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Abstract: This paper uses computational intelligence and machine learning methods to describe ex-
perimental modeling performed to approximate the static characteristics of one type of fluidic muscle
from the manufacturer FESTO for three different muscle sizes. For the experiments, measured data
from the manufacturer and data from a real system (i.e., test device) were used. The measurements,
which took place on the experimental equipment, were carried out in two stages (i.e., when the
muscle was pressed and when the muscle was relaxed). The resulting measured characteristics were
obtained by averaging two values at a given moment. MATLAB® software was used for simulations,
in which four models were created: MLP, SVM, ANFIS, and a custom model (i.e., polynomial model).
Given that most articles mainly interpret their results graphically when approximating characteristics,
in this article, the outputs of the models are also compared with the measured data based on the
SSE, NRMSE, SBC, and AIC performance indicators, enabling a more relevant and comprehensive
overview of the performance of the individual models. The outputs of the best models described in
this article reach an accuracy of 89.90% to 98.74% (all from the MLP group), depending on the muscle
size, compared to real measured outputs.

Keywords: fluidic muscle; approximation; multilayer perceptron network; adaptive neuro-fuzzy
inference system; support-vector machine

MSC: 65D15

1. Introduction

When designing machines and equipment, it is essential to know the operating pa-
rameters of all components and the conditions of the environment in which the equipment
is to be applied. Drives are no exception. Conventional types of drive, such as hydraulic
actuators or electric motors, have been available for a long time and are commonly used. On
the other hand, unconventional types of drive (e.g., pneumatic artificial muscles (PAMs)),
although they have been known for several years, continue to be of interest to researchers
due to their properties. On the one hand, there are advantages that encourage scientists to
try to implement them in practice [1,2], e.g., the possibility of producing greater forces, safe
human–machine (robot) interaction, easy replacement in case of failure, etc. On the other
hand, their unfavorable properties must be examined and described in detail before they
are applied in practice, e.g., hysteresis, friction between fibers, and their static and dynamic
characteristics. If a pneumatic artificial muscle is to be used to drive a machine or device, it
is necessary to differentiate its parameters depending on the type of muscle. Pneumatic
artificial muscles are a general name for a group of unconventional drives whose history
dates back to the 1930s when the first pneumatic artificial muscle—the fluid-driven muscle—
was invented. The originator of this muscle was Garasiev, who invented braided/netted
or embedded membranes, stretching membranes, and rearranging membranes [3]. The
aforementioned muscle belongs to one of the subgroups of PAMs: braided muscles. On the
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other hand, some of the most recent pneumatic artificial muscles are the muscles produced
by FESTO or Electro Cam Corporation. A chronological overview of some PAMs that
show signs of similarity to braided muscles in their construction or design can be found
in Table 1. In addition to this subgroup of muscles, we subsequently distinguish pleated
muscles [4,5], netted muscles [6–8], and embedded muscles [9–12]. The last subgroup
contains muscles that are the result of design, especially in recent years. Compared to
the original braided muscle, these are structures formed from materials such as silicone
rubber [13], polyethylene tubes [14], or silicon substrates containing embedded Kevlar
fibers [15].

Table 1. Chronological overview of some braided pneumatic artificial muscles [16].

Name of Muscle Author Year
of Invention References

McKibben muscle Gaylord 1953 [17–19]
Air muscle Greenhill, Shadow Robot Company 1988 [20–22]
Under-pressure artificial muscle Marcincin, Palko 1993 [23–25]
Actuating means, fluidic muscle Bergemann, Lorenz, Thallemer, FESTO AG & Co. 1999 [26–29]
Fluidic actuator Davis, Carlson, Electro Cam Corporation 2003 [30,31]

Our object of interest is one type of unconventional drive, namely, pneumatic artificial
muscles (specifically, fluidic muscles). A tensile action element formed by a rubber tube
and an insert made of aramid fibers is hermetically sealed. After the supply of pressured
air to the membrane, an oblong contraction occurs, resulting in a tensile force. The muscle
develops the most significant tensile force at the beginning of the contraction; then, as
the contraction increases, the tensile force decreases. The areas in which these drives are
used are diverse, including clamping, vibrating, positioning, and the use of muscle as
a pneumatic spring. Nevertheless, not all possibilities are explored. The reason for this
is that, despite their many advantages, the fluidic muscles’ characteristics are nonlinear,
and hysteresis is also present. A detailed investigation of the characteristics is essential
before a control can be designed to meet the precision and safety requirements of technical
equipment.

The static force model of a fluidic muscle is a very important element in the simulation
of the behavior of PAM-actuated mechanisms. Most of the models are of a geometric type,
relying on the geometric parameters of a muscle to predict the muscle force. Even though
they have general characteristics, their reliance on geometric parameters can be problematic
under certain conditions (e.g., real-time control) if some parameters are difficult to measure
(or even to obtain). In such cases, empirical models may be more suitable, as most of them
use a lower number of parameters, although their accuracy may be limited, especially
in certain parts of their operational range. Machine learning models have the advantage
of being very flexible and can be made quite accurate for the whole range of operating
conditions. Nevertheless, their high number of parameters can result in very complex
models, which are undesirable in practical scenarios. This paper analyzes the performance
of selected machine learning models, with emphasis also being put on the evaluation of the
models’ complexity to obtain parsimonious models with a good balance of accuracy and
complexity (in terms of the number of model parameters). In addition, the performance of
models for different types of fluidic muscles based on their diameter is compared. While
the overall shape of the function is comparable for all three types and, therefore, scalable,
the measured characteristics actually exhibit differences in output force, and the presumed
scalability impairs the resulting model performance if higher accuracy is required.

Therefore, this article describes the results of an experimental study where the goal was
to approximate the static characteristics of FESTO fluidic muscles from measured data using
computational intelligence and machine learning methods. In total, three different sizes
of one muscle type were assessed. The main goal of the research described in this article
was to create models that interpret relationships between force, contraction, and pressure
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approximated by ANFIS, custom (polynomial), MLP, and SVM models for the muscle to
the highest possible extent. This article is divided into seven parts, where the Introduction
(Section 1) is followed by an overview of related works (Section 2). Subsequently, the
object of interest (fluidic muscles) is described in Section 3, where we present the technical
data of the selected DMSP muscles (i.e., DMSP-5, DMSP-20, DMSP-40), along with the
experimental systems that were made at the authors’ workplace and in which these types
of muscles were implemented for the purpose of driving the systems. Section 4 is devoted
to describing the models chosen for the modeling phase. The most extensive part of the
article is Section 5 (Results), where the resulting models and their outputs are described and
graphically interpreted, together with the values of performance indicators for individual
muscles. A summary of the results together with their discussion is contained in Section 6,
followed by the Conclusion. Since the outputs of the created experimental models were
statistically evaluated, Appendix A summarizes the information about four performance
metrics (i.e., SSE, NRMSE, AIC, and SBC).

2. Related Works

If a group of braided muscles is considered—such as FESTO, McKibben, or Shadow
muscles—the properties of such PAMs differ depending on their shape and the material(s)
used. It follows from the above that the force that the muscles can generate is also influenced
by several factors (e.g., the pressure applied to the muscle and the contraction ratio). A
muscle that is under pressure is highly nonlinear. Therefore, controlling and regulating
such a system is difficult. Hence, the effort to solve such problems, e.g., the nonlinearity of
the muscle characteristics, which has been a subject of interest of researchers for several
decades (e.g., [16,32–34]). Modeling and simulations give them space to be able to describe
the system as accurately as possible, which is a fundamental prerequisite for further work
with the system, e.g., control design, etc.

Analytical modeling is a frequently used approach, since the goal is to find a mathe-
matical model describing the system without the need to obtain real measured data from
the system. The source of information for analytical models is knowledge of the physics of
ongoing processes and first principles. Experimental modeling is suitable if a real system
is available, where it can obtain a representative dataset through measurement. At the
same time, this type of modeling is less time-consuming compared to analytical modeling.
However, many researchers also exercise the option of combining modeling methods when
they choose one of the following within the analytical models [35,36]:

• Models based on muscle geometry [37–39];
• Models based on muscle properties [40,41];
• Empirical models [42,43];
• Phenomenological biomimetic/biomechanical models [44–46].

