xk), (y, Y2, . . . , Yk))

]
−E[Gϕ,x`(X, Y)]

}
=

{
E[Gϕ,x`(X, Y)|(X1, Y1) = (x, y)]−E[Gϕ,x`(X, Y)]

}
.

Set
Zi = π1,k(Gϕ,x`)(Xi, Yi).

We can see that Zi are independent and identically distributed random variables bounded
by 2kMC1sm with zero mean and

σ2 ≤ (MC1sm)
2.

An application of Bernstein’s inequality yields

P

 sup
x∈Sk

X

∣∣∣u(1)
n
(
π1,k(Gϕ,x`)

)∣∣∣ > η

√
sm log(m)

m


≤

dn

∑
i=1

P
(

max
1≤`i≤dn

∣∣∣u(1)
n
(
π1,k(Gϕ,x`)

)∣∣∣ > η

√
sm log(m)

m

)

≤ 2dn exp

[
− n((sm log(m))/m)η2

4(MC1sm)2 + 4
3 MC1smη

√
(sm log(m))/m

]
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≤ nα−τη2/C4 ,

resulting from the fact m ≤ n and log(m) ≥ τ log(n). This implies that

∑
n≥1

P

 sup
x∈Sk

X

∣∣∣u(1)
n
(
π1,k(Gϕ,x`)

)∣∣∣ > η

√
sm log(m)

m


≤ ∑

n≥1
nα−τη2/C4 < ∞.

Consequently, we obtain the following:

sup
x∈Sk

X

∣∣∣u(1)
n
(
π1,k(Gϕ,x`)

)∣∣∣ = Oa.co

(√
sm log(m)

m

)
.

Moving to the nonlinear term, we want to prove that for 2 ≤ p ≤ k:

sup
x∈Sk

X

(
k
p

)√
m
∣∣∣u(p)

n

(
πp,kGϕ,x`(x)

)∣∣∣√
sm log(m)

= Oa.co(1),

which implies that, for 1 ≤ i ≤ k and ` = (`1, . . . , `k):

max
1≤`i≤dn

(
k
p

)√
m
∣∣∣u(p)

n

(
πp,kGϕ,x`(x)

)∣∣∣√
sm log(m)

= Oa.co(1).

To prove the above-mentioned equation, we need to apply Proposition 1 of [125] (see
Lemma A2). We can see that Gϕ,x` is bounded by MC1sm, hence for η > 0 we have

P
(

n1/2

∣∣∣∣∣ k

∑
p=2

k!
(k− p)!

u(p)
n

(
πp,k(Gϕ,x`)

)∣∣∣∣∣ > η

√
sm log(m)

m

)

= P
(∣∣∣∣∣ k

∑
p=2

k!
(k− p)!

u(p)
n

(
πp,k(Gϕ,x`)

)∣∣∣∣∣ > n−1/2η

√
sm log(m)

m

)

= P
(∣∣∣∣∣ k

∑
p=2

k!
(k− p)!

u(p)
n

(
πp,k(Gϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m

)
,

where ε0 =
η√
n

. Now for t = η

√
sm log(m)

m
, Lemma A2 gives us:

P
(∣∣∣∣∣ k

∑
p=2

k!
(k− p)!

u(p)
n

(
πp,k(Gϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m

)

≤ 2 exp

(
− t(n− 1)1/2

2k+2kk+1MC1sm

)

≤ 2 exp

(
−η
√

sm log(m)/m(n− 1)1/2

2k+2kk+1MC1sm

)

≤ 2 exp

(
−η
√

log(m)/m(n− 1)1/2

2k+2kk+1MC1
√

sm

)
.
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By the fact that m ≤ n and log(m) ≥ τ log(n), it follows that there exists η > 0 in such a
way that

P
(∣∣∣∣∣ k

∑
p=2

(
k
p

)
u(p)

n

(
πp,k(Gϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m

)
≤ n−τ/2C5 ,

where C5 = C′′2k+2kk+1MC1
√

sm with C′′ > 0. Therefore, for each ε0 > 0, 1 ≤ i ≤ k and
` = (`1, . . . , `k):

P

 sup
x∈Sk

X

∣∣∣∣∣ k

∑
p=2

(
k
p

)
u(p)

n

(
πp,k(Gϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m


≤ dn max

1≤`i≤dn
P
(∣∣∣∣∣ k

∑
p=2

(
k
p

)
u(p)

n

(
πp,k(Gϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m

)
≤ n−k(τ/2C5).

