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1. Introduction

The monographs of Ahmad et al. [1], Diethelm [2], Lakshmikantham and Vatsala [3],
Miller and Ross [4], Podlubny [5], and Zhou [6,7] present several approaches to the subject
of fractional calculus. On the other hand, differential equations with arbitrary order
derivatives are presented as an extension of fractional differential equations. They are often
used to explain the behavior of phase evolution and temporal interactions in a variety of
applied sciences domains; for a list of references, see [8–19].

As far as we know, the concept of controllability is a vital qualitative and quantitative
characterization of the control system, whereas the controllability feature is significant in a
variety of control problems in both limited and unlimited systems. The controllability of a
fractional wave equation has recently gained a lot of attention in this research. Using the
Mönch fixed-point approach and measures of noncompactness (MNC), the investigator’s
Wang and Zhou [20] recently discovered a few requirements providing the complete control-
lability of fractional evolution systems (FES) without assuming the adaptability of specific
response technicians. Wang et al. [21] identified two essential requirements for nonlocal
controllability in a fractional evolution system. For certain weak noncompactness criteria,
these theorems ensure that the controllability findings will work as intended. Ji et al. [22]
deduced the nonlocal controllability of an impulsive differential evolution system using
the Mönch fixed-point theorem via the measures of noncompactness. Numerous writers
have made important contributions to the exact and approximate controllability of various
nonlinear dynamical systems with or without delays. In [22–24], researchers developed a
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new set of necessary requirements for the exact controllability of differential systems. For a
summary of recent studies on the existence and controllability of the differential system
with the fractional number 1 < α < 2, see [12,25].

Stochastic models should be examined instead of deterministic ones since noise and
uncontrolled fluctuations are common and inherent in both natural and artificial systems.
Unpredictability is reflected in the mathematical depiction of some events in stochastic
differential equations. The use of stochastic differential equations (SDEs) to describe
various phenomena in population dynamics, physics, electrical engineering, geography,
psychology, biochemistry, and some other fields of physics and technology has recently
attracted a lot of interest. SDEs can be applied in both finite and infinite dimensions. See,
for example, [9,26–28] for a thorough introduction to stochastic differential equations and
their applications.

Researchers employed almost sectorial operators to advance the fractional existence
of fractional calculus. A new method was developed to find a mild solution for the system
under investigation. Additionally, researchers developed a theory to analyze different
attributes of connected semigroups produced by almost sectorial operators applying semi-
groups, fractional calculus, MNC, Wright-type functions, multivalued analysis, Laplace
transforms, and a fixed-point approach. For further details, see [24,29–33].

Another sort of fractional derivative, including the R-L and Caputo fractional deriva-
tives, was given by Hilfer [34]. Currently, investigators place a high value on Hilfer
fractional differential calculus. Recently, many academics have shown considerable interest
in this area, which has inspired work in [35–40]. The researchers in [41–43] employed
Schauder’s fixed-point theorem to obtain their results via almost sectorial operators. The
author used the Mönch fixed-point principle via the MNC to establish their conclusions
in [21,22,44,45]. The Darbo–Sadovskii fixed-point approach via MNC was used by the
authors to construct the concepts of differential systems [46,47]. Further, [48] investigated
whether there is a mild solution for HF differential systems using almost sectorial operators.
Inspired by the above article, we have developed the nonlocal controllability of the Hilfer
fractional (HF) stochastic differential equations via almost sectorial operators by using
the Darbo–Sadovskii fixed-point theorem via measures of noncompactness. However,
to the best of our knowledge and investigation, no research has been conducted on this
research problem.

In this article, researchers describe their latest finding on the nonlocal controllability
of the HF stochastic differential equations via almost sectorial operators of the form

Dγ,δ
0+ x(t) = Ax(t) + Bu(t) + G

(
t, x(t)

)dW(t)
dt

, t ∈ V′ = (0, c], (1)

I(1−γ)(1−δ)
0+

[
x(0) + N(x)

]
= x0, (2)

where A is an almost sectorial operator that represents an analytic semigroup {T(t), t ≥ 0}
on Z. Dγ,δ

0+ denotes the Hilfer fractional derivative (HFD) of order γ, 0 < γ < 1 and type
δ, 0 ≤ δ ≤ 1. Let x(·) be the state in a Hilbert space Z with ‖ · ‖ and u(·) be the control
function in L2(V, U), where U is the Hilbert space. Here, B : U → Z is the bounded linear
operator. Set V = [0, c], and let G : V × Z → Z be the Z-valued function, and the nonlocal
term is given by N : C(V, Z)→ Z.

The article’s framework may be divided into the following categories: In Section 2,
researchers propose the fundamental characteristics of fractional calculus, semigroups,
almost sectorial operators, and measures of non-compactness. The authors describe the sys-
tem’s nonlocal controllability in Section 3. Finally, in Section 4, the authors give theoretical
and practical implementations to make the conversation as successful as possible.

2. Preliminaries

In this chapter, we discuss fundamental definitions, theorems, and lemmas that are
utilized throughout the whole work.
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The two real Hilbert spaces are represented by the symbols (Z, ‖ · ‖) and (U, ‖ · ‖).
Let (Ω, E , P) be a complete probability space associated with a complete family of right
continuous growing sub σ-algebra {Et : t ∈ V} such that Et ⊂ E . Let W = (Wt)t≥0 be a Q-
Wiener process defined on (Ω, E , P) with the covariance operator Q such that Tr(Q) < ∞.
Then, we claim that a complete orthonormal system ek, k ≥ 1 exists in U, a finite sequence
of positive real integers χk such that Qek = χkek, k = 1, 2, · · · and {βk} of independent
Brownian motion such that

(
W(t), e

)
U =

∞

∑
k=1

√
χk(ek, e)βk(t), e ∈ U t ≥ 0.

Assume that the space of all Q-Hilbert-Schmidt operators ϕ : Q
1
2 U → Z with the

scalar product ‖ϕ‖2
Q = 〈ϕ, ϕ〉 = Tr(ϕQϕ) is represented by the notation L0

2 = L2
(
Q

1
2 U, Z

)
.

