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Abstract: Consider the time-periodic viscous incompressible fluid flow past a body with non-zero
velocity at infinity. This article gives sufficient conditions such that weak solutions to this problem are
smooth. Since time-periodic solutions do not have finite kinetic energy in general, the well-known
regularity results for weak solutions to the corresponding initial-value problem cannot be transferred
directly. The established regularity criterion demands a certain integrability of the purely periodic
part of the velocity field or its gradient, but it does not concern the time mean of these quantities.
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1. Introduction

We consider the time-periodic flow of a viscous incompressible fluid past a three-
dimensional body that translates with constant non-zero velocity v∞. We assume v∞ to be
directed along the x1-axis such that v∞ = τ e1 with τ > 0. In a frame attached to the body,
the fluid motion is then governed by the Navier–Stokes equations:

∂tu− ∆u− τ∂1u + u · ∇u +∇p = f in T×Ω, (1a)

div u = 0 in T×Ω, (1b)

u = u∗ on T× ∂Ω, (1c)

lim
|x|→∞

u(t, x) = 0 for t ∈ T, (1d)

where Ω ⊂ R3 is the exterior domain occupied by the fluid.
The functions u : T×Ω → R3 and p : T×Ω → R are velocity and pressure of the

fluid flow, f : T×Ω → R3 is an external body force, and u∗ : T× ∂Ω → R3 denotes the
velocity field at the boundary. The time axis is given by the torus group T := R/T Z, which
ensures that all functions appearing in Equation (1) are time periodic with a prescribed
period T > 0.

In this article, we study weak solutions to the problem in Equation (1), and we
provide sufficient conditions such that these weak solutions possess more regularity and
are actually smooth solutions. In the context of the initial-value problem for the Navier–
Stokes equations, these criteria have been studied extensively. Existence of weak solutions
was shown several decades ago in the seminal works by Leray [1] and Hopf [2] together
with a corresponding energy inequality, but it remained unclear for many decades whether
solutions in this Leray–Hopf class are unique, even when the external forcing is smooth (or
even 0). Note that Albritton, Brué and Colombo [3] recently showed that there are forcing
terms such that multiple Leray–Hopf solutions to the initial-value problem exist, so that
uniqueness fails for general forcing terms. However, Leray–Hopf solutions come along with

Mathematics 2023, 11, 141. https://doi.org/10.3390/math11010141 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11010141
https://doi.org/10.3390/math11010141
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7807-1349
https://doi.org/10.3390/math11010141
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11010141?type=check_update&version=2


Mathematics 2023, 11, 141 2 of 17

a weak-strong uniqueness principle that states that weak solutions coincide with strong
solutions if the latter exist. This also motivated the development of criteria that ensured
higher regularity of weak solutions. The first results in this direction are due to Leray [1]
and Serrin [4], who showed that, if a weak solution is an element of Lρ(0, T; Lκ(Ω)3) for
some κ, ρ ∈ (1, ∞) such that 2

ρ + 3
κ < 1, then it is a strong solution and smooth with respect

to the spatial variables. Since then, there appeared many other regularity criteria that
ensured higher-order regularity of a weak solution to the initial-value problem; see [5–10]
and the references therein.

To obtain similar regularity results for weak solutions to the time-periodic problem
in Equation (1), the first idea might be to identify these with weak solutions to the initial-
value problem for a suitable initial value. However, this procedure is not successful in
the considered framework of an exterior domain Ω since regularity of weak solutions
to the initial-value problem is usually investigated within the class L∞(0, T; L2(Ω)3), but
weak solutions u to the time-periodic problem are merely elements of L2(T; L6(Ω)3) at the
outset; see Definition 1 below. To see that we cannot expect the same integrability as for the
initial-value problem, observe that every weak solution to the steady-state problem is also
a time-periodic solution. In general, these steady-state solutions do not have finite kinetic
energy but only belong to Ls(Ω)3 for s > 2; see Theorem 4 below. Therefore, one cannot
reduce the time-periodic situation to that of the initial-value problem.

For the formulation of suitable regularity criteria for time-periodic weak solutions,
we decompose functions into a time-independent part, given by the time mean over one
period, and a time-periodic remainder part. To this decomposition, we associate a pair of
complementary projections P and P⊥ such that

Pu :=
∫
T

u(t, ·)dt, P⊥u := u−Pu.

Then, Pu is called the steady-state part of u, and P⊥u denotes the purely periodic part of u.
In this article, we consider weak solutions to (1) in the following sense.

Definition 1. Let f ∈ L1
loc(T×Ω)3 and u∗ ∈ L1

loc(T× ∂Ω)3. A function u ∈ L1
loc(T×Ω)3 is

called weak solution to (1) if it satisfies the following properties:

i. ∇u ∈ L2(T×Ω)3×3, u ∈ L2(T; L6(Ω)3), div u = 0 in T×Ω, u = u∗ on T× ∂Ω,
ii. P⊥u ∈ L∞(T; L2(Ω))3,
iii. the identity∫

T

∫
Ω

[
− u · ∂t ϕ +∇u : ∇ϕ− τ∂1u · ϕ + (u · ∇u) · ϕ

]
dxdt =

∫
T

∫
Ω

f · ϕ dxdt

holds for all test functions ϕ ∈ C∞
0,σ(T×Ω).

The existence of weak solutions in the sense of Definition 1 satisfying an associated
energy inequality was shown in [11] for Ω = R3. Their asymptotic properties as |x| → ∞
were investigated in [12–14]. For these results, it was necessary to ensure higher regularity
of the solution u, which was achieved by assuming that

P⊥u ∈ Lρ(T; Lκ(Ω)3) (2)

holds for some κ = ρ ∈ (5, ∞). Moreover, it was shown in [15] that u satisfies an energy
equality if Equation (2) holds for some κ ∈ [4, ∞] and ρ ∈ [2, 4] with 2

ρ + 2
κ ≤ 1. It is

remarkable that, in both cases, the additional integrability is only assumed for the purely
periodic part P⊥u, but not for the whole weak solution u as is achieved for the initial-value
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problem. The main result of this article is in the same spirit and can be seen as an extension
of the regularity results used in [12–14]. More precisely, we consider the criteria

∃ κ, ρ ∈ (1, ∞) with
2
ρ
+

3
κ
< 1 : P⊥u ∈ Lρ(T; Lκ(Ω)3), (3)

∃ κ, ρ ∈ (1, ∞) with
2
ρ
+

3
κ
< 2 : ∇P⊥u ∈ Lρ(T; Lκ(Ω)3×3). (4)

If the domain has a smooth boundary and the data are smooth, then both lead to
smooth solutions.

Theorem 1. Let Ω ⊂ R3 be an exterior domain with a boundary of class C∞, and let τ > 0. Let
f ∈ C∞

0 (T×Ω) and u∗ ∈ C∞(T× ∂Ω), and let u be a weak time-periodic solution to (1) in the
sense of Definition 1 such that (3) or (4) is satisfied. Then, there exists a corresponding pressure
field p such that (u, p) is a smooth solution to Equation (1) and

u ∈ C∞(T×Ω)3, p ∈ C∞(T×Ω).

As an intermediate step, we show the following result that assumes less smooth data.