Consequently, we have

∑
n≥1

P

 sup
x∈Sk

X

∣∣∣∣∣ k

∑
p=2

(
k
p

)
u(p)

n

(
πp,k(Gϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m


≤ ∑

n≥1
nα−τ/2C5 → 0 as n→ 0.

Hence, the proof is achieved.

Proof of Theorem 2. We will need to truncate the conditional U-statistic to prove this
theorem. Taking the condition (C.7’) into account, for each λ > 0 and

ξn := ξmn =
mn

log mn
=:

m
log m

,

we have

Gϕ,x(x, y) = Gϕ,x(x, y)1{ϕ(y)≤λξ
1/q
n } + Gϕ,x(x, y)1{ϕ(y)>λξ

1/q
n }

=: G(T)
ϕ,x (x, y) + G(R)

ϕ,x (x, y),

which means that each function ϕ(·) is truncated as follows:

ϕ(y) = ϕ(y)1{
ϕ(y)≤λξ

1/q
n

} + ϕ(y)1{
ϕ(y)>λξ

1/q
n

}
= ϕ(T)(y) + ϕ(R)(y).

Notice that the G(T)
ϕ,x (x, y) denotes the truncated part and G(R)

ϕ,x (x, y) refers to the reminder
part. It is possible to write the U-statistic in the following way

un(ϕ, x, mn) = u(k)
n

(
G(T)

ϕ,x

)
+ u(k)

n

(
G(R)

ϕ,x

)
=: u(T)

n (ϕ, x, mn) + u(R)
n (ϕ, x, mn).

The first term of the right side u(T)
n (ϕ, x, mn), as usual, is called the truncated part and the

second one u(R)
n (ϕ, x, mn) is the remainder part. Let us investigate the term u(T)

n (ϕ, x, mn).
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7.1. Truncated Part

In a similar way as in the preceding proof, we infer∣∣∣u(T)
n (ϕ, x, mn)−E

(
u(T)

n (ϕ, x, mn)
)∣∣∣

=
(n− k)!

n!

∣∣∣∣∣∣ ∑
i∈I(k,n)

{
ϕ(T)(Yi1 , . . . , Yik )

k

∏
j=1

δmn(xj, Xij)

−E
[

ϕ(T)(Yi1 , . . . , Yik )
k

∏
j=1

δmn(xj, Xij)

]}∣∣∣∣∣
=

(n− k)!
n!

∣∣∣∣∣∣ ∑
i∈I(k,n)

{
G(T)

ϕ,x (Xi, Yi)−E
[

G(T)
ϕ,x (Xi, Yi)

]}∣∣∣∣∣∣
=

(n− k)!
n!

∣∣∣∣∣∣ ∑
i∈I(k,n)

H(T)(Xi, Yi)

∣∣∣∣∣∣,
where

H(T)(X, Y) = G(T)
ϕ,x (X, Y)−E

[
G(T)

ϕ,x (X, Y)
]
.

Similar to the proof of Theorem 1, we apply Lemma A1 on the function H(T)(·, ·). Through-
out the rest of the proof, we suppose that the function G(T)

ϕ,x is symmetric. Moreover, it is

clear that the function H(T)(·, ·) is bounded by 2λξ
1/q
n C1sm by condition (C.2). We obviously

remark that,
θ = E[H(T)(X, Y)] = 0

by design, and

σ2 = Var(H(T)(X, Y)) ≤ 2(λξ
1/q
n C1sm)

2.

For any η > 0 and m large enough, we obtain that

P
(∣∣∣u(T)

n (ϕ, x, mn)−E
(

u(T)
n (ϕ, x, mn)

)∣∣∣ > η

√
sm log(m)

m

)

≤ 2 exp

[
− n((sm log(m))/m)η2

4(λξ
1/q
n C1sm)2 + 4

3 λξ
1/q
n C1smη

√
(sm log(m))/m

]
.

