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Abstract: Bridge optimization is a significant challenge, given the huge number of possible configu-
rations of the problem. Embodied energy and cost were taken as objective functions for a box-girder
steel–concrete optimization problem considering both as single-objective. Embodied energy was
chosen as a sustainable criterion to compare the results with cost. The stochastic global search TAMO
algorithm, the swarm intelligence cuckoo search (CS), and sine cosine algorithms (SCA) were used
to achieve this goal. To allow the SCA and SC techniques to solve the discrete bridge optimization
problem, the discretization technique applying the k-means clustering technique was used. As a re-
sult, SC was found to produce objective energy function values comparable to TAMO while reducing
the computation time by 25.79%. In addition, the cost optimization and embodied energy analysis
revealed that each euro saved using metaheuristic methodologies decreased the energy consumption
for this optimization problem by 0.584 kW·h. Additionally, by including cells in the upper and lower
parts of the webs, the behavior of the section was improved, as were the optimization outcomes
for the two optimization objectives. This study concludes that double composite action design on
supports makes the continuous longitudinal stiffeners in the bottom flange unnecessary.

Keywords: swarm intelligence; steel–concrete composite structures; bridges; optimization;
metaheuristics; sustainability

MSC: 05-04; 08-08; 05-11

1. Introduction

Structural engineering has been traditionally based on materialized safety solutions
reducing the investment to the minimum. However, the current search for solutions
that fall within the definition of sustainable development makes that criterion insufficient.
Regarding this, other criteria have arisen to add the concept of sustainability to structures [1].
Introducing new design criteria in structural problems increases complexity, moving this
problem to the decision-making field of knowledge. In order to assess the sustainability of
solutions, life cycle assessment has become one of the most widely used tools to evaluate the
social and environmental profile of a solution [2,3]. Nevertheless, in order to approximate an
environmental assessment, one representative criterion can be chosen as an alternative. The
most used criteria in these cases are the CO2 emissions and the energy consumption [4,5].
Regarding this, structural optimization research in recent years has focused on applying
different techniques to obtain optimal designs considering CO2 emissions and embodied
energy as well as cost as optimization objectives. In conclusion, in concrete structures,
many research studies have shown a clear relation between the three criteria [6,7].

The energy required to build a structure, like CO2 emissions, is an indicator of sus-
tainability [8]. However, there are different definitions of the energy required in the case
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of a structure. Each definition implies a different method of calculation. Therefore, there
has yet to be a consensus in the scientific community regarding a single definition and
calculation methodology [9,10]. Heuristic steel or composite structures were optimized in
works such as Whitworth and Tsavdaridis [11]. In structures made of reinforced concrete,
the reduction of the required energy can be accomplished optimizing the use of materials
instead of directly changing traditional to new construction materials. Some authors have
used energy as an objective function in structural optimization [12–14].

To address civil engineering optimization problems, particularly in the design of struc-
tures, heuristic methods have had interesting results [15]. One of the most representative
structures of civil engineering is bridges because they can connect different geographical
locations. This type of structure also stands out for its complexity in obtaining optimal
solutions due to the high number of design possibilities. In order to obtain optimum
designs, heuristic optimization techniques are put forth as an alternative to traditional
experience-based design. These methods allow for reaching optimum designs ensuring
compliance with the restrictions imposed by regulations, adding these as problem con-
straints. These methods were extensively applied in many types of structures, such as road
vaults [16] or walls [17], among others.

Regarding bridge energy optimization, Penadés-Plà et al. [6] proposed a Kriging-
based optimization approach that cut computing time by 99.06% and produced results
that differed from heuristic optimization’s use of simulated annealing by just 2.54%. This
research work was applied to optimize the embodied energy of a three-span 40–50–40 m
continuous box-section footbridge.

However, recent review works highlight a lack of knowledge in applying heuristic
and metaheuristic techniques to steel–concrete composite bridges (SCCB) [18] compared to
concrete bridges. The techniques applied to that type of structure are: set-based parametric
design [19], harmony search (HS) [20], genetic algorithm (GA), and imperialist competitive
algorithm [21], among others. In addition, some particle swarm algorithms were applied to
carry out SCCB optimizations [20]. However, in those studies, the unique criterion taken as
an objective function is the cost. Thus, researchers have only considered the economic pillar
of sustainability in some isolated studies. This shows a lack in SCCB sustainable designs
research, which is not in line with the current policy of countries that seek economically
viable solutions and are environmentally and socially friendly.

