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Abstract: A mathematical model revealing the transmission mechanism of COVID-19 is produced
and theoretically examined, which has helped us address the disease dynamics and treatment
measures, such as vaccination for susceptible patients. The mathematical model containing the
whole population was partitioned into six different compartments, represented by the SVEIQR model.
Important properties of the model, such as the nonnegativity of solutions and their boundedness,
are established. Furthermore, we calculated the basic reproduction number, which is an important
parameter in infection models. The disease-free equilibrium solution of the model was determined to
be locally and globally asymptotically stable. When the basic reproduction number R0 is less than
one, the disease-free equilibrium point is locally asymptotically stable. To discover the approximative
solution to the model, a general numerical approach based on the Haar collocation technique was
developed. Using some real data, the sensitivity analysis of R0 was shown. We simulated the
approximate results for various values of the quarantine and vaccination populations using Matlab
to show the transmission dynamics of the Coronavirus-19 disease through graphs. The validation
of the results by the Simulink software and numerical methods shows that our model and adopted
methodology are appropriate and accurate and could be used for further predictions for COVID-19.

Keywords: epidemic model; Haar wavelet collocation approach; stability
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1. Introduction

There is a serious threat to humanity from the coronavirus pandemic and its emerging
subtypes. The fast transmission of infections over a short period of time has been enhanced
by globalization. This has an impact on the public health care system and restricts the
growth of the economies of developing countries. According to studies, COVID-19 has
caused more than 92 million recorded infections and 2 million fatalities globally since the
outbreak of the pandemic began [1]. To reduce the spread of disease, policymakers continue
to use pharmaceutical and non-pharmaceutical interventions such vaccination, isolation of
diseased individuals, self-quarantine, face mask use, and travel limitations.

The main symptoms of COVID-19, which appear 14 days after the infection, include
coughing, shortness of breath, and fever, according to the Centers for Diseases Control
(CDC) [2]. According to the World Health Organization (WHO), coughing or sneezing of
possibly infected individuals who are sufficiently close or in contact might create respiratory
droplets that can spread COVID-19. High temperatures and high humidity are probably
conducive to a decrease in the COVID-19 transmission rate [2]. Up to 24 February 2020,
COVID-19 had been the cause of more than 2600 fatalities and 77,000 cases of infection in
China alone. On 11 March 2020, WHO identified SARS-CoV-2 as a worldwide pandemic
disease [3]. As of 20 April 2020, COVID-19 has caused more than 152,809 human fatalities
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and 2,246,291 infections, which have been confirmed worldwide, with the USA being the
country with the highest number of infections and deaths at 41,000 [2].

Various mathematical models have been proposed by researchers to evaluate the
dynamical behavior and transmission of Coronavirus, which may aid in the prediction of
future events and even the control of the disease [4–8]. The reproduction number plays a
vital role in characterizing the nonlinear dynamics of biological and physical challenges in
the study of coronavirus mathematical models. The reproduction rate shows that COVID-
19 has either been controlled or has been increasing over time. This study’s objective is to
build a modified SIR mathematical model for the prediction of the COVID-19 epidemic’s
dynamics taking into consideration several intervention scenarios that might give insight
into the best way to proceed to reduce the probability of spread [9–11].

We used the Haar wavelets numerical approach for the approximate solution of the
model. The simplicity and low computation costs of the Haar approach are its advantages;
the suggested technique requires less CPU time and offers more accurate results. For the
numerical solution of many differential equations, Chen and Hsia mostly used the technique
in the literature [12]. The numerical solution of the integral equations [13] and differential
equations [14] was carried out using the Haar wavelet collocation method (HWCT). The
pioneering work of Lepik in the development of the HWCT can be seen in [15–18]. In [19],
the authors studied the Euler–Bernoulli nanobeam’s free vibration analysis. For the solution
of the initial and boundary value issues, the HWCT is more appropriate. This method
provides decent accuracy with fewer collocation points. It is relatively possible to find
singularities in irregular structures using the HWCT.

2. Mathematical Model

The goal of this article is to construct a new model of COVID-19 and incorporate the
quarantine and vaccination population. The model simulates the dynamics of viral contact,
the infection of those who come into contact with the virus, and the absence of the virus
after vaccination in those who have not been exposed to the virus.

The transmission dynamics of Model (1) are represented in the Figure 1 flowchart.

Figure 1. Flow diagram of the model.
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dS
dt = (1− δ)τ − (µ + v)S− βS(E + I),
dV
dt = δτ + vS− (λ + µ)V,
dE
dt = βS(E + I) + λV − (µ + α + π)E,
dI
dt = πE− (v + µ)I,
dQ
dt = αE + vI − (q + µ)Q,
dR
dt = qQ− µR,

(1)

with the following initial conditions: S(0) > 0, V(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0,
R(0) ≥ 0.

Biological Assumptions of the Model

The biological assumptions of the model are as follow:

• We assume that individuals to be vaccinated are selected from individuals who have
not been exposed to or immunized against the virus.

• The vaccination may not provide full protection for every person in the vaccine class.
In this instance, we suppose that vaccinated people get the virus when they are
exposed to it.

The pandemic disease COVID-19 is still active today. On the other hand, several
vaccines have been created and are being utilized today to stop epidemic diseases across
the globe. There are many mathematical models connected to COVID-19 that do not include
vaccinations, but there is almost no research that has taken the vaccine parameter into
consideration. In this work, the model SVEIQR comprises the following compartments:
susceptible class (S), vaccinated class (V), exposed class (E), infected class (I), quarantine
class (Q), and recovered class (R).