Consider the resolvent operator of A, 0 ∈ ρ(A), where S(·) is uniformly bounded, that is,
‖S(t)‖ ≤ M, M ≥ 1, and t ≥ 0. The fractional power operator Aη on its domain D(Aη)
may therefore be derived for η ∈ (0, 1]. Furthermore, D(Aη) is dense in Z.

The following important properties of Aη will be discussed as follows.

Theorem 1.

1. Suppose 0 < η ≤ 1, then Zη = D(Aη) is a Banach space with ‖x‖η = ‖Aη x‖, x ∈ Zχ.
2. Assume that 0 < γ < η ≤ 1, then D(Aη) → D(Aγ), A is compact and the embedding is

also compact.
3. For all 0 < η ≤ 1, Cη > 0 exists such that

‖AηS(t)‖ ≤
Cη

tη , 0 < t ≤ c.

The set of all strongly continuous, square-integrable, Z-valued random variables,

denoted by L2(Ω, Z), is a Banach space associated with ‖x(·)‖L2(Ω,Z) =
(
E‖x(., W)‖2) 1

2 ,
where E is defined as E(x) =

∫
Ω x(W)dP. A necessary subspace of L2(Ω, Z) is given by

L0
2(s, Z) = {x ∈ L2(Ω, Z), x is E0 −measurable}.

Let C(V, Z) = { be the set of all continuous functions from V to Z, where V = [0, c] and
V′ = (0, c] with c > 0. Let the Banach space X =

{
x ∈ C(V′, Z) : limt→0 t1−δ+γδ−γϑx(t)

}
exist and be finite and its ‖ · ‖X be denoted by ‖x‖X = supt∈V′

{
t1−δ+γδ−γϑ‖x(t)‖

}
. Set

BP(V) = {u ∈ { such that ‖u‖ ≤ P}. Let x(t) = t−1+δ−γδ+γϑZ(t), t ∈ (0, c] be noted.
Consequently, x ∈ X if and only if Z ∈ { and ‖x‖X = ‖y‖.

Definition 1 ([31]). For 0 < ϑ < 1, 0 < ω < π
2 , we denote the family of closed linear operators

Θ−ϑ
ω , the sector Sω = {v ∈ C\{0} with | arg v| ≤ ω} and A : D(A) ⊂ Z → Z that satisfies

(i) σ(A) ⊆ Sω;
(ii)

∥∥(vI − A)−1
∥∥ ≤ Kδ|v|−ϑ, for all ω < δ < π and let Kδ be a constant,

then A ∈ Θ−ϑ
ω is called an almost sectorial operator on Z.

Proposition 1 ([31]). Suppose x ∈ Θ−ϑ
ω for 0 < ϑ < 1 and 0 < ω < π

2 . Then, the following are
satisfied:

(a) T(t + s) = T(t)T(s), for all s, t ∈ S π
2 −ω;

(b) ‖T(t)‖L(Z) ≤ κ0tϑ−1, t > 0; where the constant κ0 > 0;
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(c) The range R(T(t)) of T(t), t ∈ S0
π
2 −ω

is contained in D(A∞). Particularly, R(T(t)) ⊂
D(Aθ) for all θ ∈ C with Re(θ) > 0

AθT(t)x =
1

2πi

∫
Γδ

vθe−tvR(v; A)xdz, for all x ∈ Z,

and hence there exists a constant C′ = C′(γ, θ) > 0 such that

‖AθT(t)‖L(Z) ≤ C′t−γ−Re(θ)−1, for all t > 0;

(d) Suppose that ΣT = {x ∈ Z : limt→0+ T(t)x = x}, then D(Aθ) ⊂ ΣT provided θ > 1− ϑ;
(e) (vI − A)−1 =

∫ ∞
0 e−vsT(s)ds, v ∈ C and Re(v) > 0.

Definition 2 ([6]). For the function G : [c, ∞)→ R with lower limit c, the R-L fractional integral
of order γ is provided by

Iγ
c+G(t) =

1
Γ(γ)

∫ t

c

G(s)
(t− s)1−γ

ds, t > 0; γ ∈ R+.

Definition 3 ([6]). The R-L derivative of order γ > 0, k− 1 ≤ γ < k, k ∈ N, of the function
G : [c,+∞)→ R is presented by

RLDγ
c+G(t) =

1
Γ(k− γ)

dk

dtk

∫ t

c

G(s)
(t− s)γ+1−k ds, t > c, s ∈ R+.

Definition 4 ([6]). The Caputo derivative of order γ > 0, k− 1 ≤ γ < k, k ∈ N for a function
G : [c,+∞)→ R is denoted by

CDγ
c+G(t) =

1
Γ(k− γ)

∫ t

c

Gk(s)
(t− s)γ+1−k ds = Ik−γ

c+ Gk(t), t > c, s ∈ R+.

Definition 5 ([34]). The HFD of order 0 < γ < 1 and type δ ∈ [0, 1] for the function G :
[c,+∞)→ R is presented by

Dγ,δ
c+ G(t) = [I(1−γ)δ

c+ D(I(1−γ)(1−δ)
c+ G)](t).

Definition 6 ([48]). Define the Wright function Mγ(β) by

Mγ(β) = ∑
k∈N

(−β)k−1

Γ(1− γk)(k− 1)!
, β ∈ C, (3)

such that ∫ ∞

0
θι Mγ(θ)dθ =

Γ(1 + ι)

Γ(1 + γι)
, for ι ≥ 0.

Theorem 2 ([6]). In the uniform operator topology, Sγ,δ(t) and Qγ(t) are continuous, for t > 0,
for every c > 0, and the continuity is uniform on [c, ∞).

Lemma 1 ([48]). If {Tγ(t)}t>0 is a compact operator, then {Sγ,δ(t)} and {Qγ(t)}t>0 are also
compact linear operators.

Lemma 2 ([48]). Assume that {Tγ(t)}t>0 is a compact operator. Then, {Tγ(t)}t>0 is equicontin-
uous.
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Lemma 3 ([36]). System (1) and (2) is equivalent to an integral equation given by

x(t) =
x(0)− N(x))

Γ(δ(1− γ)
t(1−γ)(1−δ)

+
1

Γ(γ)

∫ t

0
(t− s)γ−1[Ax(s) + Bu(s)

]
ds + G

(
s, x(s)

)
dW(s).