Therefore, this study proposes to optimize a composite steel and concrete bridge
using embodied energy as the objective function. The main purpose of this research is
to obtain an energy-embodied optimum design. For this, two types of metaheuristics
were applied in order to use the one that reaches the best behavior for this optimization
problem. Due to the large number of variables that the bridge presents, it is an important
challenge for optimization algorithms. Since this energy optimization problem has not
been solved before and there is no comparison baseline, it has been proposed to use
and compare two groups of techniques. The first one is based on a global stochastic
search (threshold accepting with a mutation operator algorithm) and was used before in
solving similar problems with good results. The second is based on hybrid methods that
integrate machine learning algorithms in the discretization process of continuous swarm
intelligence methods. This technique has been used to solve combinatorial problems with a
binary representation [22]. The current work proposes a variation to address the discrete
problem. In this work, first, an analysis of the contribution of the hybrid method to the
optimization result is carried out through the comparison with random discretization
methods. Additionally, the main parameter (β) used in the hybrid method is analyzed
in order to identify its contribution to the optimization result. Subsequently, the hybrid
method is compared with the threshold accepting with a mutation operator algorithm. The
comparison is made through the minimization of the embodied energy and of the costs.
Finally, the different solutions found in both optimizations are analyzed and compared.
For this, in Section 2, the optimization problem variables, parameters, and constraints were
defined. Section 3 describes the different optimization algorithms used and their tuning.
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Subsequently, Sections 4 and 5 show the results and the comparison with previous studies.
As it can be seen in Section 6, results of the study show that the cost and the embodied
energy are clearly related when optimizing cost; however, optimizing embodied energy
does not necessarily result in a cost-optimal solution.

In conclusion, it should be mentioned that other types of particle swarm optimization
algorithms [23,24] and other methods, such as differential evolution ones [25,26], can be
applied in future research to study their behavior for this optimization problem. Moreover,
in the new studies, new sustainability criteria, such as the complete life cycle assessment,
will be chosen for carrying out multi-objective optimization. As the calculation of more
and higher complexity objective functions can increase the computational time, the use of
metamodels generated with machine learning techniques will be taken into account.

2. Optimization Problem Description

The problem posed in this study is the minimization of the objective function that
evaluates the embodied energy and the cost of a steel–concrete composite bridge (SCCB).
To deal with this problem, the bridge was parameterized. In this case, cost and embodied
energy criteria were considered as a single objective in order to compare the designs ob-
tained from both optimizations. In Equation (1), the embodied energy target function was
defined. Data for embodied energy considers cradle-to-gate analysis; thus, it considers all
processes necessary from obtaining raw materials , their conversion into those elements
that will allow performing the bridge resistant section, and their final placement on-site.
Data of embodied energy and costs in Table 1 were obtained from the Construction Tech-
nology Institute of Catalonia by the BEDEC database [27]. Furthermore, the cost objective
function is formulated in Equation (2). Both objective functions must meet the regulation
and recommendation constraints’ represented by Equation (3). Meeting these constraints
will ensure the feasibility of the obtained solution from the optimization procedure. Ex-
pressions (1) and (2) represent the multiplication of each material measurement multiplied
by the embedded energy (ei) and price (pi), respectively.

E(~x) =
n

∑
i=1

ei ·mi(~x) (1)

C(~x) =
n

∑
i=1

pi ·mi(~x) (2)

G(~x) ≤ 0 (3)

Table 1. Embodied energy and cost values for materials.

Material Unit Energy (kW·h) Cost (e)

Concrete C25/30 m3 402.44 88.86
Concrete C30/37 m3 428.29 97.80
Concrete C35/45 m3 429.95 101.03
Concrete C40/50 m3 429.95 101.03
Precast pre-slab m2 175.87 27.10

Steel B400S m2 3.38 1.40
Steel B500S m2 3.38 1.42

Rolled steel S275 m2 12.23 1.72
Rolled steel S355 m2 12.23 1.85
Rolled steel S460 m2 12.23 2.01

Shear-connector steel m2 13.52 1.70

2.1. Variables and Parameters

A 220 m continuous three-span box-girder steel and concrete composite bridge was
defined as the optimization problem. According to the variables, these correspond to each
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bridge element’s geometry, reinforcement, concrete, and steel grades. All of these variables
were discretized in order to arrive at a real constructible solution, hence constituting
a discrete optimization problem. The discretization of variables is defined in Table 2.
The number of feasible optimization solutions is equal to 1.38 × 1046 when this variable
discretization is considered. Metaheuristic methods are appropriate for locating the best
answer when so many combinations are possible. This bridge optimization problem’s
global formulation considers 34 different variables in total. These bridge variables are
illustrated in Figure 1. The variables nature can be classified into six categories. First are the
geometric variables of the transverse section, which are: distance between wings on top (b),
angle between wings and flanges (αw), thickness of the upper slab (hs), depth of the steel
section (hb), floor beam lower value (h f b), upper flange thickness (t f1 ), upper flange width
(b f1 ), upper cells height (hc1 ) and thickness (tc1 ), wings thickness (tw), low cells height (hc2 ),
thickness (tc2 ), and width (bc2 ), and low slab thickness (hs2 ). Beam depth limits are defined
as L/40 and L/25, L being the longest length of the spans.

sf₂

tf₂

b

hs

hb

tf
₁, bf₁

tc₁
tw

tc₂
nsf₂

hs₂

hc₁

st, dst

sf₂ nsf₂

sw

bfb, tffb, twfb

Øsc, hsc

bfb

tffb

twfb

dsd

hfb

αw

Figure 1. Transverse section variables for the optimization problem.