In the model, the transition from all (τ) individuals sensitive to the disease is provided.
The rate β is equal to γN. The transition of susceptible people from those who have been
exposed to the disease at a rate of γ, exposed, and those who have not been exposed to it at
a rate of v are passed on to those who are vaccinated. Taking into account the possibility
that the vaccine developed to fight the COVID-19 virus may be successful or unsuccessful,
in the situation that the vaccine is ineffective, as many people as the λ ratio to the disease
may be exposed. q represents the recovered rate of the quarantine population, and µ
describes the natural death rate.

First, we used fixed point theory to investigate the existence of the newly constructed
model (1). On the other hand, stability is important; thus, we discuss the stability of the
considered model. We tried to address local and global stability and its many types for the
system under consideration by using nonlinear functional analysis to address this objective.
Since it is often difficult to find an exact solution to nonlinear problems, to handle such a
situation, many numerical methods have been developed in [20–22]. Therefore, the results were
simulated using Matlab-16 by using the well-known Haar collocation technique. Numerous
articles [23–25] have made use of the relevant Haar approaches. The COVID-19 mathematical
models are very rarely solved by using the Haar collocation methods. We simulated the
results using the previously mentioned numerical technique. Finally, the results are shown in
comparison to actual data obtained from a source [26].

3. Basic Definitions

Definition 1. Scaling the function on [ω1, ω2], the Haar wavelet in the Haar family is defined as

hi(t) =


1 for t ∈ [ ζ1, ζ2)

−1 for t ∈ [ζ2, ζ3 )

0 elsewhere,
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h1(t) and h2(t) are called the father and mother wavelets in the Haar wavelet family and are given by

h1(t) =

{
1 for t ∈ [ω1, ω2)

0 elsewhere

h2(t) =


1 for t ∈

[
ω1, ω1+ω2

2

)
−1 for t ∈

[
ω1+ω2

2 , ω2

)
0 elsewhere.

where ζ1 = ω1 + (ω2 − ω1)
ζ
d ,ζ2 = ω1 + (ω2 − ω1)

ζ+0.5
d ,ζ3 = ω1 + (ω2 − ω1)

ζ+1
d , where

d = 2r and ζ = 0, 1, . . . , d − 1. If we take interval [0, 1], then the values of ζ1, ζ2, ζ3, are:
ζ1 = ζ

d ,ζ2 = 1/2+ζ
d , ζ3 = 1+ζ

d . We truncated this series at M terms, u(t) = ∑M
k=1 λkhk(t). The

role of integer i is to count the functions in the HW family, and it satisfies the relation i = 1+ ζ + d.

We introduce the following notations for integrals of Haar functions:

pi,1(t) =

t∫
0

hi(s)ds

and

pi,1(t) =


t− ζ1if t ∈ (ζ1, ζ2),
ζ3 − t if t ∈ (ζ2, ζ3)

0 other where

Generally,

pi,n(t) =

t∫
0

pi,n−1(x)dx

Thus,

pi,n(t) =


0 if t ∈ [0, ζ1) ,
(t−ζ1)

n

n! if t ∈ [ ζ1, ζ2)
(t−ζ1)

n−2(ζ1−ζ2)
n

n! if t ∈ [ ζ2, ζ3)
1
n! [t− ζ1)

n − 2(ζ1 − ζ2)
n + (t− ζ3)

n] if t ∈ [ ζ3, 1) .

Definition 2. The interval [γ1, γ2] for the HWCT is discretized as

t1 = γ1 + (γ2 − γ1)
i− 1/2

2M
, i = 1, 2, . . . . . . , 2M.

The collocation points are defined in the above equation.

Remark 1. The integral in the above equation can be calculated by the following formula:

γ2∫
γ1

u(x)dx ≈ γ2 − γ1

M

M

∑
i=1

u(xi) =
γ2 − γ1

M

M

∑
i=1

u(γ1 + (γ2 − γ1)
(i− 0.5)

n
).
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4. Mathematical Analysis of System (1)
Positivity and Boundedness of the Solutions

In this section, we prove the positivity and boundedness of the solution of the model (1)

dS
dt

∣∣∣∣
S=0

= (1− δ)τ,
dV
dt

∣∣∣∣
V=0

= δτ,

dE
dt

∣∣∣∣
E=0

= βSI + αV,
dI
dt

∣∣∣∣
I=0

= πE(t),

dQ
dt

∣∣∣∣
Q=0

= αE + vI,
dR
dt

∣∣∣∣
R=0

= qQ.

On the bounding planes, each rate is nonnegative in this case. If we begin in the
interior of the six-dimensional closed hyper octantR6, we will always remain there.

Additionally, we see from System (1) that the entire human population N satisfies

dN
dt

=
dS
dt

+
dV
dt

+
dE
dt

+
dI
dt

+
dQ
dt

+
dR
dt

. (2)

Then, putting Equation (1) in Equation (2) gives

dN
dt

=[(1− δ)τ − (µ + v)S− βS(E + I)]

+ [δτ + vS− (λ + µ)V] + [βS(E + I)

+λV − (u + α + π)E] + [πE−vI − uI]
+ [αE + vI − (q + u)Q] + [qQ− uR].