Lemma 4 ([36]). Let x(t) be a solution of the integral equation given by Lemma 3 then x(t)
satisfies

x(t) = Sγ,δ(t)
[
x(0)− N(x)

]
+
∫ t

0
Kγ(t− s)G

(
s, x(s)

)
dW(s)

+
∫ t

0
Kγ(t− s)Bu(s)ds, t ∈ V,

where Sγ,δ(t) = Iδ(1−γ)
0 Kγ(t), Kγ(t) = tγ−1Qγ(t) and Qγ(t) =

∫ ∞
0 γξMγ(ξ)T(tγξ)dξ.

Definition 7. An Et-adapted stochastic process x(t) ∈ C(V′, Z) is called a mild solution of
the Cauchy system (1) and (2), given I(1−γ)(1−δ)

0+
[
x(0) + N(x)

]
= x0; x0 ∈ L0

2(Ω, Y), and
g ∈ L2(Ω, Z) exists such that g(t) ∈ G(t, x(t)) on t ∈ V′ and satisfies

x(t) = Sγ,δ(t)
[
x(0)− N(x)

]
+
∫ t

0
(t− s)γ−1Qγ(t− s)G

(
s, x(s)

)
dW(s)

+
∫ t

0
(t− s)γ−1Qγ(t− s)Bu(s)ds, t ∈ V.

Lemma 5 ([48]).

1. Kγ(t), Qγ(t) and Sγ,δ(t) are strongly continuous, for t > 0.
2. If Kγ(t),Qγ(t) and Sγ,δ(t) are bounded linear operators on Z, for any fixed t ∈ S π

2 −ω , then
we obtain ∥∥Kγ(t)x

∥∥ ≤ κpt−1+γϑ‖x‖,
∥∥Qγ(t)x

∥∥ ≤ κpt−γ+γϑ‖x‖,∥∥Sγ,δ(t)x
∥∥ ≤ Γ(γ)

Γ(δ(1− γ) + γϑ)
κ0t−1+δ−γδ+γϑ‖x‖,

where, κp = κ0Γ(ϑ)
Γ(γϑ)

.

Definition 8 ([21]). Suppose E+ is the positive cone of an order Banach space (E,≤). Let Φ be the
function defined on the set of all bounded subsets of the Banach space Z with values in E+ known as
MNC on Z if and only if Φ(conv(Ω)) = Φ(Ω) for very bounded subset Ω ⊂ Z, where conv(Ω)
denoted the closed convex hull of Ω.

Definition 9. The system (1) and (2) is called nonlocally controllable on the interval V if and only
if, for all x0, x1 ∈ Z, a control u ∈ L(V, U) exists such that the mild solution x(·) of the system (1)
and (2) satisfies x(b) + N(x) = x1.

We will now review a few concepts related to the Hausdorff MNC.

Definition 10 ([22]). For a bounded set X in a Banach space Z, the Hausdorff MNC χ is denoted as

χ(X) = inf{ε > 0 : X can be related by a finite number of balls with radii ε}. (4)

Lemma 6 ([22]). Suppose Z is a Banach space and X,Y ⊆ Z are bounded. Then, the following
properties satisfy:
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(i) X is precompact if and only if χ(X) = 0;
(ii) χ(X) = χ(X) = χ(conv(X)), where X and conv(X) denotes the closure and convex hull of

X, respectively;
(iii) If X ⊆ Y then χ(X) ≤ χ(Y);
(iv) χ(X+ Y) ≤ χ(X) + χ(Y), such that X+ Y = {a1 + a2 : a1 ∈ X, a2 ∈ Y};
(v) χ(X∪ Y) ≤ max{χ(X), χ(Y)};
(vi) χ(γX) = |γ|χ(X) for all γ ∈ R, when Z be a real Banach space;
(vii) If the operator Ψ : D(Ψ) ⊆ Z → Z1 is Lipschitz-continuous with constant κ1, then we know

t(Ψ(X)) ≤ κ1χ(X) for all bounded subset X ⊂ D(Ψ), where Z1 is a Banach space and t
represents the Hausdorff MNC in Z1.

Definition 11 ([22]). The operator Ψ : D(Ψ) ⊆ Z → Z is said to be an χ − contraction if
a positive constant κ1 < 1 exists such that χ(Ψ(X)) ≤ κ1χ(X) for all bounded closed subsets
X ⊆ D(Ψ).

Theorem 3 ([21]). If {xk}∞
k=1 is a sequence of Bochner integrable functions from V to Z with the

measurement ‖xk(t)‖ ≤ β(t), for every t ∈ V and for any k ≥ 1, where β ∈ L1(V,R), then the
function ω(t) = χ

({
xk(t) : k ≥ 1

})
is in L1(V,R) and satisfies

χ

({ ∫ t

0
xk(s

)
ds : k ≥ 1

})
≤ 2

∫ t

0
ω(s)ds.

Lemma 7 ([21]). Let X ⊂ Z be a bounded set; then, a countable set X0 ⊂ X exists such that
χ(X) ≤ 2χ(X0).

We mean by χc the Hausdorff MNC in the space {.

Lemma 8 ([21]). Let B ⊂ { be bounded and equicontinuous; then,

1. χ(X(t)) is continuous on [0, c],
2. χc(X) = maxt∈[0,c]

(
χ(X(t))

)
.

Lemma 9 ([6]). (The Darbo–Sadovskii theorem) Let X ⊂ Z be a bounded, convex, and closed set.
Ψ : D(Ψ) ⊆ Z → Z is a continuous and χ− contraction operator. Then, Ψ has at least one fixed
point in X.

3. Controllability

We require the following hypotheses:

(H1) Let A be the almost sectorial operator of the analytic semigroup T(t), t > 0 in Z such
that ‖T(t)‖ ≤ K1 where K1 ≥ 0 is a constant.

(H2) The function G : V × Z → Z satisfies:

(a) The Caratheodory condition: G(·, x) is strongly measurable for all x ∈ Z, and
G(t, ·) is continuous for a.e. t ∈ V;

(b) There is a constant 0 < γ1 < γ and m ∈ L
1

γ1 (V,R+) and non-decreasing
continuous function g : R+ → R+ such that

∥∥G(t, x)
∥∥ ≤ m(t)g(‖x‖), x ∈

Z, t ∈ V, where g satisfies lim infk→∞
g(k)

k = 0;

(c) There is a constant 0 < γ2 < γ and h ∈ L
1

γ2 (V,R+) such that, for all bounded
subsets M ⊂ Z, χ(G(t, D)) ≤ h(t)χ(D) for a.e. t ∈ V.