SCCBs can utilize materials more effectively, profiting from the material location. This
is true in statically determined girders. In this case, the upper concrete slab is materialized
along the whole length of the bridge. This upper slab is attached to the upper flanges by
shear connectors. This reinforces the flange plate, preventing it from buckling. Moreover,
in the case of isostatics, the lower flanges would be subjected to tensile stress, avoiding
buckling instability problems. In this problem, negative bending stresses will arise in
supported portions under the typical loads (mostly gravitational) to which road bridges
are subjected. This will cause a reversal of forces and tensile strains in the upper concrete
slab and compression in the lower flange. In this instance, to improve the behavior of
the bridge’s cross section, it was decided to realize a concrete bottom slab in this zone
in addition to the reinforcement of the top slab. In order to optimize the reinforcement
of the top slab, it was separated into a base reinforcement that is the least necessary by
regulations [28–30] and two additional layers in negative bending sections, where the
reinforcement is enhanced. Accordingly, the second group of variables corresponds to base
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reinforcement, first reinforcement and second reinforcement bar diameters (φbase, φr1 , φr2 ),
and the corresponding bar number of the reinforcement areas (nr1 , nr2 ).

In order to avoid buckling of steel plates, stiffeners were defined as the third category
of the problem variables considering half IPE profiles for wings, bottom flange, and the
transverse stiffeners (sw, s f2 , st). In order to allow the optimization procedure to define
the number of stiffeners of the bottom flange (ns f2

), this is considered as a variable placing
them evenly distributed over the width.

To finalize the geometrical variables definition, the shear connectors and floor beam
geometry were defined through the width of the floor beam (b f b), thicknesses of the
flanges (t f f b

) and webs (tw f b ), and the shear connectors height (hsc) and diameter (φsc). To
determine the materials strength, the rolled steel tensile stress ( fyk), concrete strength ( fck),
and reinforcement steel tensile stress ( fsk) were also defined as variables.

Table 2. Optimization problem variables and boundaries.

Variables Unit Lower Limit Upper Limit Step Size Possibilities

Geometrical variables

b m 7 10 0.01 301
αw deg 45 90 1 46
hs mm 200 400 10 21
hb cm 250 (L/40) 400 (L/25) 1 151
h f b mm 400 700 100 31
t f1 mm 25 80 1 56
b f1 mm 300 1000 10 71
hc1 mm 0 1000 1 101
tc1 mm 16 25 1 10
tw mm 16 25 1 10
hc2 mm 0 1000 10 101
tc2 mm 16 25 1 10
bc2 mm 300 1000 10 71
t f2 mm 25 80 1 56
hs2 mm 150 400 10 26

Stiffeners

ns f2
u 0 10 1 11

dst m 1 5 0.1 41
dsd m 4 10 0.1 61
s f2 mm IPE 200-IPE 600 * 12
sw mm IPE 200-IPE 600 * 12
st mm IPE 200-IPE 600 * 12

Floor beams

b f b mm 200 1000 100 9
t f f b

mm 25 35 1 11
tw f b mm 25 35 1 11

Reinforcement

nr1 u 200 500 1 301
nr2 u 200 500 1 301

φbase mm 6, 8, 10, 12, 16, 20, 25, 32 8
φr1 mm 6, 8, 10, 12, 16, 20, 25, 32 8
φr2 mm 6, 8, 10, 12, 16, 20, 25, 32 8

Shear Connectors

hsc mm 100, 150, 175, 200 4
φsc mm 16, 19, 22 3

Material strength

fck MPa 25, 30, 35, 40 4
fyk MPa 275, 355, 460 3
fsk MPa 400, 500 2

* Following the series of IPE profiles defined in [31].
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Table 3 defines the parameters used for the bridge optimization problem. These
parameters consider the Eurocode structural checks [28–30], the bridge spans length that
corresponds to 60–100–60 m as can be seen in Figure 2, the deck width (B) of 16 m, and
the upper and lower bound for the variables considering regulations [28–30] and design
guides [32,33].

Table 3. Parameters of the SCCB optimization problem.

Geometrical parameters

Bridge deck width (W) 16 m
Span number 3
Central span length 100 m
External span length 60 m
Minimum web thickness (twmin ) 15 mm
Minimum flange thickness (t f2min) 25 mm
Reinforcement cover 45 mm

Material parameters

Maximum aggregate size 20 mm
Concrete longitudinal strain modulus (Ecm) 22 · (( fck + 8)/10)3 MPa
Concrete transverse strain modulus (Gcm) Ecm/(2 · (1 + 0.2)) MPa
Steel longitudinal strain modulus (Es) 210,000 MPa
Steel transverse strain modulus (Gs) 80,769 MPa

Regulation requirement parameters

Regulations Eurocodes [28–30,34], IAP-11 [35]
Exposure environment XD2
Structural class S5
Service life 100 years

Loading parameters

Reinforced concrete density 25 kN/m3

Steel density 78.5 kN/m3

Asphalt density 24 kN/m3

Asphalt layer thickness 100 mm
Bridge traffic protections 5.6 kN/m
Traffic load Eurocode 1 [34]
Thermal load Eurocode 1 [34]
Wind load Eurocode 1 [34]

Upper and lower slab reinforcements were set with the minimum amount required for
reinforcement in Eurocode 2 [30]. The connection was obtained considering the concrete
slab stresses. Effective widths due to shear lag are calculated considering Eurocode 4 [28] as
only this part is considered as resistant. The steel bar reinforcements (φr1 , φr2 ) were placed
only in the effective width. Lower slabs defined on supports are placed on the first and
last third of every span corresponding to the shear lag negative bending areas defined in
Eurocode 4 [28].