(3)

Simplifying Equation (3), we obtain

dN
dt

= τ − µ(S + V + E + I + Q + R) (4)

Applying Equation (2) and Equation (4), we obtain

dN
dt

= τ − µN, (5)

dN
dt

+ µN = τ. (6)

Solving Equation (6) and using the initial conditions, we conclude that all solu-
tions in Equation (1) belong to the region Ω =

{
(S, V, E, I, Q, R) ∈ R6

+ : 0 ≤ N ≤ τ
µ

}
for

(S(0), V(0), E(0), I(0), Q(0), R(0)) ∈ Ω.

5. Equilibrium Points of the Model

The disease-free equilibrium point E0 can be found by making the right side of System (1)
equal to zero and solving for the variables, which gives E0 as

E0 =
(

S0, V0, E0, I0, Q0, R0
)
=

(
(1− δ)τ

(µ + v)
,
(µ + v)δτ + (1− δ)vτ

(λ + µ)(µ + v)
, 0, 0, 0, 0

)
. (7)

5.1. Basic Reproduction Number (R0)

(R0) is the estimated number of secondary cases by a single infection in a total
susceptible population. The expression of the basic reproduction number R0, widely
utilized by public health organizations as a fundamental indicator of the severity of a
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particular epidemic, is found using the next-generation matrix approach [26]. The system’s
new infection and transition terms are provided, respectively, by

F =

 βS(E + I)
0
0

. (8)

U =

 −λV + (u + α + π)E
−πE + (v + u)I

−αE−vI + (q + u)Q

. (9)

The matrices U (of transition terms) and F (of new infection terms) are now determined
to be

F =

 γ(1−δ)τ2

µ(µ+v)
(1−δ)γτ2

µ(µ+v) 0
0 0 0
0 0 0

. (10)

U =

 u + α + π 0 0
−π v + u 0
−α −v q + u

. (11)

It follows that

U−1 =


1

u+α+π 0 0
π

(u+α+π)v+u
1

v+u 0
πv+vα+αu

(u+α+π)(v+u)(q+u)
v

(v+u)(q+u)
1

q+u

. (12)

It follows that

FU−1 =

 γ(1−δ)τ2

µ(µ+v)(u+α+π)
+ π(1−δ)γτ2

µ(µ+v)((u+α+π)v+u)
(1−δ)γτ2

µ(v+u)(µ+v) 0
0 0 0
0 0 0

. (13)

SinceR0 is the dominant eigenvalue of the next-generation matrix FU−1, the largest
eigenvalue of FU−1 is

R0 =
γ(1− δ)τ2

µ(µ + v)(u + α + π)
+

π(1− δ)γτ2

µ(µ + v)(u + α + π)(v + u)
. (14)

It is clear from the equation of the fundamental reproduction number that the value of
R0 decreases with an increase in the vaccination and quarantine rates.

Theorem 1. The disease-free equilibrium point E0 is locally stable whenR0 < 1.

Proof. For local stability at E 0, the Jacobian matrix of System (1) is

JE 0 =



−(µ + v) 0 − β(1−δ)τ
(µ+v) − β(1−δ)τ

(µ+v) 0 0
v −(λ + µ) 0 0 0 0
0 λ

β(1−δ)τ
(µ+v) − (u + α + π) β(1−δ)τ

(µ+v) 0 0
0 0 π −(v + u) 0 0
0 0 α v −(q + u) 0
0 0 0 0 q −u


, (15)

which follows the eigenvalues, λ1 < 0, λ2 < 0, λ3 < 0, λ4 < 0, λ5 < 0, and λ6 < 0, if
R0 < 1. Therefore, System (1) is locally stable ifR0 < 1 and unstable ifR0 > 1.
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5.2. Global Stability of Disease-Free Equilibrium Point

We now study the global stability of the DFE using the approach described in [27].
Consider a system of ordinary differential equations of the form{

dx
dt = F (x, I),
dI
dt = G(x, I), (x, 0) = 0,

(16)

where x ∈ Rn denotes (its components) the number of uninfected individuals and I ∈ Rm

denotes (its components) the number of infected individuals, including latent and infectious.
Let U0 = (x∗, 0) be the disease-free equilibrium of this system, where 0 is a zero vector.
The global stability of the DFE is guaranteed when the following conditions (H1) and (H2)
are satisfied.

(H1) For dx
dt = F (x, 0), 0 is globally asymptotically stable.

(H2) Ḡ(x, I) = BI − G(x, I), Ḡ(x, I) ≥ 0, for (x, I) ∈ ∆,where B = D1G(x∗, 0) is an M-
matrix (the off-diagonal elements of B are nonnegative), and ∆ is the region where the
model makes biological sense.

Corollary 1 (see [27]). The fixed point U0(x∗, 0) is a globally asymptotic stable (g.a.s.) equilibrium
of (16) provided thatR0 < 1 (l.a.s.) and that assumptions (H1) and (H2) are satisfied.

Theorem 2. The DFE E0 of Model (1) is globally asymptotically stable ifR0 < 1.

Proof. First, we rewrite Model (1) by setting x = (S, V) and I = (E, I, Q, R).
Then, the DFE is given by

U0 = (x∗, 0) =
(

(1−δ)λ((R0−1)δτ2γ(1−δ)τ(v+u+π)+(u+α+π)(v+u))
(µ+v)+γ(λ+µ)(v+u+π)

, δτ
(λ+µ)

+ v(1−δ)λ((R0−1)δτγ(1−δ)τ(v+u+π)(u+α+π)(v+u))
(µ+v)+γ(v+u+π)

, 0
)

and the system dx
dt = F (x, 0) becomes{

Ṡ = (1− δ)τ − (µ + v)S
V̇ = δτ + vS− µV.