(H3) (a) The linear operator B : L2(V, U) → L1(V, Z) is bounded, W : L2(V, U) →
Z denoted by Wu =

∫ c
0 (c − s)γ−1Qγ(c − s)Bu(s)ds, and it has an inverse

operator W−1, which take the values in L2(V, U)/ ker W, and there are two
positive values K2 and K3 such that ‖B‖Lc(U,Z) ≤ K2,

∥∥W−1
∥∥

Lc(Z,U/ ker W)
≤

K3;
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(b) There is a constant γ0 ∈ (0, γ) and KW ∈ L
1

γ0 (V,R+) such that, for all bounded
sets Q ⊂ Z, χ((W−1Q)(t)) ≤ KW(t)χ(Q).

(H4) The function N : C(V, Z) → Z is a continuous, compact operator, and there L1 > 0
exists such that ‖N(x1)− N(x2)‖ ≤ L1‖x1 − x2‖.
For our convenience, we introduce

Kγi =

[( 1−γi
γϑ−1

)
c
(

γϑ−1
1−γi

)]
, i = 1, 2, K4 = Kγ1

∥∥KW
∥∥

L
1

γ1 (I ,R+)
and K5 = Kγ2

∥∥h
∥∥

L
1

γ2 (I ,R+)
.

Theorem 4. Suppose that the hypotheses (H1)–(H4) hold; then, the HF stochastic differential
system (1) and (2) has a solution on V provided x(0) ∈ D(Aθ) with θ > 1− ϑ.

Proof. The operator Ψ : X → X is defined as

Ψ(x(t)) =
{

z ∈ X : z(t) =t1−δ+γδ−γϑ

[
Sγ,δ(t)

[
x0 − N(x)

]
+
∫ t

0
(t− s)γ−1Qγ(t− s)G

(
s, x(s)

)
dW(s)

+
∫ t

0
(t− s)γ−1Qγ(t− s)Bu(s)ds

]
, t ∈ (0, c]

}
.

To prove that Ψ has a fixed point.
From hypotheses (H3), for an arbitrary function x ∈ X , we describe the control

ux(t) by

ux(t) = W−1
(

x1 − N(x)− Sγ,δ(c)(x0 − N(x))−
∫ c

0
(c− r)γ−1Qγ(c− r)G(r, x(r))dW(r)

)
(t).

As we can see, Ψx(c) = x1 − N(x), which means that ux steer the Hilfer fractional
stochastic differential system (1) and (2) x0 to x1 in the finite time c. This suggests that the
system (1) and (2) can be nonlocally controllable on V.

Step 1: We have to show that a positive value P exists such that Ψ(BP(V)) ⊆ BP(V).
Assume that the statement is false, i.e., for all P > 0, xp ∈ BP(V) exists, but Ψ(xp) is not in
BP(V),

E
∥∥xp∥∥2 ≤ P < E

∥∥(Ψxp(t)
)∥∥2

≤ E
∥∥∥∥t1−δ+γδ−γϑ

[
Sγ,δ(t)

[
x0 − N(xp)

]
+
∫ t

0
(t− s)γ−1Qγ(t− s)G

(
s, xp(s)

)
dW(s)

+
∫ t

0
(t− s)γ−1Qγ(t− s)BW−1

(
x1 − N(xp)− Sγ,δ(c)(x0 − N(xp))

−
∫ c

0
(c− r)γ−1Qγ(c− r)G(r, xp(r))dW(r)

)
(t)ds

∥∥∥∥2

≤ t2(1−δ+γδ−γϑ)
{

3E
∥∥∥∥[Sγ,δ(t)

[
x0 − N(xp)

]∥∥∥∥2

+ 3E
∥∥∥∥ ∫ t

0
(t− s)γ−1Qγ(t− s)G

(
s, xp(s)

)
dW(s)

∥∥∥∥2

+ 3E
∥∥∥∥ ∫ t

0
(t− s)γ−1Qγ(t− s)BW−1

(
x1 − N(xp)− Sγ,δ(c)(x0 − N(xp))

−
∫ c

0
(c− r)γ−1Qγ(c− r)G(r, xp(r))dW(r)

)
(t)ds

∥∥∥∥2}
.
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Hence,

E
∥∥xp∥∥2 ≤ t2(1−δ+γδ−γϑ)

{
3E‖Sγ,δ(t)[x0 − N(xp)]‖2

+ 3Tr(Q)
∫ t

0
(t− s)2(γ−1)‖Qγ(t− s)‖2E‖G

(
s, xp(s)

)
‖2ds

+ 9
∫ t

0
(t− s)2(γ−1)‖Qγ(t− s)‖2‖B‖2‖W−1‖

(
‖x1 − N(xp)‖2

+ ‖Sγ,δ(c)(x0 − N(xp))‖2

+ Tr(Q)
∫ c

0
(c− r)2(γ−1)‖Qγ(c− r)‖2E‖G(r, xp(r))‖2dr

)
(t)ds

}
≤ c2(1−δ+γδ−γϑ)

[
3M∗ + 9

c2γϑ

(γϑ)2 κ2
pK2

2K2
3
[
‖x1‖2 + L2

1‖x‖2 + ‖N(0)‖2 −M∗
]]

,

where

M∗ =
[(

Γ(ϑ)
Γ(δ(1− γ) + γϑ)

)2

κ2
0c2(−1+δ−γδ+γϑ)‖x0‖2 + L2

1‖x‖2 + ‖N(0)‖2

+ Tr(Q)
c2γϑ

(γϑ)2 κ2
pm2(c)g(‖x‖2)

]
.

The above inequality is divided by
∥∥xp

∥∥, and by applying the limit as
∥∥xp

∥∥→ ∞, we
obtain 0 ≥ 1, which is the contradiction. Therefore, Ψ(BP(V)) ⊂ BP(V).