Theorem 2. Let Ω ⊂ R3 be an exterior domain with boundary of class C2, and let τ > 0. Let f
and u∗ be such that

∀q, r ∈ (1, ∞) : f ∈ Lr(T; Lq(Ω)3), (5a)

u∗ ∈ C(T; C2(∂Ω)3) ∩C1(T; C(∂Ω)3). (5b)

Let u be a weak time-periodic solution to Equation (1) in the sense of Definition 1 such that
Equation (3) or Equation (4) is satisfied. Then, v := Pu and w := P⊥u satisfies

∀s2 ∈ (1,
3
2
] : v ∈ D2,s2(Ω)3, (6)

∀s1 ∈ (
4
3

, ∞] : v ∈ D1,s1(Ω)3, (7)

∀s0 ∈ (2, ∞] : v ∈ Ls0(Ω)3, (8)

∀q, r ∈ (1, ∞) : w ∈W1,r(T; Lq(Ω)3) ∩ Lr(T; W2,q(Ω)3), (9)

and there exists a pressure field p ∈ L1
loc(T×Ω) with p := Pp and q := P⊥p such that

∀s2 ∈ (1,
3
2
] : p ∈ D2,s2(Ω)3, ∀q, r ∈ (1, ∞) : ∇q ∈ Lr(T; Lq(Ω)3) (10)

and the identities in Equation (1) are satisfied in the strong sense.
Additionally, if Ω has a C3-boundary, and if P f ∈W1,q(Ω)3 and Pu∗ ∈W3−1/q1,q1(∂Ω)3

for some q1 ∈ (3, ∞), then

∀s2 ∈ (1, ∞) : v ∈ D2,s2(Ω)3, p ∈ D1,s2(Ω). (11)

Theorems 1 and 2 are the main results of this article and will be proved in Section 5.
Comparing the regularity criteria of Theorems 1 and 2 with those used in [12–14], we see

that the present article extends them in two directions. Firstly, by Equation (3), we extend
the range of admissible parameters ρ, κ in the sufficient condition (2) by also allowing the
mixed case ρ 6= κ. Secondly, Equation (4) is an alternative condition on certain integrability
of the purely periodic part of the gradient∇u. In particular, we can replace the assumption
in Equation (2) for some κ = ρ ∈ (5, ∞) with one of the assumptions in Equation (3)
or Equation (4) in the main results of [12–14], and the results on the spatially asymptotic
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behavior of the velocity and the vorticity field derived there are also valid under the
alternative regularity criteria from Equation (3) or Equation (4).

In Section 2, we next introduce the general notation used in this article. In Section 3,
we recall the notion of Fourier multipliers in spaces with mixed Lebesgue norms and
introduce a corresponding transference principle, from which we derive an embedding
theorem. Section 4 recalls a well-known regularity result for the steady-state Navier–Stokes
equations, and it contains a similar result for the time-periodic Oseen problem, which is a
linearized version of Equation (1). Finally, Theorems 1 and 2 will be proved in Section 5,
and we conclude the paper by a short outlook in Section 6.

2. Notation

For the whole article, the time period T > 0 is a fixed constant, and T := R/T Z
denotes the corresponding torus group, which serves as the time axis. The spatial domain
is usually given by a three-dimensional exterior domain Ω ⊂ R3, that is, the domain Ω
is the complement of a compact connected set. We write ∂tu and ∂ju := ∂xj u for partial
derivatives with respect to time and space, and we set ∆u := ∂j∂ju and div u := ∂juj, where
we used Einstein’s summation convention.

We equip the compact abelian group T with the normalized Lebesgue measure given
by

∀ f ∈ C(T) :
∫
T

f (t)dt =
1
T

∫ T
0

f (t)dt,

and the group Z, which can be identified with the dual group of T, with the counting
measure. The Fourier transform FG on the locally compact group G : T×Rn, n ∈ N0, and
its inverse F−1

G are formally given by

FG[ f ](k, ξ) :=
∫
T

∫
Rn

f (t, x) e−i 2π
T kt−ix·ξ dxdt,

F−1
G [ f ](t, x) := ∑

k∈Z

∫
Rn

f (k, ξ) ei 2π
T kt+ix·ξ dξ,

where the Lebesgue measure dξ is normalized appropriately such that FG : S (G)→ S (Ĝ)
defines an isomorphism with inverse F−1

G . Here, S (G) is the so-called Schwartz–Bruhat
space, which is a generalization of the classical Schwartz space in the Euclidean setting;
see [16,17]. By duality, this induces an isomorphism FG : S ′(G) → S ′(Ĝ) of the dual
spaces S ′(G) and S ′(Ĝ), the corresponding spaces of tempered distributions.

By Lq(Ω) and Wm,q(Ω) as well as Lq(T×Ω) and Wm,q(T×Ω), we denote the classical
Lebesgue and Sobolev spaces, and L1

loc(Ω) and L1
loc(T×Ω) denote the respective classes

of locally integrable functions. We define homogeneous Sobolev spaces by

Dm,q(Ω) :=
{

u ∈ L1
loc(Ω)

∣∣ ∇mu ∈ Lq(Ω)
}

,

where ∇mu denotes the collection of all (spatial) weak derivatives of the u of m-th order.
We further set

C∞
0,σ(Ω) := {ϕ ∈ C∞

0 (Ω)3 | div ϕ = 0},

where C∞
0 (Ω) is the class of compactly supported smooth functions on Ω. For q ∈ [1, ∞] and

a (semi-)normed vector space X, Lq(T; X) denotes the corresponding Bochner–Lebesgue
space on T, and

W1,q(T; X) :=
{

u ∈ Lq(T; X)
∣∣ ∂tu ∈ Lq(T; X)

}
.

The projections

P f :=
∫
T

f (t)dt, P⊥ f := f −P f

decompose f ∈ L1(T; X) into a time-independent steady-state part P f and a purely periodic
part P⊥ f .



Mathematics 2023, 11, 141 5 of 17

We further study the fractional time derivative Dα
t for α ∈ (0, ∞), which is defined by

Dα
t u(t) := F−1

T
[
| 2π
T k|αFT[u]

]
(t) = ∑

k∈Z
| 2π
T k|αuk ei 2π

T kt

for u ∈ S (T). By Plancherel’s theorem (see [18][Prop. 3.1.16] for example), one readily
verifies the integration-by-parts formula∫

T
Dα

t u v dx =
∫
T

u Dα
t v dx (12)

for all u, v ∈ S (T). By duality, Dα
t extends to an operator on the distributions S ′(T). Note

that in general we have Dα
t u 6= ∂α

t u for α ∈ N, but

Dα
t u ∈ Lp(T) ⇐⇒ ∂α

t u ∈ Lp(T)

holds for α ∈ N and p ∈ (1, ∞). If α = j/2 for some j ∈ N, we usually write
√

D
j
tu := Dj/2

t u.

3. Transference Principle and Embedding Theorem

To analyze mapping properties of the fractional derivative and other operators, we
need the notion of Fourier multipliers on the locally compact abelian group G = T×Rn

for n ∈ N0. We are interested in multipliers that induce bounded operators between
mixed-norm spaces of the form Lp(T; Lq(Rn)) for p, q ∈ (1, ∞). We call M ∈ L∞(Z×Rn)
an Lp(T; Lq(Rn))-multiplier if there is C > 0 such that

∀u ∈ S (T×Rn) :
∥∥F−1

T×Rn

[
M FT×Rn [u]

]∥∥
Lp(T;Lq(Rn))

≤ C‖u‖Lp(T;Lq(Rn)),

and we call m ∈ L∞(R×Rn) an Lp(R; Lq(Rn))-multiplier if there is C > 0 such that

∀u ∈ S (R×Rn) :
∥∥F−1

R×Rn

[
m FR×Rn [u]

]∥∥
Lp(R;Lq(Rn))

≤ C‖u‖Lp(R;Lq(Rn)).