(17)

This equation has a unique equilibrium point:

x∗ =
(
(1− δ)τ

(µ + v)
,

v(1− δ)τ + δτ(µ + v)
µ(µ + v)

)
(18)

which is globally asymptotically stable. Therefore, the condition (H1) is satisfied.
We now verify the second condition (H2). For Model (1), we have

G(x, I) =


βS(E + I) + λV − (u + α + π)E

πE− (v + u)I
αE + vI − (q + u)Q

qQ− uR

. (19)

D1G(x∗, 0) =


βS0 βS0 0 0
π −(v + u) 0 0
α v −(q + u) 0
0 0 q −u

. (20)

Clearly, B is an M-matrix. On the other hand,
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Ḡ(x, I) = BI − G(x, I) =


(

β(1−δ)τ
(µ+v)

)
(µ+v)δτ+(1−δ)vτ

(λ+µ)(µ+v)
0
0
0


which implies that Ḡ(x, I) ≥ 0, for all (x, I) ∈ ∆. Therefore, the conditions (H1) and (H2)
are satisfied. By Corollary 1, the global stability of the DFE is obtained. This completes the
proof.

5.3. Stability of E∗

The stability of the endemic steady state E∗ is present in this subsection.

Theorem 3. There exists a unique positive virus equilibrium point E∗ = (S∗, V∗, E∗, I∗, Q∗, R∗)
for System (1), ifR0 > 1.

Proof. By letting the right-hand sides of all equations of System (1) be zero, as

(1− δ)τ − (µ + v)S− βS(E + I) = 0,

δτ + vS− (λ + µ)V = 0,

βS(E + I) + λV − (u + α + π)E = 0,

πE− (v + u)I = 0,

αE + vI − (q + u)Q = 0,

qQ− uR = 0.

(21)

which implies that the endemic steady state as E∗ = (S∗, V∗, E∗, I∗, Q∗, R∗), where

S∗ =
(1−δ)λ((R0−1)δτ2γ(1−δ)τ(v+u+π)+(u+α+π)(v+u))

(µ+v)+γ(λ+µ)(v+u+π)
,

E∗ = (v+u)λ((R0−1)δτπγ(1−δ)τ(v+u+π)+(u+α+π)(v+u))
π(λ+µ)

,

V∗ = δτ
(λ+µ)

+ v(1−δ)λ((R0−1)δτγ(1−δ)τ(v+u+π)(u+α+π)(v+u))
(µ+v)+γ(v+u+π)

,

I∗ = λ((R0−1)δτπγ(1−δ)τ(v+u+π)+(u+α+π)(v+u))
(λ+µ)

,

Q∗ = α(v+u)+vπ(λ+µ)
(q+u)λ(R0−1)δτ2π2γ(1−δ)(v+u+π)+(u+α+π)(v+u)) ,

R∗ = (qα(v+u)+qvπ)(λ(R0−1)δτπγ(1−δ)τ(v+u+π)+(u+α+π)(v+u))
πu(q+u)(λ+µ)

,

The expression (1− δ) is positive since δ refers to the proportion of infectious cases
that are asymptomatic, but later develop symptoms; it ranges from 0 and 1. It is clear
from the above that, when R0 > 1, the positive endemic steady state of System (1) only
exists. System (1) thus has an endemic equilibrium state wheneverR0 > 1 and possesses
no endemic state whenR0 ≤ 1.

6. Sensitivity Analysis

We present the sensitivity analysis in this part to compensate the factors that have a
significant influence on the basic reproduction number. Sensitivity analysis is suggested
to comprehend the relative significance of the many factors responsible for disease trans-
mission and prevalence. It is essential to regulate the variations in the SVEIQR model
parameters to produceR0 < 1 in order to control the spread of diseases. The ratio of the
change in a variable to the change in a parameter is known as the sensitivity index, and
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it can be calculated using the formula S[x] = x
R0
× ∂R0

∂x . Table 1 provides the sensitivity
indices ofR0 < 1 with regard to the model parameters.

Table 1. Sensitivity indices ofR0 with respect to model parameters.

Parameters Parameters Sensitivity Index

S[τ] = τ
R0
× ∂R0

∂τ = 0.983 > 0,
S[µ] = µ

R0
× ∂R0

∂µ = −0.832 < 0
S[ν] = ν

R0
× ∂R0

∂ν = −0.23 < 0
S[γ] = γ

R0
× ∂R0

∂γ = 0.453 > 0
S[λ] = λ

R0
× ∂R0

∂λ = 0
S[π] = π

R0
× ∂R0

∂π = 0.325 > 0
S[v] = v

R0
× ∂R0

∂v = −0.5421 < 0
S[q] = q

R0
× ∂R0

∂q =0

It is clear from Table 1 and Figure 2 that the most sensitive parameter to R0 for the
SVEIQR model is the disease transmission rate, infectious rate γ, quarantine rate of the
infected people v, and vaccination rate v. The value ofR0 increases when the value of γ
increases. The value ofR0 decreases when the vaccination (v) and quarantine rates of the
infected people (v) increase. Thus,R0 increases with the decreases of the vaccination (v)
and quarantine rate (v).

Figure 2. Sensitivity indices forR0 with respect to Model (1)’s parameter values.