60.00 100.00 60.00

Figure 2. Bridge spans length of the SCC bridge.
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2.2. Structural Analysis and Constraints

The constraints of the optimization problem correspond to the structural safety and
serviceability checks defined by the regulations [28–30]. Furthermore additional constraints
were incorporated following some design guides [32,33].

Constraints defined by Eurocodes correspond to ultimate limit states (ULS) and ser-
viceability limit states (SLS). ULS correspond to the structural resistance of bridge sections,
while SLS correspond to the defined materials stresses and deflection limits. The loads and
combination defined correspond to those imposed by Eurocode 1 [34] and are summarized
in Table 3.

For ULS checks, both local and global analyses were performed. For global analysis,
the checks corresponded to: shear, flexure, torsion, and flexure–shear interaction. To obtain
the sections resistance, the reductions due to shear lag [28] and slenderness of Class 4
sections [30] were considered. The precision of the Class 4 reduction iterative process was
defined in 10−6. Sections were homogenized considering the coefficient (n) between the
longitudinal deflection modulus of concrete (Ecm) and steel (Es) as defined in Equation (4).
Concrete creep and shrinkage were defined following the Eurocodes [28–30] standard.
For developing the floor beams and diaphragm behavior to ULS, local modeling was
performed.

n =
Es

Ecm
(4)

Deflection, material’s tension limit, and fatigue were defined as SLS constraints. The
deflection limit was defined following Spanish regulation IAP-11 [35], fixing L/1000 as the
maximum deflection value for live loads’ frequent combination. In this case, L l represents
each span length. Furthermore, restrictions for construction and geometrical requirements
were defined. All structural checks were defined using a numerical model programmed
with Python language.

3. Optimization Algorithms
3.1. Trajectory-Based Algorithm: Threshold Accepting with a Mutation Operator (TAMO)

Duec and Scheuer [36] developed threshold accepting (TA), as an alternative to Kir-
patricks’ simulated annealing (SA) [37]. Both metaheuristics are within the trajectory-based
group . These algorithms vary the problem variables and compare the objective functions
obtained. The rejection or acceptance of the new solution depends on the criteria chosen.
SA applies an acceptation criteria formula that gives the new solution a probability of being
chosen, even worsening the objective function value. TA applies a more specific criterion
by applying a threshold where the solution is directly accepted if its objective function
value is inside. Accepting bad solutions enhances the optimization process and allows for
avoiding local optimums. While the optimization process is performed, the threshold is
reduced to exploit the optimum neighborhood. This study has applied threshold accepting
with a mutation operator (TAMO) [38]. As the original TA, this algorithm starts with a
random solution and an initial threshold. According to Medina’s criterion [39], the initial
threshold (U0) is raised or lowered until the acceptability range is between 20% and 40%.
The difference lies in the fact that in each iteration, the new solution can be modified, simu-
lating the mutations of genetic algorithms. This modification allows adding exploration to
the optimization process.

The TAMO algorithm has specific parameters that adjust it to the problem being solved.
These parameters are variables number (VN), chain length (CL), standard deviation for
mutation operator (SD), cooling coefficient (CC), and unimproved chains (UC). VN limits
the number of variables changed in each iteration. CL defines the number of iterations
run for each threshold. SD is related to the mutation operator’s probability of mutation
of the solution. CC defines the threshold reduction when the CL is reached. Finally, the
UC defines the number of chains without improvement allowed before the optimization
process is ended. In addition to UC, if the threshold arrives at 0.05% of the initial, then the
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optimization process is also finished. The parameters chosen for this optimization problem
are those described in Section 3.5.1.

3.2. Sine Cosine Algorithm (SCA)

In [40], the sine cosine algorithm (SCA) was proposed. When exploring and using the
search space, the swarm intelligence algorithm considers the sine and cosine functions. The
procedure additionally employs Pt

j to relocate the solutions. It is the location of the final
solution for iteration t and dimension j and is often the finest result thus far. Along with Pt

j ,
the technique uses three random numbers, r1, r2, andr3, with values ranging from zero to
one. Equations (5) and (6) illustrate the update method employed.

xt+1
i,j = xt

i,j + r1 × sin(r2)× |r3Pt
j − xt

i,j| (5)

xt+1
i,j = xt

i,j + r1 × cos(r2)× |r3Pt
j − xt

i,j| (6)

3.3. Cuckoo Search Algorithm

The cuckoo species is distinguished by depositing their eggs in other bird species nests;
this way of behaving inspired the CS algorithm. Cuckoos are so sophisticated that they
can imitate the colors and patterns of their chosen host species’ eggs in some situations.
An egg, in this instance, represents a solution. The analogy’s premise is that the best
solutions (cuckoos) should be used to replace those that do not function adequately. The
CS algorithm is based on three fundamental rules:

1. One egg is laid by each cuckoo at a time, and it is placed in a nest that is chosen
at random.

2. The best nests, or those that produce eggs of a high caliber, will be taken into consid-
eration for the succeeding generation.