We can write

P

 sup
x∈Sk

X

∣∣∣u(T)
n (ϕ, x, mn)−E

(
u(T)

n (ϕ, x, mn)
)∣∣∣ > 2η

√
sm log(m)

m


≤ P

 sup
x∈Sk

X

∣∣∣u(T)
n (ϕ, x; mn)− u(T)

n (ϕ, x`(x); mn)

+E[u(T)
n (ϕ, x`(x); mn)]−E[u(T)

n (ϕ, x; mn)]
∣∣∣ > η

√
sm log(m)

m

)

+P

 sup
x∈Sk

X

∣∣∣u(T)
n (ϕ, x`(x); mn)−E[u(T)

n (ϕ, x`(x); mn)]
∣∣∣ > η

√
sm log(m)

m

. (39)
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Notice that∣∣∣u(T)
n (ϕ, x; mn)− u(T)

n (ϕ, x`(x); mn)
∣∣∣

≤ (n− k)!
n! ∑

i∈I(k,n)

∣∣∣∣∣ϕ(T)(Yi1 , . . . , Yik )

{
k

∏
j=1

δmn(xj, Xij)−
k

∏
j=1

δmn(x`(xj)
, Xij)

}∣∣∣∣∣
≤ (n− k)!

n! ∑
i∈I(k,n)

∣∣∣ϕ(T)(Yi1 , . . . , Yik )
∣∣∣∣∣∣δmn(x, Xi)− δmn(x`(x), Xi)

∣∣∣
≤ (n− k)!

n! ∑
i∈I(k,n)

C2sβ2
m d(x, x`(x))

β1
∣∣∣ϕ(T)(Yi1 , . . . , Yik )

∣∣∣
≤ (n− k)!

n! ∑
i∈I(k,n)

C2sβ2
m ε

β1
n

∣∣∣ϕ(T)(Yi1 , . . . , Yik )
∣∣∣

≤ (n− k)!
n! ∑

i∈I(k,n)

1
n

n

∑
j=1

C2sβ2
m ε

β1
n

∣∣∣ϕ(T)(Yi1 , . . . , Yik )
∣∣∣

≤ (n− k)!
n! ∑

i∈I(k,n)

1
n

n

∑
j=1

Wj,T ,

where for 1 ≤ j ≤ n,
Wj,T := C2sβ2

m ε
β1
n

∣∣∣ϕ(T)(Y1, . . . , Yk)
∣∣∣,

and we can write

E
[
Wj,T

]
= C2sβ2

m ε
β1
n E
[∣∣∣ϕ(T)(Y1, . . . , Yk)

∣∣∣]
= C2sβ2

m ε
β1
n E
[
E
[

ϕ(T)(Y1, . . . , Yk) | X = x
]]

,

which means that for 2 ≤ ν ≤ q:

sup
x∈Sk

X

E
[
Wj,T

]ν
= sup

x∈Sk
X

(
C2sβ2

m ε
β1
n

)ν
E
[
E
[

ϕ(T)(Yi1 , . . . , Yik ) | X = x
]]ν

(40)

≤
(

C2sβ2
m ε

β1
n

)ν
(λξn)

ν/qµ
ν/q
q (41)

≤ Cν
2

(
sm log m

m

)ν/2
(λξn)

ν/qµ
ν/q
q (42)

≤ Cν
2 λν/q(ξn)

ν/q−ν/2(sm)
1−ν/2µ

ν/q
q (sm)

ν−1

≤ Cs(ν−1)
m .

The passage from (40) to (41) is possible by the use of the Jensen’s inequality for the concave
function za, for 0 < a ≤ 1, while (42) is by condition (C.5). Then, for ν ≥ 2

sup
x∈Sk

X

E
[
Wj,T

]ν ≤ Cs(ν−1)
m ,

where C > 0. Then, an application of classical inequality (see Corollary A.8-(ii) [48]) with
Zi := Wj,T and a2

n = sm, which gives us

um = a2
n ln(m)m−1 = sm ln(m)m−1,
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and it is clear that um → 0 with m by condition (C.2). Consequently, we obtain uniformly
on x ∈ Sk