Knowledge of the static characteristics of PAMs is important when designing systems
driven in the same way as this type of actuator. Several approaches can be applied to
approximate muscle characteristics, e.g., an approximation of the characteristics using
a parametric model of the muscle [36], an approximation based on maximum muscle
strength [47], or an approximation using an exponential or polynomial function [48,49].
One of the latest articles [50] assessed the effect of the altitude of operation on the pulling
force, presenting a numerical approximation of the static characteristics of pneumatic
artificial muscles. In contrast, Ref. [51] investigates the static characteristics of pneumatic
artificial muscles under isobaric, isotonic, and isometric conditions; at the same time,
it presents the dynamic characteristics of the muscle, which interpret the response to
a gradual change in pressure under a constant loading force. For testing, the authors
developed a laboratory stand described in the article. However, not all models are suitable
for approximating the characteristics of FESTO muscles. In [52], the authors state that the
existing models of pneumatic artificial muscles are unsuitable for FESTO muscles, as their
accuracy is low and, at the same time, they contain too many parameters in their settings.
The model presented in the article made it possible to obtain static characteristics with
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an accuracy of 10%. At the same time, the work also deals with the dynamic modeling
of PAM characteristics. The authors of [16] describe methods for determining the static
characteristics of pneumatic artificial muscles of the FESTO and Shadow types. These
characteristics were monitored under isotonic, isobaric, and isothermal conditions. In the
research described in the article, an experimental approach was chosen, where data were
obtained by measurements on a test stand and, thus, experimental characteristics were
compared with simulated characteristics.

In Table 2, an overview of some related works that were devoted to modeling the
characteristics of pneumatic artificial muscles is presented. In addition to the author, the
year of publication of the paper, and the citation for the publication itself, the table lists
the types of muscle that the authors investigated/described. These were mostly fluidic
or McKibben muscles. The table also shows the models that were applied. Most of the
publications used real measured data from the system to compare the calculated/simulated
outputs of the models. At the same time, the table indicates the type of measurement (i.e.,
isotonic/isobaric/isometric).

Table 2. Overview of the related works.

Author Year Cite
Type

of Muscle Model Experimental
Stand

Data Obtained
from Experimental Stand

Isotonic Isobaric Isometric

Doumit et al. 2009 [39] McKibben Geometric Yes No No Yes

Kothera et al. 2009 [41] McKibben Geometric Yes Yes No Yes

Sárosi 2012 [49] Fluidic Geometric Yes No Yes No

Wickramatunge et al. 2013 [43] Fluidic Empirical Yes Yes Yes No

Tóthová et al. 2015 [47] Fluidic Geometric/empirical No - - -

Takosoglu et al. 2016 [16] Fluidic
McKibben Geometric Yes Yes Yes Yes

Pietrala 2017 [51] McKibben - Yes Yes Yes Yes

Wang et al. 2018 [53] Fluidic Geometric Yes No No No

Donskoj et al. 2019 [52] Fluidic Geometric No - - -

Takosoglu 2022 [54] McKibben - Yes Yes Yes Yes

3. The Object of Interest: Fluidic Muscle

To approximate their characteristics, fluidic muscles from the manufacturer FESTO
were chosen. The manufacturer offers them in two variants: the MAS muscle type has a
screwed connection, while the DMSP muscle type has press-fitted connections. Figure 1
shows the DMSP type of muscle, which falls into the category of single-acting traction
drives. The standard sizes of DMSP muscles offered by the manufacturer are 5, 10, 20, and
40. In this study, three muscles of different sizes were considered: DMSP-40 (Figure 1a),
DMSP-20 (Figure 1b), and DMSP-5 (Figure 1c). The designation of the muscles by size is
derived from their internal diameter. The nominal muscle length is selectable within a
specific range for each muscle size. The force also depends on the size of the muscle. An
overview of the technical data of the researched muscles is provided in Table 3.
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tional movement is achieved by the antagonistic engagement of three pairs of muscles, 
joints, and the gear belt subsystem. Electronic pressure regulators (MATRIX ERP50) reg-
ulate the pressure in the muscles, which also include pressure sensors. MATLAB/Sim-
ulink software is used to control the arm. Control signals are processed with a Humusoft 
MF624 DAQ PCI card. 

A test rig consisting of a multiparallel 1-DOF arm actuated with three pairs of 
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6RM). The joint angle is sensed using a high-resolution rotary encoder (US Digital E3 with 
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8750H/8GB) with a DAQ (Humusoft MF644) connected to the computer using a Thunder-
bolt interface. 

Figure 1. Fluidic muscles with press-fitted connections: (a) DMSP-40, (b) DMSP-20, and (c) DMSP-5 [55].

Table 3. Overview of the technical data of the selected DMSP muscles [55,56].

Type of Muscle DMSP-5 DMSP-20 DMSP-40

Internal diameter (mm) 5 20 40
Nominal length (mm) 30 . . . 1000 60 . . . 9000 120 . . . 9000

Max. permissible pretensioning 1% of nominal length 4% of nominal length 5% of nominal length
Max. permissible contraction 20% of nominal length 25% of nominal length 25% of nominal length

Theoretical force (N) 140 1500 6000
Max. additional load (kg) 5 80 250
Operating pressure (bar) 0 . . . 6 0 . . . 6 0 . . . 6

Ambient temperature (◦C) −5 . . . +60 −5 . . . +60 −5 . . . +60

The muscles that were the object of this research were applied at the authors’ work-
place in various experimental stands. These devices were assembled to investigate the
characteristics and hysteresis of the fluidic muscles, etc.

Figure 2a shows a functional model of a 3-DOF planar robotic arm actuated with
DMSP-20 (one pair of FESTO DMSP 20-250N-RM-CM) and DMSP-40 (one pair of FESTO
DMSP 40-400N-RM-CM and one pair of FESTO DMSP 20-400N-RM-CM) fluidic muscles.
The structure of the manipulator is composed of aluminum profiles, which allow modifica-
tion of the structure (e.g., in case of the need to shorten/extend one of the arms). Rotational
movement is achieved by the antagonistic engagement of three pairs of muscles, joints,
and the gear belt subsystem. Electronic pressure regulators (MATRIX ERP50) regulate the
pressure in the muscles, which also include pressure sensors. MATLAB/Simulink software
is used to control the arm. Control signals are processed with a Humusoft MF624 DAQ PCI
card.

A test rig consisting of a multiparallel 1-DOF arm actuated with three pairs of DMSP-5
fluidic muscles is shown in Figure 2b. The rig is made of aluminum profiles and uses six
identical muscles with a length of 200 mm (DMSP 5-200N-RM-CM) to actuate a revolute
joint (Bosch LF6S drive head with toothed belt and pulley) with a threaded rod arm and a
3 kg payload. The pressure in the muscles is controlled using two proportional pressure
regulators with a 0–10 V control signal range (FESTO VPPM-6L-L-1-G18-0L10H-V1P-S1),
and pressurized air is generated using a silent compressor (ABAC OS20P-1,5-6RM). The
joint angle is sensed using a high-resolution rotary encoder (US Digital E3 with 3600 CPR).
All signal processing and generation of control signals is provided by a PC (i7-8750H/8GB)
with a DAQ (Humusoft MF644) connected to the computer using a Thunderbolt interface.
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Figure 2. Experimental system: (a) 3-DOF planar robotic arms actuated with DMSP-20 and DMSP-40
fluidic muscles; (b) 1-DOF arm with multiparallel connection of 6 DMSP-5 fluidic muscles.

A schematic diagram of the test stand that was used for measuring the characteristics
of the DMSP-5 muscle is shown in Figure 3. The test stand was designed to measure the
muscle’s static characteristics under isobaric conditions (i.e., with constant pressure). The
stand consisted of a structure on which the DMSP-5 muscle was attached (both ends of
the muscle were firmly attached to the frame of the structure). Compressed air was let
into the muscle by the compressor, which was regulated as needed (1–6 bar, with a step
of 0.5 bar) using a proportional pressure regulator. With the help of a sliding mechanism,
the required contraction of the muscle was ensured, which was measured using a digital
height gauge. Therefore, the input value for the measurement was the required muscle
contraction (calculated to the length of the muscle) under constant pressure in the muscle.
The output monitored variable was the tensile force of the muscle recorded using the force
sensor at a given pressure constant.
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4. Approximations of the Muscle Characteristics: Theoretical Background

The following well-known and frequently used models were used to approximate
the characteristics (i.e., the forces of FESTO fluidic muscles depending on the muscle
contraction and pressure in the muscle):

• MLP (multilayer perceptron network) model;
• SVM (support-vector machine) model;
• ANFIS (adaptive neuro-fuzzy inference system) model;
• Custom (polynomial) model.

The following parts of this chapter describe the basic theoretical premises for the
individual models in more detail.