The smallest such constant C is denoted by ‖M‖Mp,q(T×Rn) and ‖m‖Mp,q(R×Rn) and
called the multiplier norm of M and m, respectively. The following transference principle
enables us to reduce multipliers on T×Rn to multipliers on R×Rn.

Proposition 1. Let p, q ∈ (1, ∞), and let m ∈ C(T×Rn) be an Lp(R; Lq(Rn))-multiplier. Then,
M := m|Z×Rn is an Lp(T; Lq(Rn))-multiplier with norm

‖M‖Mp,q(T×Rn) ≤ ‖m‖Mp,q(R×Rn)

Proof. The statement can be shown as in [19], where a transference principle from scalar-
valued Lp(R)-multipliers to Lp(T)-multipliers was shown. For a more direct and modern
approach, one may also follow the proof of ([20] [Proposition 5.7.1]), where an operator-
valued version of the result from [19] was established.

We now apply this transference principle to show the following result, which is an
extension of ([21] [Theorem 4.1]) to the case of mixed norms. Moreover, we also take
fractional time derivatives into account.

Theorem 3. Let Ω ⊂ Rn, n ≥ 2, be a bounded or exterior domain with Lipschitz boundary, and
let q, r ∈ (1, ∞). For α ∈ [0, 2], let

r0 ∈


[
1, 2r

2−αr
]

if αr < 2,
[1, ∞) if αr = 2,
[1, ∞] if αr > 2,

q0 ∈


[
q, nq

n−(2−α)q

]
if (2− α)q < n,

[q, ∞) if (2− α)q = n,
[q, ∞] if (2− α)q > n,
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and, for β ∈ [0, 1], let

r1 ∈


[
1, 2r

2−βr
]

if βr < 2,

[1, ∞) if βr = 2,
[1, ∞] if βr > 2,

q1 ∈


[
q, nq

n−(1−β)q

]
if (1− β)q < n,

[q, ∞) if (1− β)q = n,
[q, ∞] if (1− β)q > n.

Then, there is C = C(n, q, r, α, β) > 0 such that all u ∈W1,r(T; Lq(Ω)) ∩ Lr(T; W2,q(Ω))
satisfy the inequality

‖u‖Lr0 (T;Lq0 (Ω)) + ‖∇u‖Lr1 (T;Lq1 (Ω)) + ‖
√

Dtu‖Lr1 (T;Lq1 (Ω)) + ‖
√

Dt∇u‖Lr(T;Lq(Ω))

≤ C
(
‖u‖W1,r(T;Lq(Ω)) + ‖u‖Lr(T;W2,q(Ω))

)
.

(13)

Proof. For the proof, we proceed analogously to ([21] [Theorem 4.1]). However, we have
to modify some arguments in the case p 6= q, and we also derive estimates for the fractional
time derivative, which is why we give some details here. Using Sobolev extension operators
and the density properties of S (T×Rn), it suffices to show the estimate from Equation (13)
for Ω = Rn and u ∈ S (G) with G = T×Rn.

We begin with the estimate of u. By means of the Fourier transform, we obtain

u = F−1
G

[
1

1 + |ξ|2 + i 2π
T k

FG
[
u + ∂tu− ∆u

]]
=
(
γα/2 ⊗ Γ2−α

)
∗ F, (14)

where

γµ := F−1
T
[(

1− δZ(k)
)∣∣ 2π
T k
∣∣−µ]

, Γν := F−1
Rn

[
(1 + |ξ|2)−ν/2],

F := F−1
G
[
M FG[u + ∂tu− ∆u]

]
, M(k, ξ) :=

(1 + |ξ|2)1−α/2
∣∣ 2π
T k
∣∣α/2

1 + |ξ|2 + i 2π
T k

.

Here, δZ is the delta distribution on Z, that is, δZ : Z → {0, 1} with δZ(k) = 1 if and
only if k = 0. We can extend M : Z×Rn → A to a continuous function m : R×Rn → A
in a trivial way such that M = m|Z×Rn . One readily shows that m satisfies the Lizorkin
multiplier theorem ([22] [Corollary 1]), so that the function m is an Lr(R; Lq(Rn))-multiplier.
Due to the transference principle from Proposition 1, this implies that M is an Lr(T; Lq(Rn))-
multiplier, and we have

‖F‖Lr(T;Lq(Rn)) ≤ C‖u + ∂tu− ∆u‖Lr(T;Lq(Rn))

≤ C
(
‖u‖W1,r(T;Lq(Rn)) + ‖u‖Lr(T;W2,q(Rn))

)
.

(15)

Moreover, from ([18] [Example 3.1.19]) and ([23] [Proposition 6.1.5]), we conclude

γµ ∈ L
1

1−µ ,∞
(T), ∀s ∈

[
1,

1
1− µ

)
: γµ ∈ Ls(T),

Γν ∈ L
n

n−ν ,∞(Rn), ∀s ∈
[
1,

n
n− ν

)
: Γν ∈ Ls(Rn)
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for µ ∈ (0, 1) and ν ∈ (0, n). Young’s inequality thus implies that ϕ 7→ γα/2 ∗ ϕ defines
a continuous linear operator Lr(T) → Lr0(T) if r0 ≥ r, and ψ 7→ Γ2−α ∗ ψ defines a
continuous linear operator Lq(T)→ Lq0(T). Therefore, Equation (14) yields

‖u‖Lr0 (T;Lq0 (Rn)) =

( ∫
T

∥∥∥∫
T

γα(t− s)Γ2−α ∗Rn F(s, ·)ds
∥∥∥r0

q0
dt
) 1

r0

≤
( ∫

T

( ∫
T

∣∣γα(t− s)
∣∣ ∥∥Γ2−α ∗Rn F(s, ·)

∥∥
q0

ds
)r0

dt
) 1

r0

≤ C
( ∫

T

∥∥Γ2−α ∗Rn F(t, ·)
∥∥r

q0
dt
) 1

r

≤ C‖F‖Lr(T;Lq(Rn)).

Invoking now Equation (15), we arrive at the desired estimate for u if r0 ≥ r. Since T
is compact, the estimate for r0 < r follows immediately.

The remaining estimates of ∇u,
√

Dtu and
√

Dt∇u can be shown in the same way
as those for u. Note that, for the estimates of

√
Dtu and

√
Dt∇u, the procedure has to be

slightly modified since the trivial extension of the corresponding multipliers to R×Rn is
not continuous. To demonstrate this, we focus on the estimate for

√
Dt∇u, which means

nothing else than the boundedness of the linear operator
√

Dt∇ : W1,r(T; Lq(Rn)) ∩ Lr(T; W2,q(Rn))→ Lr(T; Lq(Rn)).

Similarly to the above, this boundedness follows if the function

M : Z×Rn → A, M(k, ξ) =
| 2π
T k|

1
2 ξ j

|ξ|2 + i 2π
T k

is an Lr(T; Lq(Rn))-multiplier for j = 1, . . . , n. Note that its trivial extension is not a con-
tinuous function in (0, 0) ∈ R×Rn, which is necessary for application of the transference
principle from Proposition 1. However, since M(0, ξ) = 0, we can introduce a smooth
cut-off function χ ∈ C∞

0 (R) with supp χ ⊂ (−1, 1) and such that χ(η) = 1 for |η| ≤ 1
2 . We

define

m : R×Rn → A, m(η, ξ) =

(
1− χ(η)

)
| 2π
T η|

1
2 ξ j

|ξ|2 + i 2π
T η

.