Clearly, Figure 2 describes that the value of R0 increases with the increases in the
values of parameters γ, π and τ as these parameters possess positive indices with R0.
Similarly, the parameters having negative indices with R0 are α, v and v. As a result,
increases in these parameters result in a decrease in the value of R0. It is obvious that
the presence of a lower value of R0 contributes to the decrease in disease incidence. In
order to eradicate the disease from the system, we must reduce the efficacy of parameters
with positive indices to a basic reproduction number, while maintaining parameters with
negative indices. Therefore, in order to limit future outbreaks, health authorities must
give careful consideration to any preventative action that will lessen the disease burden.
We discovered that sufficient hygiene and effective health care services should be used
to implement the control parameters, such as the use of vaccinations v and quarantine v
effectiveness, etc., which are negatively associated withR0.
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7. Numerical Scheme for System (1)

The implementation of the Haar approach is discussed in this part in order to deter-
mine a solution for the suggested model. Utilizing the Haar function, the derivative of the
unknown function in the nonlinear system was approximated, and the equation for the
unknown function was determined by integration. We obtained the system of algebraic
equations by inserting the nodal points using the collocation method on these equations.
In order to identify the unknown coefficients, Broyden’s method was used to solve these
nonlinear equations. Finally, utilizing these unknowable coefficients, the approximative
solution at nodal points was derived.

Numerical Scheme

Let
.
S,

.
V,

.
E,

.
I,

.
Q, and

.
R considering that they are in the space of square integrable

functions (L2[0, 1)). Consequently, the Haar series can be expressed as

.
S(t) =

M

∑
i=1

aihi(t),
.

V(t) =
M

∑
i=1

bihi(t),

.
E(t) =

M

∑
i=1

cihi(t),
.
I(t) =

M

∑
i=1

dihi(t),

.
Q(t) =

M

∑
i=1

eihi(t),
.
R(t) =

M

∑
i=1

gihi(t).

(22)

Integration of the above Equation (22) and using the initial condition, we obtain

S(t) = S0 +
M

∑
i=1

ai pi(t),V(t) = V0 +
M

∑
i=1

bi pi(t),

E(t) = E0 +
M

∑
i=1

ci pi(t),I(t) = I0 +
M

∑
i=1

di pi(t),

Q(t) = Q0 +
M

∑
i=1

ei pi(t),R(t) = R0 +
M

∑
i=1

gi pi(t).

(23)

We have .
S(t)dt =(1− δ)τ − (µ + v)S− βS(E + I)
.

V(t)dt =δτ + vS− (λ + µ)V,
.
E(t)dt =βS(E + I) + λV − (u + α + π)E,
.
I(t)dt =πE− (v + u)I,
.

Q(t)dt =αE + vI − (q + u)Q,
.
R(t)dt =qQ− uR.

(24)

Applying Haar approximations to Equation (24), we obtain

M

∑
i=1

aihi(t)dt =(1− δ)τ − (µ + v)

(
S0 +

M

∑
i=1

ai pi(t)

)
− γN

(
S0 +

M

∑
i=1

ai pi(t)

)
((

E0 +
M

∑
i=1

ci pi(t)

)
+

(
I0 +

M

∑
i=1

di pi(t)

))
,
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M

∑
i=1

bihi(t)dt =δτ + v

(
S0 +

M

∑
i=1

ai pi(t)

)
− (λ + µ)

(
V0 +

M

∑
i=1

bi pi(t)

)
,

M

∑
i=1

cihi(t)dt =β

(
S0 +

M

∑
i=1

ai pi(t)

)((
E0 +

M

∑
i=1

ci pi(t)

)
+

(
I0 +

M

∑
i=1

di pi(t)

))

+ λ

(
V0 +

M

∑
i=1

bi pi(t)

)
− (u + α + π)

(
E0 +

M

∑
i=1

ci pi(t))

)
,

M

∑
i=1

dihi(t)dt =π

(
E0 +

M

∑
i=1

ci pi(t)

)
− (v + u)

(
I0 +

M

∑
i=1

di pi(t)

)
,

M

∑
i=1

eihi(t)dt =α

(
E0 +

M

∑
i=1

ci pi(t)

)
+ v

(
I0 +

M

∑
i=1

di pi(t)

)

− (q + u)

(
Q0 +

M

∑
i=1

gi pi(t)

)
,

M

∑
i=1

gihi(t)dt =q

(
Q0 +

M

∑
i=1

ei pi(t)

)
− u

(
R0 +

M

∑
i=1

gi pi(t)

)
.

Upon simplification, we have

M

∑
i=1

aihi(t)dt− (1− δ)τ + µS0 + νS0 + µ
M

∑
i=1

ai pi(t)

+ ν
M

∑
i=1

ai pi(t) + βS0E0 + γNS0 I0 + βS0

M

∑
i=1

ci pi(t)

+ βS0

M

∑
i=1

di pi(t) + βE0

M

∑
i=1

ai pi(t) + βI0

M

∑
i=1

ai pi(t)

+ β
M

∑
i=1

ai pi(t)
M

∑
i=1

ci pi(t) + β
M

∑
i=1

ai pi(t)
M

∑
i=1

di pi(t) = 0,

(25)

M

∑
i=1

bihi(t)dt− δτ − νS0 − v
M

∑
i=1

ai pi(t) + λV0

+ λ
M

∑
i=1

bi pi(t) + µV0 + µ
M

∑
i=1

bi pi(t) = 0,

(26)