4.1. MLP Model

Since the investigated systems described above represent nonlinear dynamic systems.
The first model that was chosen for the approximation of muscle characteristics was the
MLP model. The MLP network is one of the most well-known neural network models
that allows the classification or approximation of nonlinear functions. The basic task of the
network is to transform inputs uj (number of inputs = p) into outputs y with the help of
activation functions φi—most often hyperbolic tangents (Equation (1)) or logistic functions
(Equation (2)) [57,58]:

tauh (x) =
1− exp(−2x)
1 + exp(−2x)

(1)

logistic (x) =
1

1 + exp(−x)
(2)

The architecture consists of a minimum of one hidden layer with a minimum of one
neuron called a perceptron (M = the number of perceptrons of the hidden layer), which is
subsequently linked to a neuron on the output layer. The hidden layer parameters (hidden
layer weight wij) are nonlinear in nature and determine the direction and position of the
basis functions. Conversely, the output layer parameters (output layer weights wi) are
linear and determine the amplitude of the functions. The output of the MLP network can
then be expressed by the following equation [57,58]:

y =
M

∑
i=0

wiφi

(
p

∑
j=0

wijuj

)
(3)

Derivations of the output y of the MLP network according to the weights of the
hidden layer wij can be determined by Equation (4), which applies to the weight of the
connection between the jth input and the ith neuron of the hidden layer. The function g(x)
represents an activation function, e.g., tanh(x). After instituting this form of function into
Equation (4), Equation (5) arises. It follows that the activation function φi is dependent on
two parameters, namely, the inputs uj and the weights of the neurons on the hidden layer
wij. The mentioned method represents the backpropagation algorithm for determining the
gradients of the MLP network according to the weights [57,58].

∂y
∂wij

= wi
dg(x)

dx
uj ; pre u0 = 1, i = 1 . . . M, j = 0 . . . p (4)

∂y
∂wij

= wi

(
1− φ2

i

)
uj ; pre u0 = 1 (5)

4.2. SVM Model

The SVM model is a very popular supervised machine learning algorithm used to
solve classification and regression tasks, as it offers the best results in many cases. SVM is a
method where the goal of the algorithm is to find a hypersurface that divides the data into
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classes, but with the condition that these classes are as far apart as possible. If the data can
be divided by a linear straight line, the model is a linear SVM. However, if it is necessary to
use a nonlinear function for data distribution, the model is a nonlinear SVM, which uses a
combination of support vectors with a kernel function.

The method of support vectors is based on the essence of calculating the scalar products
of two observations (Equation (6)), while Equation (7) applies to the linear classifier of
support vectors [59,60]:

〈xi, xi
′〉 = ∑

p
j=1xijxi′ j (6)

f (x) = β0 + ∑n
i=1αi〈x, xi〉 (7)

It follows from these equations that n parameters αi, i = 1, . . . , n are assumed. To
estimate the parameters β0, α1, . . . , αn, it is necessary to determine the scalar products
between all pairs of two observations. However, if these scalar products are replaced by a
generalized function that quantifies the similarity of two observations, the linear kernel
function (Equation (8)) arises. The task of the kernel function is to transform the data into
a higher-dimensional space, where it is possible to find a hypersurface that can divide
the data into classes. Within the framework of nonlinear kernel functions, the polynomial
kernel (Equation (9)) is known, where d interprets the degree of the polynomial in the
form of a whole positive number; along with the radial kernel (Equation (10)), where c is a
positive constant [59,60]:

K
(
xi, xi

′) = ∑
p
j=1xijxi′ j (8)

K
(
xi, xi

′) = (1 + ∑
p
j=1xijxi′ j

)d
(9)

K〈xi, xi
′〉 = exp

(
−c∑

p
j=1

(
xij − xi′ j

)2
)

(10)

If a support-vector classifier is combined with a nonlinear kernel, the result is a
nonlinear SVM [59,60]:

f (x) = β0 + ∑n
iεSαiK(x, xi) (11)

where S is the set of support vectors.

4.3. ANFIS Model

The third model that was chosen for the approximation of the characteristics was
ANFIS. Its name—adaptive neuro-fuzzy inference system—implies that it is a hybrid neuro-
fuzzy system, where the fuzzy system is interpreted by a rule of the Takagi–Sugeno type
and has the following form:

I f x1 is Ap
1 and x2 is Ap

2 . . . and xn is Ap
n than op = α

p
0 + α

p
1 x1 + . . . α

p
nxn (12)

where xi is the input linguistic variable, Ap
i is the fuzzy set of the ith input and the pth rule,

op is the consequent of the pth rule, and α
p
i represents the parameters of the consequent.

ANFIS consists of five layers, with each layer playing a different role [61,62]:
LAYER 1—Fuzzification layer: O1

i is the output of node i of the first layer, while each
node is adaptive and has a membership function µAp

i
(x), for which Equation (13) applies,

where ap, bp, cp is a set of parameters also called premise parameters:

µAp
i
(xi) = 1/

1 +

((
xi − cp

ap

)2
)bp

 (13)
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LAYER 2—Operational layer of T-norm: Each node is fixed and corresponds to one
rule. The inputs are membership function values combined by T-norm, while the output
wp is the result of all incoming signals:

wp = µAp
i
(x1)

⊗
µAp

j
(x2) i = 1, 2; j = 1, 2; p = 1, . . . , 4 (14)

LAYER 3—Normalization layer: The task is to determine the relative degree of fulfill-
ment of each rule Rp, as follows:

wp =
wp

∑4
p=1 wp

(15)

LAYER 4—Layer of consequences: Within this layer, the nodes are connected to exactly
one node of the normalization layer. The task of the nodes is to calculate the output of the
rule in the form of Equation (16), where the parameters α

p
i denote consequents:

O4
p = wpop = wp

(
α

p
0 + α

p
1 x1 + α

p
2 x2

)
(16)

LAYER 5—Aggregation layer: The task is to determine the final value of all inputs
from the consequent layer:

O5 = ∑4
p=1wp

(
α

p
0 + α

p
1 x1 + α

p
2 x2

)
(17)

5. Results

This chapter presents the results of the approximation of the static characteristics
of FESTO muscles using the selected models of computational intelligence and machine
learning presented in Section 4. Each of the models was created using one of the toolboxes
of MATLAB version 2021b and assessed based on four performance metrics, as presented in
Appendix A. In addition to the actual approximation results (also interpreted graphically),
the used MATLAB toolboxes are briefly described at the beginning of the chapter, along
with the essence of configuring the parameters of the individual models. In addition to
using the toolboxes, several commands were used—especially for identifying the values
of performance indicators of individual models and the graphical interpretation of model
outputs, since individual toolboxes do not provide the same interpretation of outputs.

Depending on the muscle size, different datasets were available, which were sub-
sequently used in creating, training, and testing the models. For the DMSP-20 and
DMSP-40 muscles, the data were read from the static characteristics provided by the man-
ufacturer. For the DMSP-40 muscle, the tensile strength of the muscle was read over the
entire contraction range (not just the operating range). There was a contraction interval
of −5% to 30% with a contraction step of 0.5% for individual pressures (0–6 bar). A total
of 497 samples were thus obtained. For the DMSP-20 muscle, the tensile force data were
read in the same way for individual pressure values of 0–6 bar, but the contraction interval
was from −5% to 27% in steps of 0.5%. A total of 455 samples were obtained. However, the
dataset for the DMSP-5 muscle was not read from the manufacturer’s specifications; rather,
the data were measured using an experimental stand (Figure 3). Through the measure-
ments, characteristic curves were obtained for pressures in the interval of 1–6 bar with a
step of 0.5 bar for contractions in the interval of 0 to 20% with a step of 1%. Measurements
were carried out in two stages (i.e., inflating and deflating the muscle). A pair of values
was thus obtained for each contraction and pressure, and they were subsequently averaged.
There were 11 characteristic curves with a total of 497 samples. The total number of samples
for individual muscle dimensions was subsequently redistributed at a ratio of 70/15/15%
for the training/validation/testing phases, respectively. The total number of samples and
the sampling ratios for individual muscles are summarized in Table 4. Normalization of
the data was performed implicitly before further processing within the models.
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Table 4. Division ratios for training, validating, and testing the created models.

Type of Muscle Total Number
of Samples Data Division Ratio % Sample Division

DMSP-5 231 70/15/15 161/35/35
DMSP-20 455 70/15/15 319/68/68
DMSP-40 497 70/15/15 347/75/75

5.1. Neural Network Fitting and Configuration of the Created MLP Models

The MLP models of the neural network were created in the Neural Network Fitting
toolbox, which is included in the machine learning and deep learning toolbox group within
the MATLAB program. The advantage of this toolbox is that after importing the data and
configuring the basic parameters of the network, it is possible to monitor the architecture
of the network, but also to perform training/validation/testing without having to use
another MATLAB environment. At the same time, the toolbox provides several options for
displaying plots (for example, we monitored error histograms and regression plots).

For each muscle type (i.e., DMSP-5, DMSP-20, and DMSP-40), we created five MLP
models according to the number of neurons in the hidden layer (1, 2, 5, 10, or 20). The layer
size of these networks was in count 1. The number of parameters was also monitored for
the individual created models. The input for the network was a two-row matrix with N
samples, where each row represented one input parameter—namely, muscle pressure p
and muscle contraction h. The output was a one-row matrix with N samples of the tensile
force of muscle F. As a training algorithm, we used the Bayesian regularization algorithm.