Then, m is a smooth function with m|Z×Rn = M, and one readily verifies that m
satisfies the multiplier theorem by Lizorkin ([22] [Corollary 1]). Finally, Proposition 1
shows that M is an Lr(T; Lq(Rn))-multiplier, which implies the estimate for

√
Dt∇u.

As mentioned in the proof, the lower bound 1 for r0 and r1 is valid since the torus T
has finite measure. In the same manner, the lower bound for q0 and q1 can be replaced with
1 if Ω is a bounded domain.

In ([24] [Theorem 4.1]), a homogeneous version of Theorem 3 was shown, but only
in the case q = r. Modifying the proof in [24] and using similar arguments as above, this
result is easily extended to the case q 6= r.

We might also formulate the assumptions on the integrability exponents in Theorem 3
as follows: Let r0, p0, r1, p1 ∈ [1, ∞] such that

2
r
− α <

2
r0
≤ 2,

n
q
− (2− α) <

n
q0
≤ n

q
,

2
r
− β <

2
r1
≤ 2,

n
q
− (1− β) <

n
q1
≤ n

q
,
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where in each of the four conditions the left < can be replaced with ≤ if the respective
lower bound is different from 0.

4. Preliminary Regularity Results

As a preparation for the proof of the main theorems, we first consider the steady-state
Navier–Stokes equations

−∆v− τ∂1v + v · ∇v +∇p = F in Ω, (16a)

div v = 0 in Ω, (16b)

v = v∗ on ∂Ω (16c)

and recall the following result on the regularity of weak solutions.

Theorem 4. Let Ω ⊂ R3 be an exterior domain with a C2-boundary. Let q0 ∈ (1, 2) such that

F ∈ Lq(Ω)3, v∗ ∈W2− 1
q ,q
(∂Ω)3 (17)

for q = q0 and for q = 3
2 . If v is a weak solution to Equation (16), then there exists an associated

pressure field p such that

v ∈ D2,q0(Ω)3 ∩D1,4q0/(4−q0)(Ω)3 ∩ L2q0/(2−q0)(Ω)3, p ∈ D1,q0(Ω),

and Equation (16) is satisfied in the strong sense. Additionally, if there exists q1 ∈ (3, ∞) such
that Equation (17) holds for all q ∈ (1, q1], then v satisfies Equations (7) and (8). Moreover, if Ω
has C3-boundary and F ∈ W1,q1(Ω)3 and v∗ ∈ W3−1/q1,q1(∂Ω)3, then Equation (6) holds and
p ∈ D1,q(Ω) for all q ∈ (1, ∞].

Proof. See ([25] [Lemma X.6.1 and Theorem X.6.4]).

We further derive a similar regularity result for weak solutions to the time-periodic
Oseen problem, which is the linearization of Equation (1) given by

∂tu− ∆u− τ∂1u +∇p = f in T×Ω, (18a)

div u = 0 in T×Ω, (18b)

u = u∗ on T× ∂Ω. (18c)

Here, we focus on the case of purely oscillatory data. To shorten the notation, we
denote the mixed-norm parabolic space by

Wq,r := W1,r(T; Lq(Ω)3) ∩ Lr(T; W2,q(Ω)3).

Lemma 1. Let Ω ⊂ R3 be an exterior domain of class C2, and let u∗ be as in Equation (5b),
and let f ∈ Lr(T; Lq(Ω)3) for some r, q ∈ (1, ∞) such that P f = 0 and Pu∗ = 0. Let
u ∈ L∞(T; L2(Ω)3) with ∇u ∈ L2(T×Ω)3×3 and Pu = 0 be a weak solution to Equation (18),
that is, u = u∗ on T× ∂Ω, div u = 0 and∫

T

∫
Ω

[
− u · ∂t ϕ +∇u : ∇ϕ− τ∂1u · ϕ

]
dxdt =

∫
T

∫
Ω

f · ϕ dxdt (19)

for all ϕ ∈ C∞
0,σ(T×Ω). Then, u ∈ Wq,r, and there exists p ∈ Lq(T; D1,q(Ω)) such that (u, p) is

a strong solution to Equation (18).



Mathematics 2023, 11, 141 9 of 17

Proof. For q = r, the result was shown in ([14] [Lemma 5.1]). Arguing in the same way, we
can show that it suffices to treat the case u∗ = 0. In this case, first consider a solution of the
time-periodic Stokes problem, that is, the system

∂tU − ∆U +∇P = f in T×Ω, (20a)

div U = 0 in T×Ω, (20b)

U = 0 on T× ∂Ω. (20c)

We now use the result from ([26] [Theorem 5.5]) on maximal regularity for this system
for right-hand sides in Lr(T; Lq(Ω)3). From this, we conclude the existence of a unique
solution (U,P) with PU = 0 and U ∈ Wq,r. The embedding Theorem 3 implies that
∂1U ∈ Lr̃(T; Lq(Ω)) for r̃ ∈ (1, ∞) with 1

r̃ ∈ ( 1
r −

1
2 , 1]. We again employ the the maximal

regularity result from ([26] [Theorem 5.5]) to obtain the existence of a unique solution (V, P)
to

∂tV − ∆V +∇P = τ∂1U in T×Ω,

div V = 0 in T×Ω,

V = 0 on T× ∂Ω,

such that PV = 0 and V ∈ Wq,r̃ for all r̃ as above. Employing Theorem 3 once more, we
see that ∂1V ∈ Lr̂(T; Lq(Ω)) for any r̂ ∈ (1, ∞). In particular, we can choose r̂ = q, that is,
we have ∂1V ∈ Lq(T×Ω). Now we can use the maximal regularity result ([21] [Theorem
5.1]) for the Oseen system for the right-hand sides in Lq(T×Ω) to find a solution (W,Q) to

∂tW − ∆W − τ∂1W +∇Q = τ∂1V in T×Ω,

div W = 0 in T×Ω,

W = 0 on T× ∂Ω,

such that W ∈ Wq,q. Theorem 3 further implies ∂1W ∈ Lr(T; Lq(Ω)) for 1
r ∈ ( 1

q −
1
2 , 1] such

that W ∈ Wr,q by ([26] [Theorem 5.5]). Repeating this argument once again, we obtain
W ∈ Wq,r for r ∈ (1, ∞). In total, we see that ũ := U + V + W and p̃ := P+ P +Q satisfy
the Oseen system from Equation (18) and ũ ∈ Wq,r. To conclude that u = ũ, one can now
proceed as in the proof of ([14] [Lemma 5.1]). The regularity of the pressure p follows
immediately.

Observe that, for the proof, we combined two results on maximal regularity: one
for the Stokes problem in Equation (20) for right-hand sides in Lr(T; Lq(Ω)3), and one for
the Oseen problem in Equation (18) for right-hand sides in Lq(T×Ω)3. The argument
could be shortened severely if such a result would be available for the Oseen problem
in Equation (18) for right-hand sides in Lr(T; Lq(Ω)3). For a proof, one can use the approach
developed in ([26] [Theorem 5.5]), which would also give corresponding a priori estimates.