M

∑
i=1

cihi(t)dt− βS0E0 − βS0

M

∑
i=1

ci pi(t)− βS0 I0

− βS0

M

∑
i=1

di pi(t)− βE0

M

∑
i=1

ai pi(t)− βI0

M

∑
i=1

ai pi(t)

+ β
M

∑
i=1

ai pi(t)
M

∑
i=1

ci pi(t)− β
M

∑
i=1

ai pi(t)
M

∑
i=1

di pi(t)

− λV0 − λ
M

∑
i=1

bi pi(t) + µE0 + αE0 + πE0 + µ
M

∑
i=1

ci pi(t)

+ α
M

∑
i=1

ci pi(t) + π
M

∑
i=1

ci pi(t) = 0,

(27)
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M

∑
i=1

dihi(t)dt− πE0 − π
M

∑
i=1

ci pi(t) + vI0 + v
M

∑
i=1

di pi(t)

+ uI0 + u
M

∑
i=1

di pi(t)= 0,

(28)

M

∑
i=1

eihi(t)dt− αE0 − α
M

∑
i=1

ci pi(t)−vI0 −v
M

∑
i=1

di pi(t)

+ qQo + q
M

∑
i=1

gi pi(t) + uQ0 + u
M

∑
i=1

gi pi(t),

(29)

M

∑
i=1

gihi(t)dt− qQ0 − q
M

∑
i=1

ei pi(t)) + uR0 + u
M

∑
i=1

gi pi(t) = 0. (30)

By further simplification of the above approximation, we obtain

M

∑
i=1

aihi(t)− (1− δ)τ + µS0 + νS0 + µ
M

∑
i=1

ai pi(t)

+ ν
M

∑
i=1

ai pi(t) + βS0E0 + βS0 I0 + βS0

M

∑
i=1

ci pi(t)

+ βS0

M

∑
i=1

di pi(t) + βE0

M

∑
i=1

ai pi(t) + βI0

M

∑
i=1

ai pi(t)

+ β
M

∑
i=1

ai pi(t)
M

∑
i=1

ci pi(t) + β
M

∑
i=1

ai pi(t)
M

∑
i=1

di pi(t) = 0

M

∑
i=1

bihi(t)dt− δτ − νS0 − v
M

∑
i=1

ai pi(t) + λV0

+ λ
M

∑
i=1

bi pi(t) + µV0 + µ
M

∑
i=1

bi pi(t) = 0,
M

∑
i=1

cihi(t)− βS0E0 − βS0

M

∑
i=1

ci pi(t)− βS0 I0

− βS0

M

∑
i=1

di pi(t)− βE0

M

∑
i=1

ai pi(t)− βI0

M

∑
i=1

ai pi(t)

+ β
M

∑
i=1

ai pi(t)
M

∑
i=1

ci pi(t)− β
M

∑
i=1

ai pi(t)
M

∑
i=1

di pi(t)

− λV0 − λ
M

∑
i=1

bi pi(t) + µE0 + αE0 + πE0 + µ
M

∑
i=1

ci pi(t)

+ α
M

∑
i=1

ci pi(t) + π
M

∑
i=1

ci pi(t) = 0

M

∑
i=1

dihi(t)− πE0 − π
M

∑
i=1

ci pi(t) + vI0 + v
M

∑
i=1

di pi(t)

+ uI0 + u
M

∑
i=1

di pi(t)= 0,
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M

∑
i=1

eihi(t)− αE0 − α
M

∑
i=1

cihi(t)−vI0 −v
M

∑
i=1

dihi(t)

+ qQo + q
M

∑
i=1

gihi(t) + uQ0 + u
M

∑
i=1

gihi(t) = 0,

M

∑
i=1

gihi(t)− qQ0 − q
M

∑
i=1

ei pi(t)) + uR0 + u
M

∑
i=1

gihi(t) = 0.

Let

G1,k =
M

∑
i=1

aihi(t)− (1− δ)τ + µS0 + νS0 + µ
M

∑
i=1

ai pi(t)

+ ν
M

∑
i=1

ai pi(t) + βS0E0 + βS0 I0 + βS0

M

∑
i=1

ci pi(t)

+ βS0

M

∑
i=1

di pi(t) + βE0

M

∑
i=1

ai pi(t) + βI0

M

∑
i=1

ai pi(t)

+ β
M

∑
i=1

ai pi(t)
M

∑
i=1

ci pi(t) + β
M

∑
i=1

ai pi(t)
M

∑
i=1

di pi(t) = 0.

Let

G2,k =
M

∑
i=1

bihi(t)− δτ − νS0 − v
M

∑
i=1

ai pi(t) + λV0

+ λ
M

∑
i=1

bi pi(t) + µV0 + µ
M

∑
i=1

bi pi(t).

Let

G3,k =
M

∑
i=1

cihi(t)dt− βS0E0 − βS0

M

∑
i=1

ci pi(t)− βS0 I0

− βS0

M

∑
i=1

di pi(t)− βE0

M

∑
i=1

ai pi(t)− βI0

M

∑
i=1

ai pi(t)

+ β
M

∑
i=1

ai pi(t)
M

∑
i=1

ci pi(t)− β
M

∑
i=1

ai pi(t)
M

∑
i=1

di pi(t)

− λV0 − λ
M

∑
i=1

bi pi(t) + µE0 + αE0 + πE0 + µ
M

∑
i=1

ci pi(t)

+ α
M

∑
i=1

ci pi(t) + π
M

∑
i=1

ci pi(t) = 0.