5.2. Regression Learner App and Configuration of the Created SVM Models

The SVM models were created in the Regression Learner App which, like the previous
toolbox, is classified in MATLAB’s machine learning and deep learning toolbox group.
This toolbox serves as a comprehensive tool for the creation and subsequent training and
testing of linear and nonlinear regression models (e.g., SVM, trees, neural network models,
etc.). If the user is not sure which model is most suitable, they can choose several types of
models and monitor their success/error rates based on the RMSE criterion. The results of
the models can also be interpreted with different graphs, such as response plots, validation
residual plots, or predicted vs. actual plots.

A total of six SVM models were created for each muscle. The individual SVM models
differed from one another in the functions used: linear, quadratic, cubic, fine Gaussian,
medium Gaussian, and coarse Gaussian. The input of the network was a matrix of size
3xN, where the first and second rows represented the inputs pressure and contraction,
while the third row was the output, i.e., the tensile force of the muscle. N represents the
number of samples in the given matrix. The toolbox allows the selection of the type of
validation: cross-validation, holdout validation, or resubstitution validation. In this study,
holdout validation was used. All three phases (i.e., training, validation, and testing) were
implemented in the aforementioned toolbox. In addition to performance indicators, it is
possible to monitor other parameters of the models in the overviews of the created models,
such as kernel scale, bias, etc.

5.3. Neuro-Fuzzy Designer and Configuration of the Created ANFIS Models

The ANFIS models were created in Neuro-Fuzzy Designer, which belongs to the con-
trol system design and analysis toolbox group. This toolbox allows for designing, training,
and validating ANFIS models by importing input/output training data. After importing
the data, it enables the generation of an FIS structure (grid partition or subclustering op-
tions). For the membership function (MF), the toolbox provides a choice of settings. For its
inputs, it is possible to select the number and type of the MFs. The MF type is chosen for its
outputs. At the same time, it allows the structure of the created model to be displayed with
inputs/outputs, inputs/outputs of the membership function, and rules. The structure also
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shows what logical operations are used. Before the actual training, it is necessary to choose
the optimization method (hybrid or backpropagation), epochs, and tolerance. During
training, the toolbox displays a training error. To test the models, they were exported to the
workspace of the MATLAB environment and tested using the command evalfis.

Since there are several options to choose from when creating the FIS structure and
configuring the membership function, a total of eight ANFIS models were created.

• The first four models, labeled ANFIS 1–4, had the following features: an FIS structure
created by grid partition; 4, 6, 8, and 10 input MFs, and Gaussian type; a constant
output MF type; a hybrid optimization method; 0 error tolerance; 10 epochs.

• The other four models, labeled ANFIS 5–8, had the following features: an FIS structure
created using grid partition; 4, 6, 8, and 10 input MFs, and Gaussian type; a linear
output MF type; a hybrid optimization method; 0 error tolerance; 10 epochs.

As the number of MFs used in the model structure increased, so did the total number
of model parameters, as also shown in the overview tables themselves.

5.4. Curve Fitting Toolbox and the Configuration of the Custom Equation Models

Curve Fitting Toolbox is classified in MATLAB’s Math, Statistics, and Optimization
section. The toolbox enables the analysis of imported data, finding functions for interpreting
the input data (interpolant, lowess, polynomial, or custom equations), plotting curves and
surfaces, and evaluating the resulting functions based on several performance metrics
(e.g., SSE, R-squared, RMSE, etc.). The toolbox also provides modeling techniques such as
smoothing, interpolation, or splines.

To compare the results of the MLP, SVM, and ANFIS models, a simple four-parameter
model for the force function of the fluidic muscles was used. The model included the
multiplication of two terms: one with the first independent variable (i.e., pressure), and the
second with the second-degree polynomial function of the second independent variable
(i.e., contraction). The model was named a custom model, taken for purposes of comparison
from [63]. The name custom model is related to the Curve Fitting Toolbox used, where the
custom equation option was selected in the toolbox when entering the adopted model. This
model, commonly applied in the model-based control design of FM-actuated mechanisms
mentioned in [63], has the form of Equation (18):

f (x, y) = x
(

a1y2 + a2y + a3

)
+ a4 (18)

The task of the toolbox was to find the values of the coefficients a1 . . . a4 for the
specified measured data. Therefore, one custom model was determined for each muscle.
Testing of the created models, which each had four parameters, was carried out outside the
toolbox environment.

5.5. Approximation of the Characteristics of PAMs: DMSP 40

When using muscles, but also when examining them, it is important to know their
working ranges. The tensile force of the muscle F (N) is dependent on the contraction of the
muscle, but the dependence is nonlinear and is different for different muscles depending
on their size. The manufacturer indicates the permissible working range of the muscles
and defines it with the help of limit curves.

Figure 4 shows the dependences of tensile force F (N) on contraction h (%) from the
nominal muscle length for the DMSP-40 muscle type at constant pressures in the range
from 0 to 6 bar, as measured and interpreted by the manufacturer. In the picture, four
boundary curves can be seen, where boundary 1 expresses the minimum theoretical force at
the maximum operating pressure (6000 N). Boundary 2 represents the maximum operating
pressure, which is a value of 6 bar. Boundary 3 expresses the maximum deformation; for
the DMSP-40 muscle, this is 25% of the nominal muscle length. Finally, boundary 4 is the
maximum pretensioning, which for the DMSP-40 muscle is −5% of the nominal muscle
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length. The grey area in the graph expresses the permissible operating range for the given
muscle.
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By recording the data from the force characteristics of a given type of muscle, a set of
input/output data used for creating models in MATLAB was created. Tables 5–8 present
overviews of the parameters of the created individual models, along with performance
metrics comparing the individual models from the validation phase:

Table 5. Overview of the parameters of the created MLP models and performance metrics of the
DMSP-40 muscle validation results.

Model MLP 1 MLP 2 MLP 5 MLP 10 MLP 20

Number of neurons 1 2 5 10 20
Number of parameters 5 9 21 41 81

NRMSE 60.31 62.87 94.77 97.95 90.36
SSE 259,540,000 227,080,000 4,500,700 689,790 15,308,000
AIC 6553.4 6495 4570.2 3678.1 5298.6
SBC 6574.5 6532.9 4658.6 3850.6 5639.5

Table 6. Overview of the parameters of the created SVM models and performance metrics of the
DMSP-40 muscle validation results.

Model SVM 1 SVM 2 SVM 3 SVM 4 SVM 5 SVM 6

Kernel scale 0.77162 0.77162 0.77162 0.35 1.4 5.7
Bias 1.45 × 103 1.16 × 103 1.11 × 103 1.67 × 103 2.24 × 103 3.84 × 103

Epsilon 1.76 × 102 1.76 × 102 1.76 × 102 1.76 × 102 1.76 × 102 1.76 × 102

Function Linear Quadratic Cubic Fine Gaussian Medium Gaussian Coarse Gaussian
Alpha 316 137 94 132 73 151
Beta 2 0 0 0 0 0

NRMSE 46.28 54.94 52.61 75.52 61.69 57.32
SSE 4.75 × 108 3.34 × 108 3.70 × 108 9.87 × 107 2.42 × 108 3.00 × 108

AIC 7.48 × 103 6.94 × 103 6.91 × 103 6.33 × 103 6.65 × 103 6.92 × 103

SBC 8.82 × 103 7.52 × 103 7.30 × 103 6.88 × 103 6.96 × 103 7.55 × 103
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Table 7. Overview of the parameters of the created ANFIS models and performance metrics of the
DMSP-40 muscle validation results.

Model ANFIS 1 ANFIS 2 ANFIS 3 ANFIS 4 ANFIS 5 ANFIS 6 ANFIS 7 ANFIS 8

Input MF 4 4 6 6 8 8 10 10 4 4 6 6 8 8 10 10
MF type Constant Constant Constant Constant Linear Linear Linear Linear

Parameters 32 60 96 140 64 132 224 340

NRMSE 63.27 68.99 73.95 77.52 75.65 78.83 81.04 84.09
SSE 2.22 × 108 1.58 × 108 1.12 × 108 8.33 × 107 9.76 × 107 7.38 × 107 5.92 × 107 4.17 × 107

AIC 6.53 × 103 6.42 × 103 6.32 × 103 6.26 × 103 6.19 × 103 6.18 × 103 6.26 × 103 6.31 × 103

SBC 6.67 × 103 6.67 × 103 6.72 × 103 6.85 × 103 6.45 × 103 6.74 × 103 7.20 × 103 7.75 × 103

Table 8. Overview of the parameters of the created custom model and performance metrics of the
DMSP-40 muscle validation results.