Step 2: Prove that Ψ : BP → BP is continuous. Let xk ⊂ BP such that xk → x in BP. Then,
we have

Ψ(xk)−Ψ(x) =
{

t1−δ+γδ−γϑ

[
Sγ,δ(t)

[
x0 − N(xk)

]
+
∫ t

0
(t− s)γ−1Qγ(t− s)G

(
s, xk(s)

)
dW(s)

+
∫ t

0
(t− s)γ−1Qγ(t− s)Buxk (s)ds

]
− t1−δ+γδ−γϑ

[
Sγ,δ(t)

[
x0 − N(x)

]
+
∫ t

0
(t− s)γ−1Qγ(t− s)G

(
s, x(s)

)
dW(s)

+
∫ t

0
(t− s)γ−1Qγ(t− s)Bu(s)ds

]}
= t1−δ+γδ−γϑ

{
Sγ,δ(t)[N(xk)− N(x)]

+
∫ t

0
(t− s)γ−1Qγ(t− s)[G

(
s, xk(s)

)
− G

(
s, x(s)

)
]dW(s)

+
∫ t

0
(t− s)γ−1Qγ(t− s)B[uxk (s)− u(s)]ds.
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From the hypotheses (H1) and (H4), and the Lebesgue dominated convergence theo-
rem [49], we write

E‖Ψ(xk)−Ψ(x)‖2 ≤ 3c2(1−δ+γδ−γϑ)

{
‖Sγ,δ(t)‖2E‖N(xk)− N(x)‖2

+ Tr(Q)
∫ c

0

[
(c− s)γϑ−1]2E‖G

(
s, xk(s)

)
− G

(
s, x(s)

)
‖2ds

+
∫ c

0

[
(c− s)γϑ−1]2‖B‖2E‖uxk (s)− u(s)‖2

}
≤ 3c2(1−δ+γδ−γϑ)

{
κ2

0c2(−1+δ−γδ+γϑ)

(
Γ(ϑ)

Γ(δ(1− γ)− γϑ)

)2

× E‖N(xk)− N(x)‖2

+ Tr(Q)

(
cγϑ

γϑ

)2

κ2
pE‖G(s, xk(s))− G(s, x(s))‖2

+

(
cγϑ

γϑ

)2

κ2
pK2

2E‖uxk (s)− ux(s)‖2
}

,

where

E
∥∥uxk (s)− ux(s)

∥∥2 ≤ 3K2
3

(
1 + κ2

0c2(−1+δ−γδ+γϑ)
(

Γ(ϑ)
Γ(δ(1− γ)− γϑ)

)2

E
∥∥N(xk)− N(x)

∥∥2

+ Tr(Q)

(
cγϑ

γϑ

)2

κ2
pE
∥∥G(s, xk(s))− G(s, x(s))

∥∥2
)

.

From the above equations, we obtain E‖Ψ(xk) − Ψ(x)‖2 → 0 as k → ∞. So, Ψ is
continuous on BP(V).

Step 3: To demonstrate that Ψ is equicontinuous, let z(t) ∈ Ψ(M), and 0 ≤ t1 < t2 ≤ c;
then, x ∈ M exists such that

E‖z(t2)− z(t1)‖2 ≤ E
∥∥∥∥t1−δ+γδ−γϑ

2

[
Sγ,δ(t2)

[
x0 − N(x)

]
+
∫ t2

0
(t2 − s)γ−1Qγ(t2 − s)G

(
s, x(s)

)
dW(s)

+
∫ t2

0
(t2 − s)γ−1Qγ(t2 − s)Bu(s)ds

]
− t1−δ+γδ−γϑ

1

[
Sγ,δ(t1)

[
x0 − N(x)

]
+
∫ t1

0
(t1 − s)γ−1Qγ(t1 − s)G

(
s, x(s)

)
dW(s)

+
∫ t1

0
(t1 − s)γ−1Qγ(t1 − s)Bu(s)ds

]∥∥∥∥2

.
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Thus, we write

E‖z(t2)− z(t1)‖2 ≤ 3E
∥∥∥∥t1−δ+γδ−γϑ

2 Sγ,δ(t2)− t1−δ+γδ−γϑ
1 Sγ,δ(t1)

∥∥∥∥2∥∥x0 − N(x)
∥∥2

+ 3E
∥∥∥∥t1−δ+γδ−γϑ

2

∫ t1

0
(t2 − s)γ−1Qγ(t2 − s)G(s, x(s))dW(s)

+ t1−δ+γδ−γϑ
2

∫ t2

t1

(t2 − s)γ−1Qγ(t2 − s)G(s, x(s))dW(s)

− t1−δ+γδ−γϑ
1

∫ t1

0
(t1 − s)γ−1Qγ(t1 − s)G(s, x(s))dW(s)

∥∥∥∥2

+ 3E
∥∥∥∥t1−δ+γδ−γϑ

2

∫ t1

0
(t2 − s)γ−1Qγ(t2 − s)Bu(s)ds

+ t1−δ+γδ−γϑ
2

∫ t2

t1

(t2 − s)γ−1Qγ(t2 − s)Bu(s)ds

− t1−δ+γδ−γϑ
1

∫ t1

0
(t1 − s)γ−1Qγ(t1 − s)Bu(s)ds

∥∥∥∥2

≤ 3E
∥∥t1−δ+γδ−γϑ

2 Sγ,δ(t2)− t1−δ+γδ−γϑ
1 Sγ,δ(t1)

∥∥2∥∥x0 − N(x)
∥∥2

+ 9E
∥∥∥∥t1−δ+γδ−γϑ

2

∫ t1

0
(t2 − s)γ−1Qγ(t2 − s)G(s, x(s))dW(s)

− t1−δ+γδ−γϑ
1

∫ t1

0
(t1 − s)γ−1Qγ(t2 − s)G(s, x(s))dW(s)

∥∥∥∥2

+ 9E
∥∥∥∥t1−δ+γδ−γϑ

1

∫ t1

0
(t1 − s)γ−1Qγ(t2 − s)G(s, x(s))dW(s)

− t1−δ+γδ−γϑ
1

∫ t1

0
(t1 − s)γ−1Qγ(t1 − s)G(s, x(s))dW(s)