X :

sup
x∈Sk

X

∣∣∣u(T)
n (ϕ, x; mn)− u(T)

n (ϕ, x`(x); mn)
∣∣∣ = Oa.co

(√
sm log(m)

m

)
. (43)

Now, we obtain from (43) that:∣∣∣E[u(T)
n (ϕ, x`(x); mn)]−E[u(T)

n (ϕ, x; mn)]
∣∣∣

=
∣∣∣E[u(T)

n (ϕ, x`(x); mn)− u(T)
n (ϕ, x; mn)

]∣∣∣ (44)

≤ E
∣∣∣[u(T)

n (ϕ, x`(x); mn)− u(T)
n (ϕ, x; mn)

]∣∣∣. (45)

Similar to the bounded case, the transition from (44) to (45) is due to Jensen’s inequality
and some properties of the absolute value function. Furthermore, using the fact that for
any constant a, E[a] = a, we can directly conclude that

sup
x∈Sk

X

∣∣∣E[un(ϕ, x`(x); mn)]−E[un(ϕ, x; mn)]
∣∣∣ = Oa.co

(√
sm log(m)

m

)
.

For sufficiently large n and large m, we infer that, for some η > 0,

P

 sup
x∈Sk

X

∣∣∣un(ϕ, x; mn)− un(ϕ, x`(x); mn)

+E[un(ϕ, x`(x); mn)]−E[un(ϕ, x; mn)]
∣∣∣ > η

√
sm log(m)

m

)
= 0.

Continue, now, with (39), by imposing that the kernel function G(T)
ϕ,x`(·) is symmetric,

the U-statistic is decomposed according to [8] decomposition, that is

u(T)
n (ϕ, x`; mn)−E[u(T)

n (ϕ, x`; mn)]

=
k

∑
p=1

k!
(k− p)!

u(p)
n

(
πp,k(G

(T)
ϕ,x`,mn)

)
= ku(1)

n

(
π1,k(G

(T)
ϕ,x`)

)
+

k

∑
p=2

k!
(k− p)!

u(p)
n

(
πp,k(G

(T)
ϕ,x`)

)
. (46)

Let us first start with the linear term. We have

ku(1)
n

(
π1,k(G

(T)
ϕ,x`)

)
=

k
n

n

∑
j=1

π1,k(G
(T)
ϕ,x`)(Xi, Yi).

From Hoeffding’s projection, we have

π1,k(G
(T)
ϕ,x`)(x, y) =

{
E
[

G(T)
ϕ,x`((x, X2, . . . , Xk), (y, Y2, . . . , Yk))

]
−E[G(T)

ϕ,x`(X, Y)]
}

=
{
E[G(T)

ϕ,x`(X, Y)|(X1, Y1) = (x, y)]−E[G(T)
ϕ,x`(X, Y)]

}
.

Set
Z(T)

i = π1,k(G
(T)
ϕ,x`)(Xi, Yi).



Mathematics 2023, 11, 161 29 of 39

We can clearly observe that Z(T)
i are independent and identically distributed random

variables bounded by 2kλξ
1/q
n C1sm with zero mean and

σ2 ≤ (λξ
1/q
n C1sm)

2.

An application of Bernstein’s inequality yields

P

 sup
x∈Sk

X

∣∣∣u(1)
n

(
π1,k(G

(T)
ϕ,x`)

)∣∣∣ > η

√
sm log(m)

m


≤

dn

∑
i=1

P
(

max
1≤`i≤dn

∣∣∣u(1)
n

(
π1,k(G

(T)
ϕ,x`)

)∣∣∣ > η

√
sm log(m)

m

)

≤ 2dn exp

[
− n((sm log(m))/m)η2

4(λξ
1/q
n C1sm)2 + 4

3 λξ
1/q
n C1smη

√
(sm log(m))/m

]
≤ nα−τη2/C′4 ,

for some positive constant C′4, resulting from the fact m ≤ n and log(m) ≥ τ log(n). This
implies that

∑
n≥1

P

 sup
x∈Sk

X

∣∣∣u(1)
n

(
π1,k(G

(T)
ϕ,x`)

)∣∣∣ > η

√
sm log(m)

m


≤ ∑

n≥1
nα−τη2/C′4 < ∞.