Model Parameters Metrics

a1 0.2629 NRMSE 53.18
a2 −39.51 SSE 3.6116 × 108

a3 924.9 AIC 6.7156 × 103

a4 94.56 SBC 6.7325 × 103

• An overview of the results of the MLP models is presented in Table 5, which compares
five MLP models that differ from one another in the number of neurons on the hidden
layer (and, in turn, the number of parameters). Based on the NRMSE criterion, the
model with 10 neurons (marked as MLP 10) was the best model, with 97.95% agree-
ment with the reference model (provided by the manufacturer). From the theoretical
starting points presented in the article, it is obvious that for the AIC and SBC metrics
the value when the indicator’s value is ideal is unknown. These metrics become
important if several models can be compared with one another. It is true that the
lower the value of the AIC or SBC, the better the model. The MLP 10 model—which
achieved the best evaluation within the NRMSE criterion and, subsequently, in the
SSE—had the lowest values of the AIC and SBC indicators. Although this model does
not have the lowest number of parameters, it is also not among the most complex
models.

• The second type of model that was chosen for approximation was the SVM model.
The results of validation based on performance indicators are shown in Table 6. It is
obvious that none of the created SVM models could achieve the same results as the
best MLP models, since the best-rated model based on the NRMSE criterion (as well
as other indicators) was a model with a fine Gaussian function (SVM 4), with 75.52%
agreement with the measured data.

• The third type of model was the ANFIS hybrid model. A total of eight ANFIS models
were created, which differed in the type of membership function used and the number
of function inputs. An overview of the parameters of the created ANFIS models, along
with the results of the performance evaluation based on individual indicators after the
validation phase for the DMSP-40 muscle, can be seen in Table 7. Based on the NRMSE,
the best model was ANFIS 8, with a rate of agreement of 84.09%, with 10 MF inputs
and a linear function type. However, this model did not fare the best in the evaluation
by the AIC and SBC, as it was the model with the highest number of parameters,
which was reflected in the values of these performance indicators. Therefore, the next
considered model—with the same type of MF, but a different number of inputs and
better AIC and SBC evaluations—could be the ANFIS 6 or ANFIS 5 models. Compared
to the best MLP and SVM models, ANFIS ranked between these models in the NRMSE
evaluation.
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• Since the best models among the MLP, SVM, and ANFIS models had a higher number
of parameters, one more model was chosen for comparison: a model with four param-
eters, interpreted as a custom model. Table 8 shows the identified parameters of the
model a1 . . . a4. At the same time, the model was assessed by performance metrics,
where the NRMSE indicator achieved 53.18% compliance with the measured data.

5.6. Summary of the Model Results for DMSP-40 (Graphical Interpretation)

Figure 5 presents a summary of the model results interpreted graphically for the
best models of the given groups, where the simulated force is presented as “Output” in
correlation with the force measured by FESTO—marked as “Target”—for DMSP-40 within
the test phase. The points labeled “Data” are data that were used for the testing phase. The
regression line expresses the agreement between the targets and outputs. The more data
type values lie on the regression line, the greater the correlation between the outputs and
targets. From the results interpreted in Tables 5–8, it is obvious that within the NRMSE
criterion, from best to worst, the first model was the MLP model, followed by the ANFIS,
SVM, and custom models. These results can be confirmed by the graphs in Figure 5. The
dispersion of values for the custom model in the region of the regression line is considerable,
while the dispersion of values for the MLP model is minimal. Within the dispersion of
values, it can be assumed that these may be values on the edge or outside the operating
range of the muscle. For the custom model, it can be seen that the predicted forces are lower
than the measured output. Differences in performance probably result from differences in
characteristics in a given area of the operating range.
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Relations of force, contraction, and pressure approximated by the ANFIS, custom,
MLP, and SVM models for the DMSP-40 model are shown in Figure 6. These are 3D surfaces
that were created from the simulated outputs of the muscle tensile force parameter models
based on the measured values of muscle contractions at constant pressures. As mentioned
above, the best model for the DMSP-40 muscle was the MLP model, whose curves and
corresponding surface can be seen in the lower left panel of Figure 6.
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5.7. Approximation of the Characteristics of PAMs: DMSP 20

A similar interpretation of the dependence of the tensile force on the muscle contraction
also applies to the DMSP-20 muscle, as shown graphically in Figure 7. Just as was the
case for DMSP-40 (Figure 4), this is a graphical dependence measured and interpreted by
the muscle manufacturer. In the image, it can be seen that the minimum theoretical force
at the maximum operating pressure for DMSP-20 is 1500 N (Figure 7; boundary 1). The
maximum operating pressure is a value of 6 bar (Figure 7: boundary 2). Moreover, the
maximum deformation is the same as for DMSP-40, i.e., 25% of the nominal length of the
muscle (Figure 7; boundary 3). However, the maximum pretensioning is somewhat smaller,
at −4% of the nominal length of the muscle (Figure 7; boundary 4).
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As for DMSP-40, the input/output data from the manufacturer’s operating range for
DMSP-20 were read and used to create models, the results of which are interpreted in
Tables 9–12:

• Table 9 contains the resulting performance indicators for five MLP models that were
modeled under the same conditions as the MLP models for the DMSP-40 muscle. Not
only within the NRMSE criterion, but also within the SSE, AIC, and SBC indicators,
the MLP 10 model with 10 neurons and an NRMSE value of 89.90% agreement with
the reference model emerged as the best model.

• An overview of the parameters and results of the SVM models for the DMSP-20 muscle
can be seen in Table 10. Among the total of six models created, the best-rated model
based on NRMSE (63.45%) was the SVM 4 model, which interprets the SVM model
with the fine Gaussian function. The values of the metrics SSE, AIC, and SBC also
had the lowest values compared to the other models. Although this model showed
the best results in terms of indicators, compared to the best MLP model it achieved a
significantly worse result.

• The best ANFIS model for the DMSP-20 muscle also achieved a similar evaluation
within the NRMSE as achieved by the best SVM. As part of the overview of the results
in Table 11, it can be seen that the best model was ANFIS 7—a model with eight
MF inputs and a linear MF. This model has a higher number of parameters, which
corresponds to worse ratings within the AIC and SBC indicators. However, within the
NRMSE criterion, it achieved the best rating (65.74%). An alternative to the use of the
ANFIS 7 model could be the ANFIS 5 or ANFIS 6 models, which achieve worse results
within the NRMSE but are simpler models in terms of their number of parameters.

• Similar to the DMSP-40 muscle, for the DMSP-20 muscle the models with a higher
number of parameters emerged as the best in the evaluation. However, the custom
model created based on Equation (18) achieved a very low value (only 20.52%) in
the evaluation based on the NRMSE criterion. The parameters of the custom model,
together with the values of other performance metrics, are listed in Table 12.
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Table 9. Overview of the parameters of the created MLP models and performance metrics of the
DMSP-20 muscle validation results.

Model MLP 1 MLP 2 MLP 5 MLP 10 MLP 20

Number of neurons 1 2 5 10 20
Number of parameters 5 9 21 41 81

NRMSE 39.86 66.20 81.62 89.90 88.74
SSE 38,800,000 12,255,000 3,623,100 1,093,700 1,361,200
AIC 5175.9 4659.5 4129.1 3624.1 3803.6
SBC 5196.5 4696.6 4215.6 3793 4137.4

Table 10. Overview of the parameters of the created SVM models and performance metrics of the
DMSP-20 muscle validation results.

Model SVM 1 SVM 2 SVM 3 SVM 4 SVM 5 SVM 6

Kernel scale 0.835117 0.835117 0.835117 0.35 1.4 5.7
Bias 331.7927 240.2869 221.3975 367.2308 460.7336 1055.019

Epsilon 44.0972 44.0972 44.0972 44.0972 44.0972 44.0972
Function Linear Quadratic Cubic Fine Gaussian Medium Gaussian Coarse Gaussian

Alpha 319 150 138 145 118 194
Beta 2 0 0 0 0 0

NRMSE 29.62 22.82 19.46 63.45 43.47 30.46
SSE 5.31 × 107 6.39 × 107 6.96 × 107 1.43 × 107 3.43 × 107 5.19 × 107

AIC 5.95 × 103 5.69 × 103 5.71 × 103 5.00 × 103 5.35 × 103 5.69 × 103

SBC 7.27 × 103 6.31 × 103 6.28 × 103 5.60 × 103 5.83 × 103 6.49 × 103

Table 11. Overview of the parameters of the created ANFIS models and performance metrics of the
DMSP-20 muscle validation results.