∥∥∥∥2

+ 9E
∥∥∥∥t1−δ+γδ−γϑ

2

∫ t2

t1

(t2 − s)γ−1Qγ(t2 − s)G(s, x(s))dW(s)
∥∥∥∥2

+ 9E
∥∥∥∥t1−δ+γδ−γϑ

2

∫ t1

0
(t2 − s)γ−1Qγ(t2 − s)Bu(s)ds

− t1−δ+γδ−γϑ
1

∫ t1

0
(t1 − s)γ−1Qγ(t2 − s)Bu(s)ds

∥∥∥∥2

+ 9E
∥∥∥∥t1−δ+γδ−γϑ

1

∫ t1

0
(t1 − s)γ−1Qγ(t2 − s)Bu(s)ds

− t1−δ+γδ−γϑ
1

∫ t1

0
(t1 − s)γ−1Qγ(t1 − s)Bu(s)ds

∥∥∥∥2

+ 9E
∥∥∥∥t1−δ+γδ−γϑ

2

∫ t2

t1

(t2 − s)γ−1Qγ(t2 − s)Bu(s)ds
∥∥∥∥2

=
7

∑
i=1

Ii.

By the strong continuity of Sγ,δ(t), we obtain



Mathematics 2023, 11, 159 11 of 18

I1 tends to zero as t2 → t1.

I2 = 9E
∥∥∥∥t1−δ+γδ−γϑ

2

∫ t1

0
(t2 − s)γ−1Qγ(t2 − s)G(s, x(s))dW(s)

− t1−δ+γδ−γϑ
1

∫ t1

0
(t1 − s)γ−1Qγ(t2 − s)G(s, x(s))dW(s)

∥∥∥∥2

≤ 9Tr(Q)κ2
p

∫ t1

0
(t2 − s)−2γ(1−ϑ)

[
t2(1−δ+γδ−γϑ)
2 (t2 − s)2(γ−1)

− t2(1−δ+γδ−γϑ)
1 (t1 − s)2(γ−1)

]
m2(s)g(‖x‖2)ds.

From the Lebesgue’s dominated convergence theorem [49], we obtain limt2→t1 I2 = 0.

I3 = 9E
∥∥∥∥t1−δ+γδ−γϑ

1

∫ t1

0
(t1 − s)γ−1Qγ(t2 − s)G(s, x(s))dW(s)

− t1−δ+γδ−γϑ
1

∫ t1

0
(t1 − s)γ−1Qγ(t1 − s)G(s, x(s))dW(s)

∥∥∥∥2

≤ 9Tr(Q)t2(1−δ+γδ−γϑ)
1

∫ t1

0
(t1 − s)2(γ−1)∥∥Qγ(t2 − s)−Qγ(t1 − s)

∥∥2m2(s)g(‖x‖2)ds.

By Theorem 2, Qγ(t) is uniformly continuous in the operator norm topology. So, we
obtain I3 → 0 as t2 → t1.

I4 = 9E
∥∥∥∥t1−δ+γδ−γϑ

2

∫ t2

t1

(t2 − s)γ−1Qγ(t2 − s)G(s, x(s))dW(s)
∥∥∥∥2

≤ 9Tr(Q)κ2
p

[
t2(1−δ+γδ−γϑ)
2

∫ t2

0
(t2 − s)2(γϑ−1)

− t2(1−δ+γδ−γϑ)
1

∫ t1

0
(t1 − s)2(γϑ−1)

]
m2(s)g(‖x‖2)ds.

Then, I4 → 0 as t2 → t1, by using the dominated convergence theorem. Next,

I5 = 9E
∥∥∥∥t1−δ+γδ−γϑ

2

∫ t1

0
(t2 − s)γ−1Qγ(t2 − s)Bu(s)ds

− t1−δ+γδ−γϑ
1

∫ t1

0
(t1 − s)γ−1Qγ(t2 − s)Bu(s)ds

∥∥∥∥2

≤ 9κ2
pK2

2

∫ t1

0

(
t2(1−δ+γδ−γϑ)
2 (t2 − s)2(γ−1)

− t2(1−δ+γδ−γϑ)
1 (t1 − s)2(γ−1)

)
(t2 − s)−2γ(1+ϑ)u(s)ds.

I6 = 9E
∥∥∥∥t1−δ+γδ−γϑ

1

∫ t1

0
(t1 − s)γ−1Qγ(t2 − s)Bu(s)ds

− t1−δ+γδ−γϑ
1

∫ t1

0
(t1 − s)γ−1Qγ(t1 − s)Bu(s)ds

∥∥∥∥2

≤ 9K2
2 t2(1−δ+γδ−γϑ)

1

∫ t1

0
(t1 − s)2(γ−1)∥∥Qγ(t2 − s)−Qγ(t1 − s)

∥∥2u(s)ds.

I7 = 9E
∥∥∥∥t1−δ+γδ−γϑ

2

∫ t2

t1

(t2 − s)γ−1Qγ(t2 − s)Bu(s)ds
∥∥∥∥2

≤ 9κ2
pK2

2t2(1−δ+γδ−γϑ)
2

∥∥∥∥ ∫ t2

t1

(t2 − s)γϑ−1u(s)ds
∥∥∥∥2

.
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Similar to the proof of I2 and I3, we obtain that I5 and I6 tend to zero as t2 → t1, and
I7 tends to zero as t2 → t1. Therefore, Ψ(M) is equicontinuous on V.

Step 4: To show Ψ : BP(V)→ BP(V) is a χ-contraction operator.
Let D ⊆ BP; then, from Lemma 7, there exists a countable set D0 = {xk}∞

k=1 ⊂ D
such that χ(G(D)(t)) ≤ 2χ({xk}∞

k=1). By the equicontinuous of BP, we know that D is also
equicontinuous. Therefore, from Lemma 7, we obtain

χc(Ψ(D0)) = max
t∈[0,c]

χ(Ψ(D0)). (5)

Hence, we have

E‖χc(Ψ(D))‖2 ≤ 2E‖χc(Ψ(D0))‖2

= 2 max
t∈[0,c]

E‖
(
χ(Ψ(D0)(t))

)
‖2

≤ 2 max
t∈[0,c]

E
∥∥∥∥χt1−δ+γδ−γϑ

(
− Sγ,δ(t)N(D0)

+
∫ t

0
(t− s)γ−1Qγ(t− s)G(s, D0(s))dW(s)

+
∫ t

0
(t− s)γ−1Qγ(t− s)BuD0(s)ds

)∥∥∥∥2

≤ 2 max
t∈[0,c]

E
∥∥∥∥χt1−δ+γδ−γϑ

(
− Sγ,δ(t)N(D0)

)
+ χt1−δ+γδ−γϑ

( ∫ t

0
(t− s)γ−1Qγ(t− s)G(s, D0(s))dW(s)

)
+ χt1−δ+γδ−γϑ

( ∫ t

0
(t− s)γ−1Qγ(t− s)BuD0(s)ds

)∥∥∥∥2

.