3. The number of available nests is a fixed value. With a chance of pa ∈ (0, 1), the
cuckoo’s egg will be found by the host bird.

xt+1
i,j = xt

i,j + α
⊕

Lévy(λ) (7)

where α > 0 is the step size that should be proportional to the problem’s scales. The product⊕
refers to entry-level multiplications. Through the use of a Lévy distribution to determine

the random step length, the Lévy flight replicates a random walk, Lévy ∼ t−λ, 1 < λ ≤ 3 .

3.4. Hybrid Swarm Intelligence: SCA and CS

Because both metaheuristics perform naturally in continuous domains, the hybrid
method is used in the case of swarm intelligence metaheuristics. It takes the metaheuristic,
MH, the list of discrete solutions acquired in the previous iteration, lSol, and a list of
transition probabilities transitionProbs as input parameters. It returns a new list of discrete
solutions, lSol, as an output. In the first stage, the discretization method determines the
MH’s velocities. These velocities in the case of CSA and CS correspond to the component
obtained by the difference between |xt+1

i,j − xt
i,j| in Equations (5) to (7).

Following that, a k-means clustering technique is applied to convert the velocity
values, which can take on values in R, to transition probabilities values which take values
in [0,1). The k-means technique clustering the velocities generating clusters in this specific
case were five clusters. The clusters were sorted from the smallest to larger centroids. In the
case of the smallest centroid, the smallest transition probability was assigned to all cluster
velocities. The largest transition probability is assigned to all cluster points in the case of
the largest centroid. Figure 3 shows a diagram with the k-means procedure. The values of
transition probabilities used for this article were [0.1, 0.2, 0.4, 0.8, 0.9].
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Continuos 
space

Discrete 
space

Figure 3. K-means discretization technique chart.

Then, for each dimension of each solution, a transition probability DimSol Probi,j
is obtained. If this probability is more significant than a random number, r1, and a β
parameter is greater than a random number, r2, this dimension of the solution is updated
with the value of the best solution obtained,until now. The procedure is updated with a
random permitted value if the β condition is not fulfilled. In the case neither transition
probability nor β condition is fulfilled, the dimension of the solution is not updated. This
final option is intended to enhance the search space’s exploration.

3.5. Parameter Tuning

The metaheuristics’ results are dependent on the values of its parameters. As a result,
a process of parameter selection is required to determine which parameters produce the
greatest results for the goal function. This is highly dependent on the optimization problem.
As a result, various optimization problems will provide a range of parameter values.
Parameter tuning is the process of determining which parameters best fit the optimization
problem.

3.5.1. TAMO Tuning

The number of parameters changes according to the metaheuristic. There are algo-
rithms with more parameters than others, such as TAMO. Locating the most suitable ones
might become a pretty hard job. As a result, current approaches enable the researcher to
obtain the most statistically significant factors and concentrate the search on their variation.
These are referred to as Design of Experiments (DoE). To obtain the TAMO parameter
adjustment in this scenario, a 2k fractional factorial design was used.

In factorial designs, each trial or replication examines all potential combinations of
the factor levels. This enables the evaluation of the response’s change as the factor level
varies. This change is referred to as the factor’s effect, and it is proportional to the factor’s
statistical significance [41]. Two levels must be allocated to the investigated algorithm
parameters to carry out this operation. The parameters tested and the levels chosen are
100 and 100 for every step length, 0% and 30% for the standard deviation, 1 and 5 for the
variable number change, 0.80 and 0.95 for the cooling coefficient, and 1 and 5 for the steps
without improving.

Since each variable has two levels defined, 32 (25) runs are required to obtain a
complete factorial design. Additionally, 5 replications are required to obtain the average
and deviation for each experiment, resulting in a total of 160 runs. A fractional factorial
DoE of resolution V was chosen to minimize the number of runs. This reduces the number
of runs to 80 as the number of combinations is reduced to 16. Table 4, summarizes the
parameter value combinations.



Mathematics 2023, 11, 140 10 of 21

Table 4. Results for each parameter combination of the DoE.

CL SD VN CC UC Cost (€) %Desv Time (s) %Desv

1 - - - - + 4,479,632.69 11.60% 1066.43 7.42%
2 + - - - - 3,822,939.15 0.01% 8945.34 1.66%
3 - + - - - 4,323,458.35 11.19% 1074.43 3.73%
4 + + - - + 3,822,726.91 0.00% 8707.18 2.27%
5 - - + - - 4,157,630.63 2.36% 373.77 8.33%
6 + - + - + 3,829,609.10 0.08% 2776.87 10.37%
7 - + + - + 4,483,512.89 5.27% 376.63 11.12%
8 + + + - - 3,833,429.00 0.07% 2768.47 2.72%
9 - - - + - 3,953,288.27 7.13% 2668.19 5.68%

10 + - - + + 3,822,727.51 0.00% 23,570.64 0.88%
11 - + - + + 4,075,329.14 4.63% 2743.15 5.30%
12 + + - + - 3,822,729.18 0.00% 23,265.95 0.76%
13 - - + + + 4,003,714.99 6.53% 1180.30 2.97%
14 + - + + - 3,831,006.92 0.11% 10,347.75 5.33%
15 - + + + - 4,058,998.41 5.05% 1295.28 16.48%
16 + + + + + 3,826,230.52 0.08% 10,059.03 2.73%

As shown in Table 4, the best results in terms of cost are obtained with Experiment 4.
Furthermore, the deviation in cost is negligible. For these reasons, the parameters chosen
for the TAMO algorithm correspond to those used in Experiment 4.