Model ANFIS 1 ANFIS 2 ANFIS 3 ANFIS 4 ANFIS 5 ANFIS 6 ANFIS 7 ANFIS 8

Input MF 4 4 6 6 8 8 10 10 4 4 6 6 8 8 10 10
MF type Constant Constant Constant Constant Linear Linear Linear Linear

Parameters 32 60 96 140 64 132 224 340

NRMSE 44.19 55.08 57.90 59.70 60.80 64.76 65.74 65.41
SSE 3.34 × 107 2.16 × 107 1.90 × 107 1.74 × 107 1.71 × 107 1.33 × 107 1.26 × 107 1.28 × 107

AIC 5.16 × 103 5.22 × 103 5.29 × 103 5.38 × 103 5.23 × 103 5.36 × 103 5.55 × 103 5.78 × 103

SBC 5.29 × 103 5.47 × 103 5.69 × 103 5.95 × 103 5.49 × 103 5.91 × 103 6.47 × 103 7.18 × 103

Table 12. Overview of the parameters of the created custom model and performance metrics of the
DMSP-20 muscle validation results.

Model Parameters Metrics

a1 −0.1398 NRMSE 20.52
a2 −4.77 SSE 6.7771 × 107

a3 182.7 AIC 5.4277 × 103

a4 77.43 SBC 5.4441 × 103

5.8. Summary of the Model Results for DMSP-20 (Graphical Interpretation)

In Figure 8, it is possible to see the simulated force (Output) in correlation with the
force measured by FESTO (Target) for DMSP-20 within the test phase. The points labeled
“Data” represent data that were used for the testing phase. The regression line expresses the
agreement between the target and output. From the results interpreted in the figure, along
with those presented in Tables 9–12, it is clear that the MLP model performed best and
the custom model performed the worst (as for the DMPS−40 muscle) within the NRMSE
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criterion. As with DMSP-40, it can be assumed that the dispersion values may be values on
the edge or outside the operating range of the muscle. However, for the custom model, the
predicted forces were significantly lower than the measured output. Again, performance
differences probably resulted from characteristics in a given area of the operating range.
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the force measured by FESTO (Target) for DMSP-20: test phase.

The obtained simulated outputs of the DMSP-20 muscle’s tensile force depending on
the muscle contraction and the pressure in the muscle, which were approximated by the
selected models, are graphically displayed for the best individual models in Figure 9. The
individual points of the simulated characteristics (red points) create 3D surfaces, and if
they are compared with the characteristics given by the manufacturer (Figure 7), it is clear
that the MLP model achieved the best approximation. The custom model resulting from
the evaluation of performance indicators, as well as from graphical interpretation, was not
suitable for approximating the static characteristics of the DMSP-20 muscle.
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5.9. Approximation of the Characteristics of PAMs: DMSP-5 Experimental Measured Data

Figure 10 shows the graphical dependence of tensile force on contraction for the
DMSP-5 muscle, as reported by the muscle manufacturer. The theoretical force at the
maximum operating pressure is much smaller than that of the previous muscles due to its
technical parameters (140 N; designation 1 in Figure 10). The maximum operating pressure
is the same as for the previous muscles. The maximum contraction is 5% lower (20% of the
nominal length of the muscle), and the maximum pretensioning is significantly lower than
that of the DMSP-20 and DMSP-40 muscles (−1% of the nominal muscle length).

However, data from the manufacturer were not used to approximate the characteristics.
Experimental measurements were taken to determine the characteristics of the DMSP-5
muscle on the test device (Figure 3) described in Section 3. Since two sets of measurements
were taken for each pressure value (1–6 bar, with a step of 0.5 bar; one measurement at
0–20% contraction; a second measurement at 20–0% contraction), these measurements
were subsequently processed and adjusted by averaging the values. The results are the
measured static characteristics of the DMSP-5 fluidic muscle, as presented in Figure 11.
These measured characteristics subsequently served to create and verify the models.
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Tables 13–16 present the interpretation of the resulting models created for the DMSP-5
muscle:

• Table 13 shows an overview of the parameters and indicators of the MLP models.
Compared to the MLP models for DMSP-20 and DMSP-40, based on the NRMSE
criterion, the model with 20 neurons (MLP 20) emerged as the best model, with
an agreement of 98.74% with the measured data. However, selection based on the
SSE, AIC, and SBC metrics would also confirm this selection, as the values of these
indicators were the lowest for the model in question.

• The variability in the results of the SVM models for DMSP-5 is visible in the values
of the indicators shown in Table 14 (NRMSE ranging from 36.96% to 81.93%). The
best model reached an NRMSE of 81.93% using a cubic function (SVM 3). If the best
model was chosen based on the SSE, the choice would be the same. However, a change
would occur based on the AIC and SBC, when the SVM 5 model with the medium
Gaussian function and an NRMSE value of 80.76% would also be a suitable candidate.
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• The ANFIS models created and tested for the DMSP-5 muscle achieved much better
results compared to the ANFIS models for DMSP-20 and DMSP-40. Moreover, in
the comparison of the created models, the results of the NRMSE evaluation for the
best ANFIS model (NRMSE = 96.31%) were similar to those of the best MLP model
(NRMSE = 98.74%). In Table 15, it can be seen that the best ANFIS model was the AN-
FIS 6 model, which contains 6 MF inputs and a linear MF. The number of parameters
in this model is not the lowest, but at the same time, it does not belong to the group of
models with the highest number of parameters. This model achieved the best values
in almost all indicators.

• The last approximated function of the static characteristics of the DMSP-5 muscle based
on the measured data was a custom model; the transcription of the general equation is
identical to Equation (18), and the values of the model parameters are summarized in
Table 16. Within the framework of the custom models created for individual muscles,
they achieved the highest rating for NRMSE (72.86%). Nevertheless, their results were
not comparable with those of the models listed above.

Table 13. Overview of the parameters of the created MLP models and performance metrics of the
DMSP-5 muscle validation results.

Model MLP 1 MLP 2 MLP 5 MLP 10 MLP 20

Number of neurons 1 2 5 10 20
Number of parameters 5 9 21 41 81

NRMSE 80.91 86.56 95.45 97.11 98.74
SSE 8.32 × 103 4.12 × 103 473.054 190.3272 36.5044
AIC 837.8817 683.7842 207.5791 37.2615 −264.1914
SBC 855.0938 714.766 279.8698 178.4006 14.6444

Table 14. Overview of the parameters of the created SVM models and performance metrics of the
DMSP-5 muscle validation results.

Model SVM 1 SVM 2 SVM 3 SVM 4 SVM 5 SVM 6

Kernel scale 1.297189 1.297189 1.297189 0.35 1.4 5.7
Bias 14.64499 5.523659 5.472792 19.65491 31.02986 58.20743

Epsilon 2.112676 2.112676 2.112676 2.112676 2.112676 2.112676
Function Linear Quadratic Cubic Fine Gaussian Medium Gaussian Coarse Gaussian

Alpha 180 138 119 125 70 156
Beta 2 0 0 0 0 0

NRMSE 36.96 76.76 81.93 71.48 80.76 55.03
SSE 9.07 × 104 1.23 × 104 7.46 × 103 1.86 × 104 8.45 × 103 4.62 × 104

AIC 1.74 × 103 1.66 × 103 1.04 × 103 1.26 × 103 971.5456 1.54 × 103

SBC 7.27 × 103 6.31 × 103 6.28 × 103 5.60 × 103 5.83 × 103 6.49 × 103

Table 15. Overview of the parameters of the created ANFIS models and performance metrics of the
DMSP-5 muscle validation results.

Model ANFIS 1 ANFIS 2 ANFIS 3 ANFIS 4 ANFIS 5 ANFIS 6 ANFIS 7 ANFIS 8

Input MF 4 4 6 6 8 8 10 10 4 4 6 6 8 8 10 10
MF type Constant Constant Constant Constant Linear Linear Linear Linear

Parameters 32 60 96 140 64 132 224 340

NRMSE 81.40 87.28 90.52 93.26 93.71 96.31 86.14 89.97
SSE 7.90 × 103 3.70 × 103 2.05 × 103 1.04 × 103 9.03 × 102 3.10 × 102 4.38 × 103 2.30 × 103

AIC 8.80 × 102 7.60 × 102 6.96 × 102 6.27 × 102 4.43 × 102 3.32 × 102 1.13 × 103 1.21 × 103

SBC 9.90 × 102 9.67 × 102 1.03 × 103 1.11 × 103 6.63 × 102 7.87 × 102 1.90 × 103 2.38 × 103
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Table 16. Overview of the parameters of the created custom model and performance metrics of the
DMSP-5 muscle validation results.