Since N is compact and Sγ,δ(t)N(D0) is relatively compact, we obtain

E‖χc(Ψ(D))‖2 ≤ 2 max
t∈[0,c]

E
∥∥∥∥t1−δ+γδ−γϑ

∫ t

0
χ

(
(t− s)γ−1Qγ(t− s)G(s, D0(s))dW(s)

)

+ t1−δ+γδ−γϑ
∫ t

0
χ

(
(t− s)γ−1Qγ(t− s)BuD0 (s)ds

)∥∥∥∥2

≤ 4 max
t∈[0,c]

E
∥∥∥∥t1−δ+γδ−γϑ

∫ t

0
(t− s)γ−1Qγ(t− s)χ

(
G(s, D0(s))dW(s)

)

+ t1−δ+γδ−γϑ
∫ t

0
(t− s)γ−1Qγ(t− s)χ

(
BuD0 (s)ds

)∥∥∥∥2

≤ 8 max
t∈[0,c]

[
Tr(Q)E

∥∥∥∥t1−δ+γδ−γϑ
∫ t

0
(t− s)γ−1Qγ(t− s)χ

(
G(s, D0(s))ds

)∥∥∥∥2

+ E
∥∥∥∥t1−δ+γδ−γϑ

∫ t

0
(t− s)γ−1Qγ(t− s)χ

(
BuD0 (s)ds

)∥∥∥∥2]
≤ 8 max

t∈[0,c]

[
Tr(Q)t2(1−δ+γδ−γϑ)

∫ t

0
(t− s)2(γ−1)‖Qγ(t− s)‖2

× E
∥∥∥∥χ

(
G(s, D0(s))

)∥∥∥∥2

ds

+ t2(1−δ+γδ−γϑ)
∫ t

0
(t− s)2(γ−1)‖Qγ(t− s)‖2E

∥∥∥∥χ

(
BuD0 (s)

)∥∥∥∥2

ds
]

.
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That is,

E‖χc(Ψ(D))‖2 ≤ 8κ2
p max

t∈[0,c]

(
Tr(Q)t2(1−δ+γδ−γϑ)

∫ t

0
(t− s)2(γϑ−1)h2(s)dsχ2(D(t))

+ t2(1−δ+γδ−γϑ)
∫ t

0
(t− s)2(γϑ−1)ds‖B‖2E‖uD0(s)‖

2
)

≤ 8κ2
p max

t∈[0,c]

(
Tr(Q)t2(1−δ+γδ−γϑ)

∫ t

0
(t− s)2(γϑ−1)h2(s)dsχ2(D(t))

+ 3t2(1−δ+γδ−γϑ)
∫ t

0
(t− s)2(γϑ−1)dsK2

2χ2
[
‖W−1‖2

{
E‖x1 − N(D0)‖2

+ E‖Sγ,δ(c)(x0 − N(x))‖2

+ E‖
∫ c

0
(c− r)γ−1Qγ(c− r)G(r, D0(r))dr‖2

}
(s)
])

≤ 8κ2
p max

t∈[0,c]

(
Tr(Q)t2(1−δ+γδ−γϑ)

∫ t

0
(t− s)2(γϑ−1)h2(s)dsχ2(D(t))

+ 3t2(1−δ+γδ−γϑ)
∫ t

0
(t− s)2(γϑ−1)K2

2‖KW(s)‖2dsκ2
p

×
∫ c

0
(c− r)2(γϑ−1)h2(r)drχ2(D(t))

)
≤ 8κ2

pc2(1−δ+γδ−γϑ)

[
Tr(Q)K2

γ2

∥∥h
∥∥2

L
1

γ2 (V,R+)
χ2(D)

+ 3κ2
pK2

2K2
γ1

∥∥KW
∥∥2

L
1

γ1 (V,R+)
K2

γ2

∥∥h
∥∥2

L
1

γ2 (V,R+)
χ2(D)

]
≤ 8κ2

pc2(1−δ+γδ−γϑ)
[
Tr(Q)K2

5χ2(D) + 3κ2
pK2

2K2
4K2

5χ2(D)
]

≤ 8c2(1−δ+γδ−γϑ)
[
Tr(Q) + 3κ2

pK2
2K2

4
]
κ2

pK2
5χ2(D)

E‖χc(Ψ(D))‖2 ≤ κ1χ2
c (D),

where κ1 = 8c2(1−δ+γδ−γϑ)
[
Tr(Q) + 3κ2

pK2
2K2

4
]
κ2

pK2
5.

Therefore, from Definition (11), Ψ is a χc-contraction operator. As a result, Ψ has at
least one fixed point according to Lemma 7, and the mild solution also exists.