3.5.2. Hybrid Swarm Intelligence Methods Tuning

The process for choosing parameters employs four metrics to make an appropriate
parameter selection: the best, the average, the worst value, and the time obtained in the
different runs executed. Table 5 summarizes the parameters and their explored values. The
Range column displays the values that were explored for each of the parameters. The Value
column contains the currently selected value. We scanned eight parameter settings and
repeated each setting five times.

Table 5. Scanned parameters for the cuckoo search algorithm.

Parameters Description Value Range

N Number of solutions 10 [10, 20]
Iteration Number Maximum iterations 600 [600, 800]

β Exploration–exploitation 0.8 [0.3, 0.5, 0.7, 0.8]
α Step Length 0.01 0.01
λ Levy distribution parameter 1.5 1.5

Transition probability Transition probability [0.1, 0.2, 0.4, 0.8, 0.9] [0.1, 0.2,[0.4, 0.5],0.8, 0.9]

4. Results

This section details the results of the experiments carried out. Section 4.1 studies the
contribution of the hybridization method to the final result of the optimization in addition
to the value configured for the values of β. In addition to the tables, descriptive statistical
analyzes are considered. In particular, descriptive statistics are combined with violin plot
visualizations for a comprehensive study. The statistical significance of the results is also
determined using the Kolmogorov–Smirnov–Lilliefors and Wilcoxon signed-rank statistical
tests. The statistical methods described in Figure 4 [42] were used to select these tests. Later,
in Section 4.2, the proposed hybrid algorithms CS and SCA are compared with TA; the latter
was successfully used to solve other related optimization problems. Finally, Section 4.3
analyzes the results of the best value obtained.
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Figure 4. Statistical method.

4.1. Parameters Exploration of the Hybrid Algorithm

This section aims to identify the contribution of the k-means technique in the dis-
cretization process as well as to explore the importance of the β operator in the optimization
result. To achieve the objective, two experiments were developed. The first corresponds
to a comparison between the hybrid versions for SCA and CS with random discretization
methods. The second involves comparing the results of using different values of the β
parameter. For the construction of the random operator, in Algorithm 1, the getCluster-
Probability function was replaced by a uniform random number generator in Line 8 . This
operation produces values ranging from zero to one. Line 9 of the method also sets up
2 values for dimSolProb; it sets the initial value in (Random 0.5), which corresponds with a
probability of transition of 50%. For the second value, the value is set to 0.7 (Random 0.3),
corresponding to a probability transition of 30%. For this experiment, the value of β used
was 0.8. The result is displayed in Table 6.

Table 6 shows that for both CS and SCA the hybrid version is superior to both random
versions. In the specific case of CS, which was the one that obtained the best result, when
comparing it to its random versions, the average indicator in the hybrid version was 0.59%
higher than CS − Random 0.5 and 0.6% for the case of CS − Random 0.3. The Wilcoxon
statistical test indicates that the difference is significant in all cases. The experiment’s main
objective was to evaluate the impact of the clustering function (getClusterProbability); the
experiment showed that the impact on the optimization results is significant for the CS and
SCA cases. The second experiment, which is detailed in Table 7, evaluates the impact of
the parameter β used in Line 10 of Algorithm 1. Three conditions, β = {0.3, 0.5, 0.8}, were
verified. Both metaheuristics were again evaluated. The parameter β determines if the
movement is going to follow the best solution (Line 11) or considers a random movement
(Line 13); the latter has the sense of developing an exploration of the search space. The
higher the value is, the more limited the exploration will be. According to the results, the
value that obtained the best results was 0.8. The differences were not as large as in the
previous case; however, according to the Wilcoxon test, they were significant in all cases.
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Algorithm 1 Hybrid algorithm.

1: Function Discretization(lSol, MH,transitionProbs)

2: Input lSol, MH, transitionProbs

3: Output lSol

4: vlSol ← getVelocities(lSol, MH)

5: lSolClustered← appliedKmnsClust(vlSol, K)

6: for (each Soli in lSolClustered) do

7: for (each dimSoli,jl in Soli) do

8: dimSolProbi,j = getClustProb(dimSol, transitionProbs)

9: if dimSolProbi,j > r1 then

10: if beta > r2 then

11: Update lSoli,j using the best.

12: else

13: Update lSoli,j using a random value allowed.

14: end if

15: else

16: Don’t update the item in lSoli,j

17: end if

18: end for

19: end for
20: return lSol

Table 6. Comparison of random with hybrid discretization algorithms in the embodied optimiza-
tion problem.