Consequently, we obtain:

sup
x∈Sk

X

∣∣∣u(1)
n

(
π1,k(G

(T)
ϕ,x`)

)∣∣∣ = Oa.co

(√
sm log(m)

m

)
.

Moving to the nonlinear term, we want to prove that for 2 ≤ p ≤ k:

sup
x∈Sk

X

(
k
p

)√
m
∣∣∣u(p)

n

(
πp,kG(T)

ϕ,x`(x)

)∣∣∣√
sm log(m)

= Oa.co(1),

which implies that, for 1 ≤ i ≤ k and ` = (`1, . . . , `k):

max
1≤`i≤dn

(
k
p

)√
m
∣∣∣u(p)

n

(
πp,kG(T)

ϕ,x`(x)

)∣∣∣√
sm log(m)

= Oa.co(1).

To prove the above-mentioned equation, we need to apply Proposition 1 of [125] (see
Lemma A2). We can observe that G(T)

ϕ,x` is bounded by C1smλξ
1/q
n , hence for η > 0 we have

P
(

n1/2

∣∣∣∣∣ k

∑
p=2

k!
(k− p)!

u(p)
n

(
πp,k(G

(T)
ϕ,x`)

)∣∣∣∣∣ > η

√
sm log(m)

m

)

= P
(∣∣∣∣∣ k

∑
p=2

k!
(k− p)!

u(p)
n

(
πp,k(G

(T)
ϕ,x`)

)∣∣∣∣∣ > n−1/2η

√
sm log(m)

m

)

= P
(∣∣∣∣∣ k

∑
p=2

k!
(k− p)!

u(p)
n

(
πp,k(G

(T)
ϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m

)
,



Mathematics 2023, 11, 161 30 of 39

where ε0 =
η√
n

. Now for t = η

√
sm log(m)

m
, Lemma A2 gives us:

P
(∣∣∣∣∣ k

∑
p=2

k!
(k− p)!

u(p)
n

(
πp,k(G

(T)
ϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m

)

≤ 2 exp

(
− t(n− 1)1/2

2k+2kk+1λξ
1/q
n C1sm

)

≤ 2 exp

(
−η
√

sm log(m)/m(n− 1)1/2

2k+2kk+1λξ
1/q
n C1sm

)

≤ 2 exp

(
−η
√

log(m)/m(n− 1)1/2

2k+2kk+1λξ
1/q
n C1

√
sm

)
.

By the fact that m ≤ n and log(m) ≥ τ log(n), it follows that there exists η > 0 in such a
way that

P
(∣∣∣∣∣ k

∑
p=2

(
k
p

)
u(p)

n

(
πp,k(G

(T)
ϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m

)
≤ n−τ/2C6 ,

where
C6 = C′′2k+2kk+1λξ

1/q
n C1

√
sm,

with C′′ > 0. Therefore, for each ε0 > 0, 1 ≤ i ≤ k and ` = (`1, . . . , `k):

P

 sup
x∈Sk

X

∣∣∣∣∣ k

∑
p=2

(
k
p

)
u(p)

n

(
πp,k(G

(T)
ϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m


≤ dn max

1≤`i≤dn
P
(∣∣∣∣∣ k

∑
p=2

(
k
p

)
u(p)

n

(
πp,k(G

(T)
ϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m

)
≤ n−k(τ/2C6).

Consequently, we have

∑
n≥1

P

 sup
x∈Sk

X

∣∣∣∣∣ k

∑
p=2

(
k
p

)
u(p)

n

(
πp,k(G

(T)
ϕ,x`)

)∣∣∣∣∣ > ε0

√
sm log(m)

m


≤ ∑

n≥1
nα−τ/2C6 → 0 as n→ 0.

7.2. Remainder Part

We now consider the remainder part, which is the U-process u(R)
n (ϕ, x, mn) related on

the unbounded kernel given by:

G(R)
ϕ,x (x, y) = Gϕ,x(x, y)1{ϕ(y)>λξ

1/q
n }

We have establish that the process is negligible, meaning that

sup
x∈Sk

X

√
m
∣∣∣u(k)

n (G(R)
ϕ,x )−E

(
u(k)

n

(
G(R)

ϕ,x

))∣∣∣√
sm log(m)

= oa.co(1). (47)
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Observe that for x, y ∈ X k, ∣∣Gϕ,x
∣∣ = |ϕ(y)δm(x, y)|
≤ C1sm|ϕ(y)| =: F̃(y).