4. Example
4.1. Example-I

Assume that the following HF stochastic differential equation is in the form:
D

2
3 ,δ
0+ x(t, y) = xyy(t, y) + βω(t, y) + e−t

q+et sin
(
x(t, y)

) dW(t)
dt , t ∈ V = [0, 1],

x(t, 0) = x(t, 1) = 0,

I(1−
2
3 )(1−δ)

0+ [x(0, y)] +
∫ c

0 h(s) ln
(
1 + |x(s, y)| 12

)
ds = x0, 0 < y < 1,

(6)

where β > 0, q ≥ 1, and D
2
3 ,δ
0+ are the HFD of order 2

3 , type δ, I(1−
2
3 )(1−δ)

0+ is the Riemann–
Liouville integral, and the function ω : V × (0, 1) → (0, 1) is continuous in t and h ∈
L1(V,R). Let W(t) be a one-dimensional standard Brownian motions in Z denoted by
‖ · ‖Z on the filtered probability space (Ω, E , P). Let Z = L2([0, 1]), U = L2([0, 1]); then,
the operator A : D(A) ⊂ Z → Z is determined by Ax = x′′, x ∈ D(A), where D(A) =
{x ∈ Z : x, x′ are absolutely continuous, x′′ ∈ Z, x(t, 0) = x(t, 1) = 0} and

Ax =
∞

∑
k=1

k2〈x, ek〉ek, e ∈ D(A),
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where ek(x) =
√

2
π sin(kx), k ∈ N is the orthogonal set of eigenvectors of A. Here, A is the

almost sectorial operator of the semigroup {T(t), t ≥ 0} in Z and given by T(t)(x(s)) =
x(t + s), s ∈ Z, T(t) is not a compact semigroup on Z with χ

(
T(t)M

)
≤ χ(M) where χ

is the Hausdorff MNC and K1 ≥ 1 exists such that supt∈V ‖T(t)‖ ≤ K1. Furthermore,

t→ x(t
2
3 θ + s)x is equicontinuous for t > 0 and θ ∈ (0, ∞).

Let x(t)(y) = x(t, y),

G(t, x(t))(y) =
e−t

q + et sin
(
x(t, y)

)
.

It is clear that G is Lipschitz-continuous for the second variable with constant 1
1+q and

satisfies (H2). Let the function B : U → Z be defined by (Bu)(t)(y) = βω(t, y), y ∈ (0, 1)
and the nonlocal term N : C(V, Z)→ Z be defined as

N(x)(y) =
∫ c

0
h(s) ln

(
1 + |x(s)(y)|

1
2
)
ds.

Then, B : U → Z is a bounded linear operator and N is the compact operator satisfied
(H4). For y ∈ (0, 1), the operator W is defined as

(Wu)(y) =
∫ 1

0
(1− s)

−1
3 Q 2

3
(1− s)βω(s, y)ds.

For t ∈ [0, 1],

Q 2
3
(x(s)) =

2
3

∫ ∞

0
θM 2

3
(θ)x(t

2
3 + s)dθ,

where the Wright-type function, M 2
3
(θ) = ∑∞

k=1
(−θ)k−1

Γ(1− 2
3 k)(k−1)!

. Suppose that W satisfies

(H3); then, all of the statements of Theorem 4 are accomplished. Therefore, the HF stochastic
differential Equations (1) and (2) are nonlocal controllable on V.

4.2. Example-II

Digital filters perform an incredibly considerable aspect in the field of digital signal
processing (DSP). The execution of digital filters is extraordinary, and each of the essential
factors of DSP has grown in acclaim. Commonly, we classify filters with two main usages:
one is signal separation, and the other is signal restoration. Digital filters are an important
entity in various fields of signal processing and have unexceptionally received high-level
prominence in the field of biomedical signal processing too. As most biomedical signals
are low-frequency by nature, the general problem in processing those signals is the small
amplitude of the signal, which is naturally dominated by artefacts and various other noises.
The efficiency of the system lies in retrieving those signals in a substantial amount of time so
as not to generate a high level of delay in processing and analyzing those signals. In general,
biomedical systems consist of complex cascaded blocks such that the delay in producing
the output of each block cumulatively affects the generation of the final output. The speed,
as well as the accuracy, of processing is highly essential in modelling any biomedical system
to retrieve such error-free processed signals.

Further, the biological signals are the ones with minimal amplitudes and lower fre-
quencies (a few brain signals range from 1–4 Hz). The entire requirement of error-free
signal generation shall be attributed to the proper controllability of the modelled system
obtained through the solution. The signal processing unit is implemented through a block
diagram as depicted in Figure 1 using MATLAB-Simulink software with the aid of the
proposed system of Equations (1) and (2) that shall be suitable for a few biomedical ap-
plications. The magnitude response of the digital filter implemented using a fractional
differentiation model, as shown in Figure 2, exhibits a sharp cut-off frequency with better
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signal-restoration capability [50,51]. Therefore, the output is obtained, which is bounded
and controllable with better stability in the amplitude in the low-frequency corner.

Figure 1. Digital filter model.

Figure 2. Magnitude response.

Motivated by the filter systems defined in [52–54], we present our filter system in
Figures 1 and 2. Figure 1 describes the rough pattern of the digital filter model, and Figure 2
describes the frequency response of the digital filter, which aids in enhancing the usefulness
of the solution with a minimum measure of inputs.

1. Product modulator 1 receives the input x(s), and G produces G(s, x(s)).
2. Product modulator 2 receives the input u(s), and B produces B(u(s)).
3. Product modulator 3, receives the input [x(0)−N(x)], and Sγ,δ at time t = 0 produces

Sγ,δ(t)[x(0)− N(x)].
4. The integrator performs the integral of

Qγ(t− s)[G(s, x(s)) + Bu(s)],

over the period s.

Furthermore,
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(i) Inputs Qγ(t − s), G(s, x(s)) are combined and multiplied with an output of the
integrator over (0, t).

(ii) Inputs Qγ(t− s), B(u(s)) are combined and multiplied with an output of the integra-
tor over (0, t).

Finally, we move all of the outputs from the integrators to the summer network.
Therefore, the output of x(t) is attained; it is bounded and controllable.

5. Conclusions

This manuscript concentrated on the almost sectorial operator-based nonlocal con-
trollability of HF stochastic differential equations. By applying findings and concepts
from fractional calculus, almost sectorial operators, MNC, and the fixed-point method, the
primary outcomes are obtained. Researchers established the necessary criteria for the mild
solution’s existence and the system’s nonlocal controllability. Finally, we offer a tool for
putting theoretical findings into practice. Future research will focus on almost sectorial
operators’ approximate controllability of HF stochastic differential systems with infinite
and finite delay.

These are the contributions we made: (1) The authors present a number of require-
ments for the nonlocal controllability of HF stochastic differential equations via almost
sectorial operators. (2) As far as we are aware, there has not been an investigation into the
existence and nonlocal controllability of the HF stochastic differential system using almost
sectorial operators. (3) To wrap up, we offer an example of the results.
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