CS-Hybrid CS-Random 0.5 CS-Random 0.3 SCA-Hybrid SCA-Random 0.5 SCA-Random 0.3

Run Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy kW·h

1 4,096,945.7 26,685,288.4 4,144,609.5 26,924,597.2 3,901,827.4 27,054,482.8 4,093,040.7 26,675,993.4 3,893,662.8 26,993,377.1 3,960,137.9 27,344,487.5
2 3,825,898.2 26,677,834.4 4,128,651.0 26,827,502.2 4,158,129.4 27,012,480.6 3,833,087.9 26,694,948.0 3,922,221.6 27,158,981.4 3,894,003.8 26,994,996.4
3 4,094,985.4 26,680,668.9 3,848,284.2 26,782,468.4 4,488,718.2 26,920,032.6 4,093,055.8 26,676,029.4 3,939,000.7 27,237,960.1 3,902,733.6 27,041,432.2
4 4,092,167.0 26,673,913.8 4,128,797.8 26,825,120.9 4,158,129.4 27,012,480.6 4,431,425.5 26,696,563.9 3,896,661.8 27,081,425.9 3,882,735.9 26,890,936.9
5 4,090,639.1 26,670,276.8 4,099,424.2 26,706,958.3 3,847,222.5 26,744,603.2 3,832,058.8 26,692,528.2 3,882,294.8 27,047,746.5 3,872,531.6 26,870,535.1
6 4,428,019.7 26,688,457.2 4,457,224.7 26,803,634.0 3,848,295.5 26,782,495.4 3,827,006.3 26,680,472.1 3,870,409.1 26,896,521.3 3,853,870.1 26,865,455.3
7 4,092,030.9 26,673,589.7 4,512,757.8 27,010,214.1 3,901,410.8 27,051,726.7 4,097,544.0 26,686,759.0 3,856,030.7 26,794,705.4 3,895,172.4 27,033,901.0
8 4,090,639.1 26,670,276.8 4,429,502.6 26,708,460.1 3,888,138.1 26,923,550.4 3,824,911.8 26,676,124.8 3,841,775.5 26,763,858.5 3,882,310.3 26,973,266.3
9 3,828,638.3 26,684,356.6 3,828,880.8 26,699,699.6 4,511,638.5 26,992,955.9 4,420,381.8 26,670,276.8 3,871,312.6 26,935,825.3 3,859,508.9 26,891,452.3

10 4,098,046.3 26,687,908.1 3,900,002.1 27,088,694.5 4,534,699.3 27,057,884.7 3,831,043.8 26,691,335.4 3,866,380.4 26,912,272.5 3,867,904.2 26,868,955.3
11 3,822,723.1 26,670,276.8 4,108,676.9 26,746,543.2 4,478,184.2 26,862,464.8 4,424,708.5 26,680,575.6 3,900,122.2 27,021,209.4 3,896,980.1 27,049,283.8
12 3,822,723.1 26,670,276.8 4,118,910.4 26,771,292.7 4,473,260.4 26,857,346.9 4,094,550.7 26,679,759.9 3,869,631.8 26,854,424.5 3,893,663.9 26,913,646.3
13 4,428,645.6 26,689,947.1 4,098,320.3 26,703,158.2 4,469,122.9 26,832,577.3 3,829,345.5 26,686,040.1 3,945,317.9 27,483,275.5 3,847,065.1 26,784,215.9
14 3,822,723.1 26,670,276.8 4,490,894.9 26,969,332.4 447,8421.1 26,862,181.6 4,422,860.9 26,676,177.9 3,847,634.6 26,796,203.7 3,847,065.1 26,784,215.9
15 4,098,144.6 26,688,142.1 4,457,422.2 26,808,045.1 4,117,687.8 26,764,481.3 4,098,585.6 26,689,191.9 3,884,650.8 26,986,971.4 3,915,411.6 27,174,939.5
16 4,422,083.7 26,674,327.9 3,854,295.6 26,788,264.6 3,847,812.4 26,759,388.3 4,092,465.8 26,674,625.0 3,895,513.5 27,054,362.7 3,907,472.4 27,075,044.5
17 3,824,886.5 26,675,426.2 3,854,295.6 26,788,264.6 4,443,136.5 26,745,155.0 4,095,168.1 26,681,057.2 3,858,451.9 26,840,052.0 3,899,246.9 27,039,139.2
18 3,822,723.1 26,670,276.8 3,852,081.5 26,774,783.3 4,447,647.7 26,795,306.0 3,828,464.3 26,683,942.5 3,903,872.8 27,016,029.5 3,886,928.7 26,991,286.3
19 4,420,381.8 26,670,276.8 4,506,898.1 27,038,234.2 4,434,209.6 26,713,701.8 3,827,046.0 26,680,566.6 3,857,355.7 26,808,143.3 3,880,757.4 26,948,312.1
20 4,094,744.5 26,680,049.0 4,145,753.5 26,907,828.9 4,433,091.4 26,708,831.5 4099,757.7 26,691,981.7 3,866,415.5 26,856,837.2 3914,838.9 27,195,185.8
21 4,090,639.1 26,670,276.8 4,125,813.1 26,841,024.4 4,428,324.5 26,701,767.9 3,823,789.7 26,672,815.5 3,937,042.1 27,276,778.9 3,908,855.7 27,119,308.0
22 3,822,984.1 26,670,898.0 3,848,295.5 26,782,495.4 4,184,216.4 26,933,919.9 3,822,723.1 26,670,276.8 3,918,734.3 27,083,247.5 3,865,973.2 26,927,294.5
23 4,096,497.5 26,684,221.6 4,137,720.7 26,889,362.7 4,452,906.4 26,792,502.2 4,091,739.6 26,672,896.5 3,876,224.8 26,881,663.2 3,849,356.8 26,818,040.5
24 4,098,033.0 26,687,876.6 4,514,684.8 27,030,757.5 4,439,421.1 26,721,222.5 4,421,414.3 26,672,734.5 3,937,528.5 27,300,880.0 3,917,215.2 27129984.4
25 4,093,116.3 26,676,173.4 4,161,558.4 27,016,043.2 4,438,689.1 26,718,169.7 4,098,861.3 26,689,848.1 3,951,207.8 27,413,471.1 3,873,218.3 26,935,141.4
26 3,823,551.4 26,672,248.3 4,130,300.8 26,811,521.9 4,121,244.8 26,797,247.8 4,099,084.5 26,690,379.3 3,865,317.3 26,936,470.2 3,873,046.8 26,934,942.9
27 3,831,521.8 26,691,249.9 4,115,651.2 26,781,258.7 4,117,653.3 26,788,641.6 4,420,517.6 26,670,629.8 3,858,401.9 26,832,917.2 3,886,928.7 26,991,286.3
28 4,092,987.7 26,675,867.3 4,443,221.2 26,762,283.9 4,113,513.6 26,762,101.5 4,095,858.3 26,682,700.2 3,926,973.5 27,207,587.1 3,907,472.4 27,075,044.5
29 4,095,396.9 26,681,601.9 3,845,329.1 26,753,352.3 4,112,140.7 26,753,018.7 3,833,165.5 26,695,132.5 3,863,678.8 26,860,034.3 3,899,246.9 27,039,139.2
30 4,093,532.4 26,677,163.7 4,107,444.6 26,729,705.3 4,440,909.3 26,747,263.8 4,093,031.2 26,675,970.9 3,951,842.9 27,424,806.2 3,909,674.6 27,134,621.5