Taking into account that F̃ is symmetric, we have:∣∣∣u(k)
n

(
G(R)

ϕ,x

)∣∣∣ ≤ u(k)
n

(
F̃1{F̃>λξ

1/q
n }

)
,

where u(k)
n

(
F̃(y)1{ϕ(y)>λξ

1/q
n }

)
is a U-statistic based on the U-kernel F̃1{ϕ>λξ

1/q
n } :

sup
x∈Sk

X

√
m
∣∣∣u(k)

n (G(R)
ϕ,x )

∣∣∣√
sm log(m)

≤ (s−1
m ξn)

1/2u(k)
n

(
F̃1{F̃>λξ

1/q
n }

)
(48)

≤ C7ξnu(k)
n

(
F̃1{F̃>λξ

1/q
n }

)
, (49)

and

sup
x∈Sk

X

√
m
∣∣∣E(u(k)

n

(
G(R)

ϕ,x

))∣∣∣√
sm log(m)

≤ C7ξnE
(

u(k)
n

(
F̃1{ϕ(Y)>λξ

1/q
n }

))
≤ C7E

(
F̃1+q1{ϕ(Y)>λξ

1/q
n }

)
.

Therefore, as m −→ ∞ when n −→ ∞, we have

sup
x∈Sk

X

√
m
∣∣∣E(u(k)

n

(
G(R)

ϕ,x

))∣∣∣√
sm log(m)

= o(1). (50)

Hence to achieve the proof, it remains to establish that:

u(k)
n

(
F̃1{ϕ(y)>λξ

1/q
n }

)
= oa.co

((
s−1

m ξn

)−1/2
)

. (51)

An application of the Chebyshev’s inequality, for any η > 0, gives

P
{∣∣∣u(k)

n

(
F̃1{ϕ(Y)>λξ

1/q
n }

)
−E

(
u(k)

n

(
F̃1{ϕ(Y)>λξ

1/q
n }

))∣∣∣ ≥ η(s−1
m ξn)

−1/2
}

≤ η−2(s−1
m ξn)Var

(
u(k)

n

(
F̃1{ϕ(Y)>λξ

1/q
n }

))
≤ kη−2ξnE

(
F̃21{ϕ(Y)>λξ

1/q
n }

)
≤ k

n2 η−2(ξn)
qE
(

F̃21{ϕ(Y)>λξ
1/q
n }

)
≤ η′E

(
F̃31{ϕ(Y)>λξ

1/q
n }

) 1
n2 ,

so by using the fact that

η′E
(

F̃31{ϕ(y)>λξ
1/q
n }

)
∑
n≥1

1
n2 < ∞,

we deduce that

∑
n≥1

P
{∣∣∣u(k)

n

(
F̃1{ϕ(y)>λξ

1/q
n }

)
−E

(
u(k)

n

(
F̃1{ϕ(y)>λξ

1/q
n }

))∣∣∣ ≥ η(mξn)
−1/2

}
< ∞.
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Finally, note that (48) implies

E
(

u(k)
n

(
F̃1{ϕ(y)>λξ

1/q
n }

))
= o

((
s−1

m ξn

)−1/2
)

.

The preceding results of the arbitrary choice of λ > 0 gives that (51) holds, which, by com-
bining with (50) and (48), completes the proof of (47). We finally obtain

sup
x∈Sk

X

|un(ϕ, x, mn)−E(un(ϕ, x, mn))| = Oa.co

(√
sm log(m)

m

)
.

Hence, the proof is complete.

Proof of Theorem 3. The conclusion of Theorem 3 can be obtained from the results of
Theorems 1 and 2. We have∣∣∣r̂(k)n (ϕ, x; mn)− Ê

(
r̂(k)n (ϕ, x; mn)

)∣∣∣
=

∣∣∣∣un(ϕ, x; mn)

un(1, x; mn)
− E(un(ϕ, x; mn))

E(un(1, x; mn))

∣∣∣∣
≤ |un(ϕ, x; mn)−E(un(ϕ, x; mn))|

|un(1, x; mn)|

+
|E(un(ϕ, x; mn))| · |un(1, x; mn)−E(un(1, x; mn))|

|un(1, x; mn)| · |E(un(1, x; mn))|
=: I1 +I2.