5. Regularity of Time-Periodic Weak Solutions

Now, we begin with the proof of Theorem 2, for which we proceed by a bootstrap
argument that increases the range of admissible integrability exponents step by step. To
shorten the notation, we introduce the Serrin number

sq,r :=
2
r
+

3
q

.

For the whole section, let f and u∗ satisfy Equation (5), and let u be a weak solution in
the sense of Definition 1. We decompose u and set v := Pu and w := P⊥u.

We first show that the definition of weak solutions already implies some degree of
increased regularity and that there exists a pressure such that the Navier–Stokes equations
are satisfied in the strong sense.
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Lemma 2. There exists a pressure field p = p + q such that

∀s2 ∈ (1,
3
2
] : v ∈ D2,s2(Ω)3, p ∈ D1,s2(Ω)3, (21)

∀s1 ∈ (
4
3

, 3] : v ∈ D1,s1(Ω)3, ∀s0 ∈ (2, ∞) : v ∈ Ls0(Ω)3, (22)

∀r, q ∈ (1, ∞) with sq,r = 4 : w ∈ Wq,r, q ∈ Lr(T; D1,q(Ω)), (23)

and the Navier–Stokes equations in Equation (1) are satisfied in the strong sense. More precisely, it
holds that

−∆v− τ∂1v + v · ∇v +∇p = P f −P [w · ∇w] in Ω, (24a)

div v = 0 in Ω, (24b)

v = Pu∗ on ∂Ω. (24c)

and

∂tw− ∆w− τ∂1w +∇q = P⊥ f − v · ∇w− w · ∇v−P⊥(w · ∇w)in T×Ω, (25a)

div w = 0 in T×Ω, (25b)

w = P⊥u∗ on T× ∂Ω. (25c)

Proof. From the integrability of w, we conclude with Hölder’s inequality that w · ∇w ∈
L1(T; L3/2(Ω)) ∩ L2(T; L1(Ω)). We thus have P f − P(w · ∇w) ∈ L1(Ω) ∩ L3/2(Ω), and
Theorem 4 yields the existence of p such that Equation (24) and Equations (21) and (22)
also hold.

To obtain the regularity statement for w, note that Equation (22) implies v · ∇w ∈
L2(T; Lq(Ω)3) for all q ∈ (1, 2). Moreover, we have w ∈ L2(T; L6(Ω)3)∩ L∞(T; L2(Ω)3) ↪→
Lr(T; Lq(Ω)3) for all r ∈ [2, ∞] and q ∈ [2, 6] with sq,r = 3

2 by the Sobolev inequality
and interpolation. By virtue of Equation (22) and Hölder’s inequality, we conclude that
w · ∇(v + w) ∈ Lr(T; Lq(Ω)3) for all q ∈ (1, 3

2 ] and r ∈ [1, 2) with sq,r = 4. In consequence,
we obtain

P⊥ f − v · ∇w− w · ∇v−P⊥(w · ∇w) ∈ Lr(T; Lq(Ω)3)

for all such q and r. Now, Lemma 1 yields the existence of a pressure q such that Equation (25)
is satisfied in the strong sense and Equation (23) holds.

In the following lemmas, we always assume that w ∈ Wq,r for some given q, r ∈ (1, ∞),
and the goal is to extend the range of one of the parameters q or r while the other one
remains fixed. We use the assumption on additional regularity from Equation (3) or
Equation (4), or the embedding properties from Theorem 3 to conclude that

w ∈ Lr0(T; Lq0(Ω)3) (26)

for a class of parameters q0, r0 ∈ [1, ∞], and

∇w ∈ Lr1(T; Lq1(Ω)3×3) (27)

for a class of parameters q1, r1 ∈ [1, ∞], and we use Lemma 2 or Theorem 4 to deduce

v ∈ Ls0(Ω)3 (28)

for certain s0 ∈ [1, ∞] and
∇v ∈ Ls1(Ω)3×3 (29)
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for certain s1 ∈ [1, ∞]. Then, Hölder’s inequality yields suitable estimates of the nonlinear
terms and of the total right-hand side

P⊥ f − v · ∇w− w · ∇v−P⊥(w · ∇w) ∈ Lr5(T; Lq5(Ω)3) (30)

for a certain class of parameters q5, r5 ∈ (1, ∞). Invoking now the regularity result from
Lemma 1, we conclude w ∈ Wq5,r5 .

As a preparation, we first derive suitable estimates of the nonlinear terms if we have
w ∈ Wq,r. In the next lemma, we start with the nonlinear term

w · ∇w ∈ Lr2(T; Lq2(Ω)3), (31)

and we show better integrability for v and ∇v for sufficiently large q.

Lemma 3. Let w ∈ Wq,r for some q, r ∈ (1, ∞). Then, Equation (31) holds for

i. 3
q2
∈
(

max
{

0, sq,r − 1, 3
q + sq,r − 2

}
, min

{
3, 6

q
}]

and r2 = r, and

ii. q2 = q and 2
r2
∈
(

max
{

0, sq,r − 1
}

, 2
]
.

Moreover, if sq,r <
3
2 +

1
max{2,r} or q > 3, then the steady-state part v satisfies Equations (7) and (8).

Proof. At first, Theorem 3 yields Equation (26) for r0 = ∞ and 3
q0
∈
(

max
{

0, sq,r − 1
}

, 3
q
]
,

and Equation (27) for r1 = r and 3
q1
∈
(

max
{

0, 3
q − 1

}
, 3

q
]
, so that we deduce Equation (31)

for r2 = r and q2 as asserted in i. Moreover, Theorem 3 yields w ∈ Lr0(T; Lq(Ω)3) for
r0 ∈ [1, ∞] as well as∇w ∈ Lr1(T; L∞(Ω)3×3) for 2

r1
∈
(

max
{

0, sq,r− 1
}

, 2
]
. Now, Hölder’s

inequality implies the integrability of w · ∇w asserted in ii.
If, additionally, sq,r <

3
2 + 1

max{2,r} , then the lower bound in i. is smaller than 1, so that

P f −P(w · ∇w) ∈ Lq2(Ω)3 for some q2 ∈ (3, ∞). The same follows from ii. for q2 = q > 3.
Now, Theorem 4 yields Equations (7) and (8).

Next, we treat the nonlinear terms that involve v and ∇v, namely we show that
w ∈ Wq,r implies

v · ∇w ∈ Lr3(T; Lq3(Ω)3) (32)

and
w · ∇v ∈ Lr4(T; Lq4(Ω)3) (33)

for suitable parameters q3, r3, q4, r4 ∈ [1, ∞].

Lemma 4. Let w ∈ Wq,r for some q, r ∈ (1, ∞). Then, Equation (32) holds for

i. 3
q3
∈
(

max
{

0, 3
q − 1

}
, min

{
3, 3

q +
3
2
})

and r3 = r, and

ii. q3 = q and 2
r3
∈
(

max
{

0, 2
r − 1

}
, 2
]
,

and Equation (33) holds for

iii. 3
q4
∈
(

max{ 3
4 , 3

q −
3
4 , 6

q −
11
4 }, min{3, 3

q +
9
4}
)

and r4 = r, and

iv. 3
q4
∈
(
0, min{3, 3

q +
9
4}
)

and r4 = r if q > 3, and

v. q4 = q and 2
r4
∈
(

max{0, 2
r − 1}, 2

]
.