Let

G4,k =
M

∑
i=1

dihi(t)− πE0 − π
M

∑
i=1

ci pi(t) + vI0 + v
M

∑
i=1

di pi(t)

+ uI0 + u
M

∑
i=1

di pi(t)= 0,

Let

G5,k =
M

∑
i=1

eihi(t)− αE0 − α
M

∑
i=1

ci pi(t)−vI0 −v
M

∑
i=1

di pi(t)

+ qQo + q
M

∑
i=1

gi pi(t) + uQ0 + u
M

∑
i=1

gi pi(t),
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and let

G6,k =
M

∑
i=1

gihi(t)− qQ0 − q
M

∑
i=1

ei pi(t)) + uR0 + u
M

∑
i=1

gi pi(t) = 0.

We obtain a system of nonlinear algebraic equations by inserting the nodal points,
which is shown below:

G1,k =
M

∑
i=1

aihi(t)− (1− δ)τ + µS0 + νS0 + µ
M

∑
i=1

ai pi(tk)

+ν ∑M
i=1 ai pi(tk) + βS0E0 + βS0 I0 + βS0

M

∑
i=1

ci pi(tk)

+βS0

M

∑
i=1

di pi(tk) + βE0

M

∑
i=1

ai pi(tk) + βI0

M

∑
i=1

ai pi(tk)

+λ
M

∑
i=1

bi pi(tk) + µV0 + µ
M

∑
i=1

bi pi(tk).

(31)


G2,k =

M

∑
i=1

bihi(t)− δτ − νS0 − v
M

∑
i=1

ai pi(tk) + λV0

+λ
M

∑
i=1

bi pi(tk) + µV0 + µ
M

∑
i=1

bi pi(tk).
(32)



G3,k =
M

∑
i=1

cihi(t)− βS0E0 − βS0

M

∑
i=1

ci pi(tk)− βS0 I0

−βS0

M

∑
i=1

di pi(tk)− βE0

M

∑
i=1

ai pi(tk)− βI0

M

∑
i=1

ai pi(tk)

+β
M

∑
i=1

ai pi(tk)
M

∑
i=1

ci pi(tk)− β
M

∑
i=1

ai pi(tk)
M

∑
i=1

di pi(tk)

−λV0 − λ
M

∑
i=1

bi pi(tk) + µE0 + αE0 + πE0 + µ
M

∑
i=1

ci pi(tk)

+α
M

∑
i=1

ci pi(tk) + π
M

∑
i=1

ci pi(tk) = 0,

(33)


G4,k =

M

∑
i=1

dihi(t)− πE0 − π
M

∑
i=1

ci pi(tk) + vI0 + v
M

∑
i=1

di pi(tk)

+uI0 + u
M

∑
i=1

di pi(tk)= 0,
(34)


G5,k =

M

∑
i=1

eihi(t)− αE0 − α
M

∑
i=1

ci pi(tk)−vI0 −v
M

∑
i=1

di pi(tk)

+qQo + q
M

∑
i=1

gi pi(tk) + uQ0 + u
M

∑
i=1

gi pi(tk),
(35)

{
G6,k =

M

∑
i=1

gihi(t)− qQ0 − q
M

∑
i=1

ei pi(tk) + uR0 + u
M

∑
i=1

gi pi(tk) = 0. (36)

Equations (31)–(36) are solved by Broyden’s method. The Jacobian is

J =
[

Jkj

]
6Mx6M

, (37)
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where Jkj is 

∂G1,k
∂aj

=
M

∑
m=1

hj(tj) + µpj,1(tk) + νpj,1(tk) + βE0 pj,1(tk)

+βI0 pj,1(tk),
∂G1,k
∂bj

= λpj,1(tk) + µpj,1(tk),
∂G1,k
∂cj

= βS0 pj(tk),
∂G1,k
∂dj

= βS0 pj(tk),
∂G1,k
∂ej

= 0,
∂G1,k
∂gj

= 0.

(38)



∂G2,k
∂aj

= −vpj(tk),

∂G2,k
∂bj

=
M

∑
m=1

hj(tm) + λpj(tk) + µpj(tk),

∂G2,k
∂cj

= 0,
∂G2,k
∂ej

= 0,
∂G2,k
∂gj

= 0.

(39)



∂G3,k
∂aj

= βpj(tk)
M

∑
i=1

ci pi(tk)− βpj(tk)
M

∑
i=1

di pi(tk)

−βI0 pj(tk)−−βE0 pj(tk),
∂G3,k
∂bj

= −λpj(tk),

∂G3,k
∂cj

= ∑M
m=1 hj(tm)− βS0 pj(tk) + β

M

∑
i=1

ai pi(tk)pj(tk)

αpj(tk) + πpj(tk),
∂G3,k
∂dj

= −βS0 pj(tk),
∂G3,k
∂ej

= 0,
∂G3,k
∂gj

= 0.

(40)



∂G4,k
∂aj

= 0,
∂G4,k
∂bj

= 0,
∂G4,k
∂cj

= −πpj(tk),
∂G4,k
∂dj

= ∑M
m=1 hj(tm)vpj(tk) + upj(tk)

∂G4,k
∂ej

= 0,
∂G4,k
∂gj

= 0,

(41)



∂G5,k
∂aj

= 0,
∂G5,k
∂bj

= 0,
∂G5,k
∂cj

= −αpj(tk),
∂G5,k
∂dj

= −vpj(tk),

∂G5,k
∂ej

=
M

∑
m=1

hj(tm),

∂G5,k
∂gj

= qpj(tk) + upj(tk).