Notice that, given the imposed hypothesis and previously obtained results, and for some
c1, c2, we obtain:

sup
x∈Sk

X

|un(1, x, mn)| = c1 a.co,

sup
x∈Sk

X

|E(un(1, x, mn))| = c2,

sup
x∈Sm

X

|E(un(ϕ, x, mn))| = O(1).

Hence now, depending on whether the function ϕ(·) is bounded or unbounded, we can
apply Theorem 1 or Theorem 2 (respectively) to handle both I1 and I2, and get for some
c′′ > 0 with probability 1:

sup
x∈Sk

X

√
m
∣∣∣(r̂(k)n (ϕ, x; mn)

)
− Ê

(
r̂(k)n (ϕ, x; mn)

)∣∣∣√
sm log(m)

≤ sup
x∈Sk

X

√
m(I1)√

sm log(m)
+ sup

x∈Sk
X

√
m(I2)√

sm log(m)

≤ c′′.

Hence, the proof is complete.

Proof of Theorem 4. Let γ > 0 and x ∈ Sk
X . We have

Ê
(

r̂(k)n (ϕ, x; mn)
)
− r(k)(ϕ, x) =

E[un(ϕ, x, mn)]

E[un(1, x, mn)]
− r(k)(ϕ, x).
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Notice that

Ê
(

r̂(k)n (ϕ, x; mn)
)

=
1

E[δm(x, X)]
E
[

ϕ(Y1, . . . , Yk)
k

∏
j=1

δmn(xj, Xj)

]

=
1

E[δm(x, X)]

∫
X k

r(k)(ϕ, t)δm(x, t) f̃ (t)µ(dt),

where for t = (t1, . . . , tk) we denote µ(dt) := µ(dt1) · · · µ(dtk), and

f̃ (t) :=
k

∏
j=1

f (tj).

Which means that

Ê
(

r̂(k)n (ϕ, x; mn)
)
− r(k)(ϕ, x)

=
1

E[δm(x, X)]

(∫
X k

r(k)(ϕ, t)δm(x, t) f̃ (t)µ(dt)− r(k)(ϕ, x)
∫
X k

δm(x, t) f̃ (t)µ(dt)
)

=
1

E[δm(x, X)]

(∫
X k

(
r(k)(ϕ, t)− r(k)(ϕ, x)

)
δm(x, t) f̃ (t)µ(dt)

)
:= I1(x) + I2(x),

where
I1(x) :=

1
E[δm(x, X)]

∫
B(x,γ)

(
r(k)(ϕ, t)− r(k)(ϕ, x)

)
δm(x, t) f̃ (t)µ(dt), (52)

and
I2(x) :=

1
E[δm(x, X)]

∫
B̄(x,γ)

(
r(k)(ϕ, t)− r(k)(ϕ, x)

)
δm(x, t) f̃ (t)µ(dt). (53)

Therefore, we need to study the asymptotic behavior of both sup
x∈Sk

X

(I1(x)) and sup
x∈Sk

X

(I2(x))

to obtain the desired result.
Let us start with the term sup

x∈Sk
X

(I1(x)), we have

sup
x∈Sk

X

|I1(x)|

= sup
x∈Sk

X

∣∣∣∣ 1
E[δm(x, X)]

∫
B(x,γ)

(
r(k)(ϕ, t)− r(k)(ϕ, x)

)
δm(x, t) f̃ (t)µ(dt)

∣∣∣∣
≤ 1

E[δm(x, X)]
sup
x∈Sk

X

∫
B(x,γ)

∣∣∣(r(k)(ϕ, t)− r(k)(ϕ, x)
)

δm(x, t) f̃ (t)
∣∣∣µ(dt),

taking into account the fact that the density function f (·) is bounded, and by condition
(C.9), we get:

sup
x∈Sk

X

|I1(x)|

≤
C f

E[δm(x, X)]
sup
x∈Sk

X

∫
B(x,γ)