Proof. Theorem 3 implies Equation (27) for 3
q1
∈
(

max{0, 3
q − 1}, 3

q
]

and r1 = r as well as

for 3
q1

= 3
q − δ and 2

r1
∈
(

max{0, 2
r − (1− δ)}, 2

r
]

for δ > 0 small. Moreover, by Lemma 2,
we have Equation (28) for s0 ∈ (2, ∞), and Hölder’s inequality implies Equation (32) for q3
and r3 as in i. or ii.

Theorem 4 and Lemma 2 yield Equation (29) for all 1
s1
∈
(

max{ 1
4 , 1

q −
1
4},

3
4
)
. Theorem 3

implies Equation (26) for r0 = r and 3
q0
∈
(

max{0, 3
q − 2}, 3

q
]
. Hölder’s inequality now

yields Equation (33) for q4 and r4 as in iii. Additionally, if q > 3, then we obtain Equation (7)
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by Lemma 3. Theorem 3 further implies Equation (26) for r0 = r and q0 ∈ [q, ∞], so that
Hölder’s inequality yields Equation (33) for q4 and r4 as in iv.

For v., we distinguish two cases. Firstly, if q ≤ 3, then Theorem 3 implies Equation (26)
for 3

q0
= 3

q − 1− δ and 2
r0
∈
(

max{0, 2
r − 1 + δ}, 2

]
for δ ∈ (0, 1), and Lemma 2 yields

Equation (29) for all s1 = 3
1+δ , so that Hölder’s inequality implies Equation (33) for q4 = q0

and r4 = r0. Secondly, if q > 3, then we use Lemma 3 again to conclude Equation (7).
Moreover, Theorem 3 yields Equation (26) for q0 = q and r0 ∈ [1, ∞], and we conclude
Equation (33) for q4 = q and r4 = r0 ∈ [1, ∞]. Combining both cases, we obtain v.

The results from Lemmas 3 and 4 are not sufficient to conclude the proof, and we need
to invoke the additional regularity assumptions from Equation (3) or Equation (4) to obtain
Equation (31) for other parameters q2 and r2. We define δκ,ρ > 0 by

δκ,ρ :=

{
1− sκ,ρ if Equation (3) is assumed,
2− sκ,ρ if Equation (4) is assumed.

Lemma 5. Assume either Equation (3) or Equation (4), and let w ∈ Wq,r for some q, r ∈ (1, ∞).
Then, Equation (31) holds for

i. 3
q2
∈
(

max
{ 3

κ , 3
q − δκ,ρ

}
, min

{
3, 3

q +
3
κ

}]
and r2 = r, and

ii. q2 = q and 2
r2
∈
(

max
{ 2

ρ , 2
r − δκ,ρ

}
, 2
]
.

Proof. At first, let us assume Equation (3). Then, ρ > 2 and Theorem 3 with β = 2
ρ ∈ (0, 1)

yields Equation (27) for 3
q1
∈
(

max
{

0, 3
q + sκ,ρ − 1− 3

κ

}
, 3

q
]

and 2
r1

= 2
r −

2
ρ . Combining

this with Equation (3) and using Hölder’s inequality, we obtain Equation (31) for q, r as in i.
Moreover, we have κ > 3, and Theorem 3 with β = 1− 3

κ ∈ (0, 1) yields Equation (27) for
2
r1
∈
(

max
{

0, 2
r + sκ,ρ − 1− 2

ρ

}
, 2
]

and 3
q1

= 3
q −

3
κ . Combining this with Equation (3) and

using Hölder’s inequality, we obtain Equation (31) for q, r as in ii.
Now, let us assume Equation (4). From Theorem 3 with α = 2

ρ ∈ (0, 2), we deduce

Equation (26) for 3
q0
∈
(

max
{

0, 3
q + sκ,ρ − 2− 3

κ

}
, 3

q
]

and 2
r0

= 2
r −

2
ρ . Combining this with

Equation (4) and using Hölder’s inequality, we also obtain Equation (31) in this case for
q, r as in i. Moreover, we have κ > 3

2 , and Theorem 3 with α = 2− 3
κ ∈ (0, 2) yields

Equation (26) for 2
r0
∈
(

max
{

0, 2
r + sκ,ρ − 2− 2

ρ

}
, 2
]

and 3
q0

= 3
q −

3
κ . Combining this with

Equation (4) and using Hölder’s inequality, we also obtain Equation (31) in this case for q, r
as claimed in ii.

Now, we have prepared everything to iteratively increase the range of parameters q, r
such that w ∈ Wq,r. By Lemma 2, we start with q, r such that sq,r = 4. In particular, both
parameters cannot be chosen as large, and we use Lemmas 4 and 5 to extend the range
of admissible parameters. An iteration leads to sufficiently large parameters such that
Lemma 3 can be invoked to further iterate until the full range (1, ∞) is admissible for both
parameters, which proves the regularity result from Theorem 2.

Proof of Theorem 2. As a first step, we show that w ∈ Wq,r for all q ∈ (3, ∞) and all
r ∈ (2, ∞). To do so, observe that both Equations (3) and (4) imply that κ > 3 or ρ > 2. In
what follows, we distinguish these two cases:

Consider the case κ > 3 at first. We show that w ∈ Wq̃,r for all q̃ ∈ (1, κ) and r ∈ (1, 2).
Let q ∈ (1, 3

2 ) and r ∈ (1, 2) with sq,r = 4, so that w ∈ Wq,r by Lemma 2. Then, we
have Equation (31) for q2, r2 as in i. of Lemma 5, we have Equation (32) for q3, r3 as in
i. of Lemma 4, and we have Equation (33) for q4, r4 as in iii. of Lemma 4. We thus obtain
Equation (30) for 3

q5
∈
(

max
{ 3

κ , 3
q − δκ,ρ, 3

q −
3
4 , 3

4 , 6
q −

11
4
}

, min
{

3, 3
q +

3
κ , 3

q +
3
2
})

and r5 = r.

Since κ > 3
2 , this interval is non-empty, and by the regularity result from Lemma 1, we

conclude w ∈ Wq̃,r for 3
q̃ ∈

(
max

{ 3
κ , 3

q − δκ,ρ, 3
q −

3
4 , 3

4 , 6
q −

11
4
}

, min
{

3, 3
q + 3

κ , 3
q + 3

2
})

.
Repeating this argument iteratively with q replaced with a suitable q̃ within this range, we
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obtain w ∈ Wq̃,r for q̃ ∈ (1, min{4, κ}). If κ ≤ 4, this completes the first step. If this is not
the case, we repeat the above argument for q ∈ (3, 4), but we use iv. of Lemma 4 instead
of iii., which leads to Equation (30) for 3

q5
∈
(

max
{ 3

κ , 3
q − δκ,ρ

}
, min

{
3, 3

q +
3
κ , 3

q +
3
2
})

and

r5 = r, and thus w ∈ Wq̃,r for for 3
q̃ ∈

(
max

{ 3
κ , 3

q − δκ,ρ
}

, min
{

3, 3
q +

3
κ , 3

q +
3
2
})

. Repeating
now this argument a sufficient number of times for admissible q̃ > q instead of q, we finally
arrive at w ∈ Wq̃,r for all q̃ ∈ (1, κ) and r ∈ (1, 2).