Model Parameters Metrics

a1 0.07496 NRMSE 72.86
a2 −2.533 SSE 1.6812 × 104

a3 25.39 AIC 998.3944
a4 −16.72 SBC 1.0122 × 103

5.10. Summary of the Model Results for DMSP-5 (Graphical Interpretation)

Figure 12 shows an overview of the force simulated (Output) by the ANFIS, custom,
MLP, and SVM models in correlation with the force measured (Target) for DMSP-5 in the
test phase. From the graphs selected for the best models, it is possible to confirm what was
presented in Tables 13–16, i.e., that the best model for approximating static characteristics
based on the NRMSE evaluation criterion is the MLP model. At the same time, the largest
dispersion of values around the regression line (and, thus, the worst model) is the custom
model.
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The static characteristics of the DMSP-5 muscle approximated by the best models,
along with their created 3D surfaces, can be seen in Figure 13. From the measured char-
acteristics shown in Figure 11—which were used to create the models and, subsequently,
to compare their outputs—it is obvious that the maximum tensile force at a pressure of 6
bar should reach 150 N. However, from the graphs shown in Figure 13, it can be seen that
the custom model is not capable of approximating the given value; therefore, the custom
model was the worst among the individual evaluation models (Tables 13–16). On the other
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hand, the curves of the MLP and ANFIS models are very similar and almost identical to
the measured output, as proven by the values of the NRMSE criterion.
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6. Summary and Discussion

This final section contains a summary of the results together with their discussion
and is divided into two parts: The first part summarizes the results of the approximation
models for the individual muscles, always choosing the best from a given group of models.
The results as described and graphically interpreted in Figures 14–16 compare the models’
outputs with the force measured for the individual muscles. This section is followed by a
discussion of the results based on the best models according to their correspondence with
the measured data and based on their complexity (i.e., number of parameters). The discus-
sion also summarizes the results of the models of all architectures for each of the modeled
muscle types using selected performance metrics, which are interpreted graphically in the
form of boxplots.
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The most relevant graphical overview of the model outputs for the DMSP-40 muscle
is presented in Figure 14, which summarizes all of the outputs of the best models in one
graph together with the measured data. The measured tensile force is indicated by a black
dashed line labeled F. The outputs of the individual models are shown by solid colored
lines:

• MLP model with 10 neurons and an NRMSE value of 97.95% (red line, marked as
YS-mlp);

• ANFIS model with 10 MF inputs and a linear MF, with an NRMSE value of 84.09%
(green line, marked as YS-anfis);

• SVM model with a fine Gaussian function and an NRMSE value of 75.52% (blue line,
marked as YS-svm);

• Custom model with an NRMSE value of 53.18% (yellow line, marked as YS-custom).

An overview of the model outputs, summarizing all of the outputs of the best models
in one graph together with the measured data for the DMSP-20 muscle, is shown in
Figure 15. The measured tensile force is indicated by the black dashed line marked F. The
outputs of the individual models are shown by solid colored lines:

• MLP model with 10 neurons and an NRMSE value of 89.90% (red line, marked as
YS-mlp);

• ANFIS model with 8 MF inputs and a linear MF, with an NRMSE value of 65.74%
(green line, marked as YS-anfis);

• SVM model with a fine Gaussian function and an NRMSE value of 63.45% (blue line,
marked as YS-svm);

• Custom model with an NRMSE value of 20.52% (yellow line, marked as YS-custom).

A comparison of the outputs of the best models in one graph, together with the
experimentally obtained data for the DMSP-5 muscle, is shown in Figure 16. The measured
tensile force is indicated by a black dashed line labeled F. The outputs of the individual
models are shown by solid colored lines:

• MLP model with 20 neurons and an NRMSE value of 98.74% (red line, marked as
YS-mlp);

• ANFIS model with 6 MF inputs and a linear MF, with an NRMSE value of 96.31%
(green line, marked as YS-anfis);

• SVM model with a cubic function and an NRMSE value of 81.93% (blue line, marked
as YS-svm);

• Custom model with an NRMSE value of 72.86% (yellow line, marked as YS-custom).

Taking into account the results of the measured force characteristics of the investigated
muscle types (either supplied by the muscle manufacturer or determined during the
experiments), it can be observed that the function has a similar form but with different
scaling. However, simple scaling of the output of a single model trained with the data
for one of the muscle diameters would not be sufficient to obtain a good performance
when higher accuracy is required. The 3D plots of the function reveal two important areas
that manifest themselves differently when using various types of muscle force function
approximators. One of the areas is the area of zero-force values, which increases with the
decrease in the value of muscle pressure. The other area includes the area of non-zero
muscle force, i.e., the area where a muscle actually performs useful work and generates
force. It is noteworthy that in the case of measurements carried out for DMSP-5, the
distribution of the data was denser for set pressures because of the lower pressure step
(50 kPa, compared to 100 kPa for the characteristics given by the manufacturer). In addition,
the mean curves of two directions of length changes were used; therefore, the hysteresis of
the force function was not considered.

As shown in the results for model performance, the area of zero force appears to be
more demanding in terms of the required flexibility of the model for achieving higher
accuracy. As a result of this, the performance of the simple custom model with four
parameters is significantly reduced compared to the other models. While the inaccuracies
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of the muscle force model approximators in the zero-force area caused by the output
reaching negative values could be handled using the saturation function with a lower
bound of zero, this solution would not help for the output errors above zero. Moreover,
the regression plots for test data shown in Figure 12 illustrate that both the SVM and
custom models also have inferior performance in the area of higher force. Even though the
approximation capabilities of ANFIS and MLP are naturally expected to be more powerful
due to their higher numbers of parameters, it is important to obtain parsimonious models
where the balance of model complexity and performance is taken into consideration. These
can be compared using the AIC and SBC performance metrics which, based on the results,
still favor the MLP models.

In Table 17, which summarizes the best results for each type of DMSP fluidic muscle, it
is clear that the MLP model prevails as the best within the individual muscles. Nevertheless,
let us analyze these results:

• For the DMSP-40 muscle, the MLP 10 model achieved an AIC of 3678.1 and an SBC
of 3850.6. The other models that approached these values were also from the MLP
group. The SVM models started at AIC 6330 and SBC 6880 (SVM 4). The ANFIS
models started at similar values—AIC 6190 and SBC 6450 (ANFIS 5). The custom
model achieved values in these metrics that ranked it among the models with weaker
results.

• A similar scenario occurred for the DMSP-20 muscle, with the best AIC and SBC values
of 3624.1 and 3793, respectively, for the 10-neuron MLP. Although the AIC and SBC
values of the best model were similar to those for the DMSP-40 muscle, at the same
time, the models that approached the best results were also from the group of MLP
models, with only one change. The SVM, ANFIS, and custom models achieved lower
values in the AIC and SBC parameters than for the DMSP-40 muscle. For example,
the best SVM model started at AIC 5000 and SBC 5600 (SVM 4), while the best ANFIS
model started at AIC 5160 and SBC 5290 (ANFIS 1). The values of these two metrics
for the custom model were around 5400.

• However, the most fundamental difference in the AIC and SBC metrics was observed
for the DMSP-5 muscle. The metric values of the best MLP model, with 20 neurons,
can be seen in Table 17. However, interesting results were also achieved by the ANFIS
6 model, with AIC 332 and SBC 787, as well as by the custom model, where the AIC
reached 998.3944 and the SBC reached 1012.2. The best SVM model (SVM 5) started
with AIC and SBC values of 971.5456 and 5830, respectively.

Table 17. Summary of the best results for each type of DMSP fluidic muscle.

Metrics
DMSP-40 DMSP-20 DMSP-5

MLP 10 MLP 10 MLP 20

AIC 3678.1 3624.1 −264.1914
SBC 3850.6 3793 14.6444

NRMSE 97.95% 89.90% 98.74%

It is also interesting to generalize the performance of the models using the selected
performance metrics for all muscle types in question (Figure 17 and Table 17). Generally,
we were interested in the best results for the approximation of muscle force function. The
boxplots in Figure 17 allow the capabilities of the selected architectures of the approxi-
mators to be evaluated. However, it must be noted that only the NRMSE metric includes
normalization and, thus, makes the results comparable between the muscle types. The
highest median values of the NRMSE metric, recorded for DMSP-5, were probably caused
by the different method of obtaining data, as well as the slightly increased number of data
samples. On the other hand, the best-performing function approximators had fit values
in the order of 90% (Table 17). The AIC metrics show similar ranges of their 25th and
75th percentiles, but the unnormalized form causes different placement of their respective
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boxplots on the y-axis. In terms of model parsimony, the AIC and SBC criteria are more
important because of their reflection of the complexity/fit balance. The boxplots of the AIC
criterion also confirm that several models performed much better compared to others (i.e.,
low-value outliers). This applied to the MLP models, which dominated the other model
architectures for this type of function.
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It appears probable that the sigmoid activation function is especially suited for the
shape of a DMSP muscle force function and can obtain a good approximation with the
best complexity/fit balance, as reflected in the values of AIC. The summary results shown
in Table 17 allow the best model approximator to be determined—in all three cases, it
is the MLP architecture, with the 10-neuron structure for DMSP-20 and DMSP-40, and
with the 20-neuron structure for DMSP-5. However, the difference in NRMSE between
MLP-10 and MLP-20 is roughly 1.5%, which makes MLP-10 possibly the best choice for the
approximation of DMSP muscles’ force function.