C3d(x, t)δm(x, t)µ(dt)

≤
C f C3γ

E[δm(x, X)]
sup
x∈Sk

X

∫
B(x,γ)

δm(x, t)µ(dt), (54)
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hence, the term in (54) can be chosen smaller than 2ε as m→ ∞ by using the condition (8) .
To investigate the term sup

x∈Sk
X

(I2(x)), notice that

sup
x∈Sk

X

|I2(x)|

= sup
x∈Sk

X

∣∣∣∣ 1
E[δm(x, X)]

∫
B̄(x,γ)

(
r(k)(ϕ, t)− r(k)(ϕ, x)

)
δm(x, t) f̃ (t)µ(dt)

∣∣∣∣
≤

C f C3

E[δm(x, X)]
sup
x∈Sk

X

∫
B̄(x,γ)

d(x, t)δm(x, t)µ(dt). (55)

By condition (11), we conclude that

sup
x∈Sk

X

|I2(x)| → 0 as m→ ∞.

This concludes the proof of the Theorem.

Proof of Theorem 5. Following the same steps as the proof of Theorem 4, we can write
directly:

Ê
(

r̂(k)n (ϕ, x; mn)
)
− r(k)(ϕ, x)

=
1

E[δm(x, X)]

(∫
X k

(
r(k)(ϕ, t)− r(k)(ϕ, x)

)
δm(x, t) f̃ (t)µ(dt)

)
.

Taking into account conditions (C.8), we can easily deduce that

sup
x∈Sk

X

∣∣∣∣ 1
E[δm(x, X)]

(∫
X k

(
r(k)(ϕ, t)− r(k)(ϕ, x)

)
δm(x, t) f̃ (t)µ(dt)

)∣∣∣∣
≤ sup

x∈Sk
X

|I1(x)|+ |I2(x)|,

where I1(x) and I2(x) are defined in (52) and (53), respectively. Presently, Equation (54)
gives us

sup
x∈Sk

X

|I1(x)|

≤
C f

E[δm(x, X)]
sup
x∈Sk

X

∫
B(x,γ)

C3d(x, t)δm(x, t)µ(dt)

≤
C f C3Dm

E[δm(x, X)]
sup
x∈Sk

X

∫
B(x,γ)

δm(x, t)µ(dt)

≤ O(Dm),

by conditions (C.8) and (C.1). On the other hand, Equation (55) gives us:

sup
x∈Sk

X

|I2(x)|

≤
C f C3

E[δm(x, X)]
sup
x∈Sk

X

∫
B̄(x,γ)

d(x, t)δm(x, t)µ(dt)

≤
C f C3Dm

E[δm(x, X)]
sup
x∈Sk

X

∫
B̄(x,γ)

δm(x, t)µ(dt)
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≤ O(Dm),

by condition (C.8). This completes the proof of the theorem.
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Appendix A

Lemma A1 (Theorem A. page 201 [126]). Let f denote a symmetric X k-valued function fullfill-
ing ‖ f ‖∞ ≤ c,

E f (X1, . . . , Xk) = θ,

and
σ2 = Var( f (X1, . . . , Xk)),

then for t > 0 and n ≥ k, we infer:

P
{
|u(k)

n ( f )− θ| ≥ t
}
≤ exp

{
− [n/k]t2

2σ2 − 2
3 ct

}
.

Lemma A2 (Proposition 1 [125]). If G : Sk → R is a measurable symmetric function with
‖G‖∞ = b then

P
{

n1/2

∣∣∣∣∣ k

∑
j=2

(
k
j

)
u(j)

n

(
πj,kG

)∣∣∣∣∣ > t

}
6 2 exp

(
− t(n− 1)1/2

2k+2kk+1b

)
.

Definition A1. A symmetric and Pm-integrable kernel f : X k → R is P-degenerate of order r− 1,
notationally f ∈ Lr

2

(
Pk
)

, if and only if

∫
f (x1, . . . , xk)dPk−r+1(xr, . . . , xm) =

∫
f dPk

holds for any x1, . . . , xr−1 ∈ X , and

(x1, . . . , xr) 7→
∫

f (x1, . . . , xk)dPk−r(xr+1, . . . , xm)

is not a constant function.
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