Since we assume κ > 3, we can now choose q ∈ (3, κ). Let r ∈ (1, 2) such that
sq,r < 2. The previous step implies w ∈ Wq,r, and we conclude Equation (31) for q2, r2
as in ii. of Lemma 3, we have Equation (32) for q3, r3 as in ii. of Lemma 4, and we have
Equation (33) for q4, r4 as in v. of Lemma 4. We thus obtain Equation (30) for q5 = q and
2
r5
∈
(

max
{

0, sq,r − 1
}

, 2
]
. Invoking Lemma 1, we obtain w ∈ Wq,r̃ for 2

r̃ ∈
(

max
{

0, 2
r +

3
q − 1

}
, 2
)
, and an iteration as above yields w ∈ Wq̃,r̃ for all q̃ ∈ (3, κ) and all r̃ ∈ (1, ∞).

Now, let q ∈ (3, κ) and r ∈ (2, ∞). Then, sq,r < 2 and, since w ∈ Wq,r, we have
Equation (31) for q2, r2 as in i. of Lemma 3, we have Equation (32) for q3, r3 as in i. of
Lemma 4, and we have Equation (33) for q4, r4 as in iv. of Lemma 4. We thus obtain
Equation (30) for 3

q5
∈
(

max
{

0, sq,r − 1, 3
q + sq,r − 2

}
, 6

q
)

and r5 = r, and Lemma 1 yields

w ∈ Wq̃,r for 3
q̃ ∈

(
max

{
0, 3

q +
2
r − 1, 3

q + sq,r − 2
}

, 6
q
)
. An iteration of this argument leads

to w ∈ Wq̃,r̃ for all q̃ ∈ ( 3
2 , ∞) and all r̃ ∈ (2, ∞).

Now consider the case ρ > 2. We first extend the range for r and show that w ∈ Wq̃,r̃

for all q̃ ∈ (1, 3
2 ) and r̃ ∈ (1, ρ). For this, fix q ∈ (1, 3

2 ). Lemma 2 yields w ∈ Wq,r for some
r ∈ (1, 2) such that sq,r = 4. Then, we have Equation (31) for q2, r2 as in ii. of Lemma 5,
we have Equation (32) for q3, r3 as in ii. of Lemma 4, and we have Equation (33) for q4,
r4 as in v. of Lemma 4. We thus obtain Equation (30) for q5 = q and 2

r5
∈
(

max
{ 2

ρ , 2
r −

δκ,ρ, 2
r − 1

}
, 2
]
. Using the regularity result from Lemma 1, we now obtain w ∈ Wq,r̃ for

2
r̃ ∈

(
max

{ 2
ρ , 2

r − δκ,ρ, 2
r − 1

}
, 2
)
. Repeating this argument with r replaced with some

r̃ > r in this range, we can successively increase the admissible range for r̃ until we obtain
w ∈ Wq̃,r̃ for all q̃ ∈ (1, 3

2 ) and r̃ ∈ (1, ρ).
Since ρ > 2, we can choose r ∈ (2, ρ), and from w ∈ Wq,r for q ∈ (1, 3

2 ) and we
conclude Equation (31) for q2, r2 as in i. of Lemma 3, we have Equation (32) for q3, r3 as in
i. of Lemma 4, and we have Equation (33) for q4, r4 as in iii. of Lemma 4. We thus obtain
Equation (30) for r5 = r and 3

q5
∈
(

max
{ 3

4 , 3
q −

3
4 , 6

q −
11
4 , sq,r − 1, 3

q + sq,r − 2
}

, min{3, 6
q}
]
.

Invoking Lemma 1, we obtain w ∈ Wq̃,r for 3
q̃ ∈

(
max

{ 3
4 , 3

q −
3
4 , 6

q −
11
4 , sq,r − 1, 3

q + sq,r −
2
}

, min{3, 6
q}
)
, and an iteration as above yields w ∈ Wq̃,r for all q̃ ∈ (1, 4). Now, we can

choose q = q̃ > 3, and repeating the argument with iv. of Lemma 4 instead of iii., we obtain
w ∈ Wq̃,r for 3

q̃ ∈
(

max
{

0, sq,r − 1, 3
q + sq,r − 2

}
, min{3, 6

q}
)
. Another iteration now leads

to w ∈ Wq̃,r̃ for all q̃ ∈ (1, ∞) and all r̃ ∈ (2, ρ) if ρ > 2.
Now, let q ∈ (3, ∞) and r ∈ (2, ρ). Then, sq,r < 2 and, since w ∈ Wq,r, we have

Equation (31) for q2, r2 as in ii. of Lemma 3, we have Equation (32) for q3, r3 as in ii. of
Lemma 4, and we have Equation (33) for q4, r4 as in v. of Lemma 4. We thus obtain
Equation (30) for q5 = q and 2

r5
∈
(

max
{

0, sq,r − 1
}

, 2
]
. Invoking Lemma 1, we obtain

w ∈ Wq,r̃ for 2
r̃ ∈

(
max

{
0, 2

r +
3
q − 1

}
, 2
)
, and an iteration as above yields w ∈ Wq̃,r̃ for all

q̃ ∈ (3, ∞) and all r̃ ∈ (1, ∞).
Combining these two cases and using that T is compact, we have shown that w ∈ Wq,r

for all q ∈ (3, ∞) and r ∈ (1, ∞). In particular, v satisfies Equations (8) and (7) by Lemma 3,
and we have Equation (6) by Lemma 2. To conclude Equation (9), note that Theorem 3
implies Equations (26) and (27) for q0, q1 ∈ (3, ∞] and r0, r1 ∈ [1, ∞) , so that Equation (31)
holds for q2 ∈ ( 3

2 , ∞] and r2 ∈ (1, ∞), and i. and iv. of Lemma 4 yield Equation (32) for
q3 ∈ ( 6

5 , ∞) and r3 ∈ (1, ∞), and Equation (33) for q4 ∈ (1, ∞) and r4 ∈ (1, ∞). We
thus have obtained Equation (30) for q5 ∈ ( 3

2 , ∞) and r5 ∈ (1, ∞), and, from Lemma 1,
we conclude w ∈ Wq,r for all q ∈ ( 3

2 , ∞) and r ∈ (1, ∞). Repeating the argument once
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more, we finally obtain Equation (9). Moreover, Equation (10) is a direct consequence of
Equations (6)–(9) by virtue of Equations (24) and (25).

Finally, Equation (11) follows from Theorem 4 and the additional assumptions on ∂Ω,
f and u∗ since Equation (9) implies that P(w · ∇w) ∈W1,q(Ω) for any q ∈ (1, ∞).

Proof of Theorem 1. At first, we increase the time regularity of the solution inductively in

steps of half a derivative. For j ∈ N, let ũj :=
√

D
j
tu and w̃j :=

√
D

j
tw. We show that, for

every j ∈ N, we have

∀q, r ∈ (1, ∞) : w̃j ∈W1,r(T; Lq(Ω)3) ∩ Lr(T; W2,q(Ω)3). (34)

By Theorem 2, there exists a pressure field p such that (u, p) is a strong solution
to Equation (1) with the regularity stated in Equations (6)–(11). In particular, this shows
Equation (34) for j = 0. Now, assume that w̃j has the asserted regularity stated in Equation (34)
for all j ∈ {0, . . . , k}. Then, Theorem 3 implies

∀q, r ∈ (1, ∞) : w̃j+1 =
√

Dtw̃j ∈ Lr(T; W1,q(Ω)3) ∩ L∞(T; L∞(Ω)3) (35)

for j = 0, . . . , k. Let ϕ ∈ C∞
0,σ(T×Ω) and multiply Equation (1a) by

√
D

k+1
t ϕ. Since w̃k = ũk

for k ≥ 1, after integrating by parts in space and time as well as by means of Equation (12),
we obtain∫

T

∫
Ω

[
− w̃k+1 · ∂t ϕ +∇w̃k+1 : ∇ϕ− τ∂1w̃k+1 · ϕ + (w̃k+1 · ∇w̃k+1) · ϕ

]
dxdt

=
∫
T

∫
Ω

fk+1 · ϕ dxdt,
(36)

where
fk+1 :=

√
D

k+1
t f + w̃k+1 · ∇w̃k+1 −

√
D

k+1
t div(u⊗ u).