Table 18 shows the comparison of the relevant metrics for the best-performing model
in this work (i.e., MLP10 for DMSP-20, which was the only muscle used in other references)
with four other models used in other works.

Table 18. Performance comparison of several state-of-art models with the best ML model.

Model Analytical Maximum
Force

Exponential
Function

Polynomial
Function MLP 10

[47,64] [47,65] [47,49] [47,48] −
Number

of parameters 5 8 6 21 41

Number
of samples 417 417 417 417 455

RMSE 81.22 473 209.2 164.5 49.02791
SSE 2,784,000 93,740,000 18,420,000 10,990,000 1,093,700
AIC 3682.2 5154.7 4472.2 4286.8 3624.1
SBC 3702.4 5186.9 4496.4 4371.5 3793

It must be noted that the number of data points was not available and had to be
estimated based on the used metrics (it was determined to be 417). It can be observed that
the value of RMSE was the lowest for the case of MLP10; of course, as expected in the
case of ML models, this was achieved with a higher number of parameters. Nevertheless,
the value of AIC, which takes the balance between model accuracy and complexity into
account, was still the lowest. This suggests that the high flexibility of ML models might
be rewarded with a sufficiently high increase in accuracy to retain the beneficial balance
of accuracy/complexity in the resulting models. In consequence, when high accuracy is
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of interest (e.g., in simulation models used for optimization or verification), the parsimo-
nious ML models can be useful. In addition, the high flexibility of these models allows
researchers to vary their structure, include additional inputs easily, and also achieve very
high accuracies that other models might not be capable of [66].

The algorithms for training the ML models were sequential minimal optimization for
the SVM models, a hybrid method (i.e., LS and backpropagation) for training the ANFIS
models, and the Levenberg–Marquardt algorithm for training the MLP models. The SMO
algorithm for SVM training is said to reduce the time complexity to O(n) [67]. Hybrid
training of ANFIS has a dominant time complexity of O(n2) [68], while LM training of MLP
has a time complexity of O(n3) [69]. It should be noted that these are the time complexities
for the training of the models, which is expected to be carried out offline if their use in the
simulation of PAM-driven mechanisms is assumed.

7. Conclusions

The aim of this research was to approximate the static characteristics of FESTO DMSP-
type fluidic muscles using selected methods of computational intelligence and machine
learning. The study, which analyzed the results of the experiments described in this article,
can be divided into the following stages:

• Reading of the static characteristics of the dependence of the tensile strength of the
DMSP-20 and DMSP-40 muscles upon muscle contraction at constant pressures.

• Experimental acquisition of a representative dataset on the dependence of the tensile
force of the DMSP-5 muscle on the contraction of the muscle at constant pressures on
the testing device developed by the authors.

• Creation of MLP, SVM, ANFIS, and custom models in MATLAB and associated tool-
boxes for individual types of muscles.

• Testing of the trained models on an independent dataset and performance evaluation
of model outputs compared with real outputs, based on the performance indicators
NRMSE, SSE, AIC, and SBC.

Based on the results, which are described in detail in the Results and Discussion
section, it is obvious that the functions of the force characteristics of the muscles have a
similar form, but with different scaling; therefore, each type of muscle mentioned in this
article must be considered separately. Nevertheless, the results can be summarized in the
following findings:

• The flexibility of the created models was lower in the area of zero force (maximum
contraction values), which reduced the performance of the models.

• In general, models from the MLP group achieved the best results in all performance
metrics.

• The sigmoid activation function appears to be a suitable candidate for the muscle force
function of the DMSP muscles; not only can it approximate with high values of fit, it
also offers a compromise in terms of the complexity-to-fit ratio of the model.

• Given that the aim of this article was to find models with not only high performance
but also a good complexity/fit balance, the best model based on the results appears to
be the MLP with 10 neurons for each of the mentioned types of DMSP muscle from
the manufacturer FESTO.

Considering the above information, in the future, we would like to improve the best
models—whose performance is reduced due to low flexibility in the region of zero force
(negative values)—by using a saturation function with a lower limit defined at zero. By
increasing the flexibility of models in the field of zero force and, at the same time, using the
information and knowledge that we acquired during the processing of this article, we wish
to ensure the optimal conditions for the creation of models of the mechanisms described in
this article and to which DMSP muscles are applied.
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Appendix A. Performance Metrics

To evaluate and compare the results of the models’ validation in the process of approx-
imating the characteristics of fluid muscles, we used four performance indicators:

• SSE—sum of square error;
• NRMSE—normalized root-mean-square error;
• SBC—Schwarz Bayesian information criterion;
• AIC—Akaike information criterion.

These metrics can be divided into two groups: One group consists of performance
indicators that evaluate the error rate of models (i.e., NRMSE and SSE). The second group
includes those that are assessed based on the numbers of parameters of the individual
models (i.e., AIC and SBC).

Appendix A.1. SSE and NRMSE

The sum of square error (SSE) is a performance indicator that expresses the error
as the sum of the squares of the difference between the measured (observed) value yi
for the ith sample and the model−predicted response value ŷi for the ith sample, where
i = 1, 2, 3, . . . , n. The following relationship applies to determine the value of the SSE
performance indicator [70,71]:

SSE =
n

∑
i=1

(yi − ŷi)
2 (A1)

In general, the lower the value of the SSE, the smaller the variability of the model
compared to the measured values.

The normalized root-mean-square error (NRMSE) is a performance indicator that
compares the degree of agreement between the output of the model for the ith sample
and the measured value (output of the system) for the ith sample, where n is the number
of samples. The value of the NRMSE indicator is determined based on the following
condition [72,73]:

NRMSE =

1−

√
∑n

j=1
[
yj − ŷj

]2√
∑n

j=1

[
yj − 1

n ∑n
j=1 yj

]2

× 100% (A2)

An NRMSE value of 100% indicates that the model output and the system output are
identical.

Appendix A.2. SBC and AIC

The Schwarz Bayesian information criterion (SBC) is a performance indicator that
evaluates which model from the collection of created candidate models Mk1 . . . MkL is the
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most suitable for describing measurements n with a response y based on the available data.
The essence is to find the candidate model that is closest to the real model g(y)). If we
suppose that y is generated to an unknown density g(y), then for each model Mk of the
candidate models there is a k-dimensional parametric class of density function [74,75]:

F (k) = { f (y|θk) : θk ∈ Θ(k)} (A3)

The SBC is based on the empirical log-likelihood. Let L(θk|y) be the designation for
the likelihood of the density f (y|θk) and θ̂k be the designation of a vector of estimates,
which was created by maximizing the likelihood L(θk|y) over Θ(k). Subsequently, it is
possible to establish the SBC criterion for the candidate model Mk as follows [74,75]:

SBC = −2 ln L
(
θ̂k
∣∣y)+ k ln(n) (A4)

In practice, if the values of the SBC for the individual-created models are known, then
the model that achieves the lowest SBC value during evaluation is the closest to the real
model. In MATLAB, it is possible to set the SBC criterion using the following equation:

SBC = n· log(SSE/n) + p· log(n) (A5)

where n is the number of samples, p is the number of parameters of the given created model,
and SSE is the sum of square error.

The Akaike information criterion (AIC), like the SBC, is a performance indicator that
expresses the quality of the candidate model Mk compared to the actual model g(y) with
respect to the number of parameters of the given model. The condition for using criterion
is that the model must be tested on another dataset. As for the SBC indicator, the following
condition applies:

F (k) = { f (y|θk) : θk ∈ Θ(k)} (A6)

Since L(θk|y) = f (y|θk) and θ̂k is a vector of estimates created by maximizing the
likelihood L(θk|y) over Θ(k), it is possible to establish the AIC for the candidate model Mk,
as follows [76,77]:

AIC = −2 log f
(
y
∣∣θ̂k
)
+ 2k (A7)

Equation (A7) can be divided into two parts, which gives us two different statistics:
The first is the concept of goodness-of-fit −2 log f

(
y
∣∣θ̂k
)
, which reflects the agreement of

the model. 2k is called the penalty term and is a bias correction. In practice, the AIC is
evaluated in the same way as the SBC—the lower the value of the criterion, the closer the
simulated model is to the real one. In MATLAB, the AIC can be determined as follows:

AIC = n· log(SSE/n) + 2·p (A8)

where the interpretation of the individual parameters is the same as for the SBC.
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