(42)
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∂G6,k
∂aj

= 0,
∂G6,k
∂bj

= 0,
∂G6,k
∂cj

= 0,
∂G6,k
∂dj

= 0,
∂G6,k
∂ej

= −qpj(tk)

∂G6,k
∂gj

=
M

∑
m=1

hj(tm) + upj(tk).

(43)

The values of the unknown coefficients ai, bi, ci, di, ei, and gi are provided by the
system’s solution. The required solutions S(t), V(t), E(t), I(t), Q(t), and R(t) at nodal
points are determined by putting ai, bi, ci, di, ei, and gi in Equation (23). Here, we provide
a formula for calculating the experimental convergence rate rc[M], which is described
in [28].

rc[M] = 1
log 2 log

[
Maximum absolute error a M2
Maximum absolute error aM

]
.

8. Numerical Simulation

This part provides a graphical description of the numerical findings for the suggested
model. We used the proposed numerical simulation technique for this purpose, along with
the parameter values presented in Table 2. The initial values of the state variables are provided
as follows: N(0) = 230,000,000 is the population size, and S(0) = 1,000,000, E(0) = 50, and
V(0) = 35. The infected populations are I(0) = 32, Q(0) = 10, and R(0) = 15. In Figures 3–8,
we give the plots for the various compartments of the developed model. Initially, the infection
was spreading more and more, but strong pharmaceutical and non-pharmaceutical measures
were implemented, which effectively controlled the disease.

Table 2. Parameters and their values.

Variables and Parameters Values References

τ 0.46 [29]
µ 0.0991 [29]
λ 0.3002 [29]
π 0.001 [30]
q 1

14 [30]
v 0.4 Fit
δ 1

40 [29]
γ 0.999 [29]
α 0.2 [29]
v 0.005 [30]

Figure 3. Dynamical representations of the susceptible class of Model (1).
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Figure 4. Dynamical representations of the vaccination class of Model (1).

Figure 5. Dynamical representations of the exposed class of Model (1).

Figure 6. Dynamical representations of the infected class of Model (1).

Figure 7. Dynamical representations of the quarantined class of Model (1).
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Figure 8. Dynamical representations of the recovered class of Model (1).

The plotting in the Figure 9 represents the dynamic of all compartments in the pro-
posed model. It is clear from Figures 10 and 11 that the value of the infected population
declines as the vaccination compliance and efficiency rise. Additionally, if the vaccination is
100 percent effective in preventing disease transmission and is given in sufficient numbers,
i.e., δ = 1, the value ofR0 becomes zero, and the disease will not spread from one person
to another in that scenario.

Figure 9. Graphical representations of Model (1).

Figure 10. Graphical representations of Model (1) with the effect of different rates of vaccination.

Figure 11. Graphical representation of Model (1) with and without the effect of vaccination.
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In order to investigate the dynamical impact of potential control actions on the inci-
dence of infection in Pakistan, Figures 10–14 are given. The simulation results are plotted
for 200 and 300 days. We took into account several non-pharmaceutical techniques with
their baseline values in the shown visual findings. The effect of the vaccine v, the proportion
of persons who were exposed to and came into contact with COVID-19 patients, and finally,
the combined impact of the vaccination and quarantine on the infected cases were the key
areas of emphasis and analysis. The resultant graphical interpretation is shown in Figure 11,
which demonstrates that, during the peak of the epidemic, 15,000 additional COVID-19
infections were anticipated. Additionally, Figure 11 describes that a considerable drop in
COVID-19 occurs when vaccination efficacy is raised above the baseline values.

Figure 12. Graphical representation of Model (1) with and without the effect of quarantine.

Figure 13. Graphical representation of Model (1) with the increasing effect of the quarantine rate.

Figure 14. Graphical representation of Model (1) with the effect of vaccination and quarantine.

In Figures 11 and 13, the dynamics of the new COVID-19 infected cases without
and with the quarantine rate are shown. It is important to note that without quarantine,
the situation is much worse and the number of infected patients unexpectedly increased
(approximately 300,000). However, the peak number of new COVID-19 cases was dras-
tically reduced when quarantine rates were only implemented at the baseline levels. In
Figure 14, we further track the dynamics of infected cases without and with vaccination
and quarantine. Note that the highest number of new COVID-19 cases increased to 290,000
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without vaccination and quarantine and decreased to 15,000 with vaccination and quaran-
tine. The use of both vaccination and quarantine was extremely successful and considerably
decreased the number of instances of infection that were recorded.

9. Conclusions

We created a vaccination model by including the vaccine class and other factors that
are crucial for immunizing those who are susceptible. First, we developed the model and
gave the specific model outcomes. We examined the model’s stability at a disease-free
equilibrium and discovered that it was locally asymptotically stable when R0 < 1, but
the endemic equilibrium point was globally asymptotically stable when R0 > 1. We
utilized the PRCC to obtain the model’s sensitivity analysis. Graphical representations of
certain key parameters and their impact on the system were provided. In order to better
understand the implications of these characteristics, we also provided some valuable data
for vaccination and quarantine. The graphical interpretation supports the efficient use of
vaccination and quarantining proven infected persons, which significantly lowered the
number of infected people. Furthermore, were note that, without vaccines and quarantine,
the disease situation was much worse and the number of infected patients rose quickly.
The current research thus implies that, in order to prevent or reduce COVID-19 infection,
adequate and effective implementation of these pharmaceutical and non-pharmaceutical
therapies is still required.
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