In virtue of the smoothness of the boundary data and the regularity of w̃, we see that
w̃ is a weak solution to the Navier–Stokes equations from Equation (1) for the right-hand
side fk+1, which is an element of Lr(T; Lq(Ω)3) for all q, r ∈ (1, ∞). For the first two terms
in the definition of fk+1, this follows from the assumptions and from Equation (35). For the

term
√

D
k+1
t div(u⊗ u), we distinguish two cases.

If k = 2N − 1 is an odd number, then this term is an element of Lr(T; Lq(Ω)) if and
only if ∂i∂

N
t (u⊗ u) is an element of Lr(T; Lq(Ω)) for i = 1, 2, 3. We write

∂i∂
N
t (u⊗ u) =

N

∑
`=0

∂i∂
`
t u⊗ ∂N−`

t u.

We can estimate the terms of this sum as

‖∂iu⊗ ∂N
t u‖Lr(T;Lq(Ω)) ≤ ‖∇u‖L∞(T;L∞(Ω))‖w̃k+1‖Lr(T;Lq(Ω)),

‖∂i∂
N
t u⊗ u‖Lr(T;Lq(Ω)) ≤ ‖∇w̃k+1‖Lr(T;Lq(Ω))‖u‖L∞(T;L∞(Ω)),

‖∂i∂
`
t u⊗ ∂N−`

t u‖Lr(T;Lq(Ω)) ≤ ‖∇w̃2`‖Lr(T;Lq(Ω))‖w̃k+1−2`‖L∞(T;L∞(Ω)),

for ` = 1, . . . , N − 1, where the respective right-hand side is finite due to Equations (7)–(9)
and the embedding Theorem 3 as well as Equation (35) for j ≤ k. If k = 2N is an even

number, then
√

D
k+1
t div(u⊗ u) ∈ Lr(T; Lq(Ω)3) if and only if this is true for

√
Dt∂

N
t div(u⊗ u) =

N

∑
`=0

√
Dt div

(
∂`t u⊗ ∂N−`

t u
)
.
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By Theorem 3, this is the case if ∂`t u⊗ ∂N−`
t u ∈ W1,r(T; Lq(Ω)) ∩ Lr(T; W2,q(Ω)) for

` = 0, . . . , N. For example, for the terms with derivatives of highest order we obtain

‖u⊗ ∂N+1
t u‖Lr(T;Lq(Ω)) ≤ ‖u‖L∞(T;L∞(Ω))‖∂tw̃k‖Lr(T;Lq(Ω)),

‖∂`t u⊗ ∂N+1−`
t u‖Lr(T;Lq(Ω)) ≤ ‖w̃2`‖Lr(T;Lq(Ω))‖∂tw̃k−2`‖L∞(T;L∞(Ω)),

‖u⊗ ∂N
t ∇2u‖Lr(T;Lq(Ω)) ≤ ‖u‖L∞(T;L∞(Ω))‖∇2w̃k‖Lr(T;Lq(Ω)),

‖∂N
t u⊗∇2u‖Lr(T;Lq(Ω)) ≤ ‖w̃k‖L∞(T;L∞(Ω))‖∇2u‖Lr(T;Lq(Ω)),

‖∂`t u⊗ ∂N−`
t ∇2u‖Lr(T;Lq(Ω)) ≤ ‖w̃2`‖Lr(T;Lq(Ω))‖∇2w̃k−2`‖L∞(T;L∞(Ω)),

which are all finite by the same argument as above. Similarly, this follows for the lower-
order terms.

In summary, we obtain fk+1 ∈ Lr(T; Lq(Ω)3) for all q, r ∈ (1, ∞) in both cases. By
Equation (35), the function w̃k+1 is subject to both regularity assumptions from Equations (3)
and (4), and Theorem 2 implies that w̃k+1 = P⊥w̃k+1 satisfies Equation (34) for j = k + 1.
We thus have shown Equation (34) for all j ∈ N0.

To increase the spatial regularity, we recall that (u, p) is a strong solution by Theorem 2,
so that the N-th time derivative, N ∈ N0, satisfies the Stokes system

−∆∂N
t u +∇∂N

t p = FN in Ω,

div ∂N
t u = 0 in Ω,

∂N
t u = ∂N

t u∗ on ∂Ω

a.e. in T, where
FN := ∂N

t f − ∂N+1
t u + τ∂1∂N

t u− ∂N
t
(
u · ∇u

)
.

Since ∂`t u = ∂`t w for ` ≥ 1, Theorem 2 and Equation (34) imply FN ∈ Lr(T; W1,q(ΩR)
3)

for all q, r ∈ (1, ∞) and all R > 0 such that ∂Ω ⊂ BR, where we define ΩR := Ω ∩ BR,
and BR ⊂ R3 is the ball with radius R and centered at 0 ∈ R3. By a classical regularity
result for the steady-state Stokes problem (see [25] [Theorem IV.5.1] for example), we
obtain ∂N

t u ∈ Lr(T; W3,q(ΩR)) for all R > 0 sufficiently large and all N ∈ N0. This
implies FN ∈ Lr(T; W2,q(ΩR)), and can again apply ([25] [Theorem IV.5.1]) to deduce
∂N

t u ∈ Lr(T; W4,q(ΩR)). Iterating this argument, we finally obtain

u ∈WN,r(T; WM,q(ΩR))

for all N, M ∈ N0, all q, r ∈ (1, ∞) and all R > 0 such that ∂Ω ⊂ BR. This completes the
proof.

6. Conclusions and Outlook

As the main result, this paper contains new regularity criteria for time-periodic weak
solutions to the Navier–Stokes equations with a non-zero drift term in exterior domains.
These criteria are given in the form of a Serrin-type condition on the purely periodic part
P⊥u of the velocity field u or its gradient, but they do not involve the steady-state part
Pu. This is a severe difference to known regularity results for the initial-value problem.
Moreover, this article generalizes the regularity criterion used in [12–14], so that the re-
sults on the asymptotic behavior of time-periodic solutions also hold under more general
assumptions.

A natural question for further research would be whether the conditions Equations (3)
and (4) can be extended to the critical case, that is, if one can still obtain smoothness of
weak solutions if the strict inequalities in Equations (3) and (4) are replaced with equalities.
In this case, the presented proof is not applicable, but analogous results are well known for
the initial-value problem.
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Moreover, the present article focuses on the case τ > 0, that is, the flow around a
translating body. In the case τ = 0, corresponding to the flow around a body at rest, the
above bootstrap argument cannot be employed since the decay properties of the velocity
field are worse, similarly to the properties of the time-independent problem (see [25]
[Ch. X]). Moreover, as mentioned above, time-periodic solutions cannot be expected to
have finite kinetics and thus cannot be identified with Leray–Hopf weak solutions to the
initial-value problem. Therefore, it remains an open question how to establish regularity
criteria such as Equation (3) or Equation (4) in the case τ = 0.
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