min 3,822,723.1 26,670,276.8 3,828,880.8 26,699,699.6 3,847,222.5 26,701,767.9 3,822,723.1 26,670,276.8 3,841,775.5 26,763,858.5 3,844,960.2 26,784,215.9
average 4,048,535 26,677,980.8 4,146,523.4 26,835,696.7 4,999,441.5 26,838,999.4 4,063,223.2 26,681,944.5 3,891,855.6 27,025,268 3,882,252.4 26,962,208.7

max 4,428,645.6 26,691,249.9 4,514,684.8 27,088,694.5 26,701,767.9 27,057,884.7 4,431,425.5 26,696,563.9 3,951,842.9 27,483,275.5 3,960,137.9 27,344,487.5
p-value 1.87× 10−5 2.32× 10−5 2.67× 10−6 5.21× 10−5
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Table 7. Analysis of the β parameter for hybrid CS and hybrid SCA algorithms in the embodied
optimization problem.

CS-Hybrid 0.8 CS-Hybrid 0.5 CS-Hybrid 0.3 SCA-Hybrid 0.8 SCA-Hybrid 0.5 SCA-Hybrid 0.3

Run Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h)

1 4,096,945.7 26,685,288.4 4,421,629.9 26,673,247.6 3,825,599.6 26,678,976.2 4,093,040.7 26,675,993.4 3,829,662.7 26,716,239.3 3,852,063.5 26,776,349.4
2 3,825,898.2 26,677,834.4 3,824,833.5 26,675,300.2 4,094,438.0 26,780,240.7 3,833,087.9 26,694,948.0 3,836,538.4 26,724,014.0 3,838,388.3 26,748,317.1
3 4,094,985.4 26,680,668.9 4,092,352.3 26,674,354.9 4,422,601.9 26,675,561.2 4,093,055.8 26,676,029.4 3,840,611.1 26,741,452.6 3,840,663.8 26,742,739.2
4 4,092,167.0 26,673,913.8 3,822,847.9 26,770,573.9 4,421,670.5 26,673,846.7 4,431,425.5 26,696,563.9 3,841,151.8 26,744,025.5 3,847,634.6 26,796,203.7
5 4,090,639.1 26,670,276.8 3,822,723.1 26,670,276.8 4,095,234.4 26,681,559.3 3,832,058.8 26,692,528.2 3,835,346.5 26,712,877.4 3,845,385.7 26,765,875.6
6 4,428,019.7 26,688,457.2 3,822,723.1 26,670,276.8 3,829,906.8 26,687,555.0 3,827,006.3 26,680,472.1 3,838,241.8 26,725,296.9 3,839,844.8 26,745,147.7
7 4,092,030.9 26,673,589.7 4,094,610.3 26,679,729.4 4,097,484.9 26,686,879.0 4,097,544.0 26,686,759.0 3,830,021.3 26,689,322.1 3,837,570.3 26,738,778.4
8 4,090,639.1 26,670,276.8 4,094,466.5 26,679,387.3 4,094,968.4 26,680,888.9 3,824,911.8 26,676,124.8 3,840,141.1 26,773,580.5 3,979,915.8 27,694,901.1
9 3,828,638.3 26,684,356.6 4,421,264.9 26,672,378.9 4,095,281.1 26,681,498.3 4,420,381.8 26,670,276.8 3,831,809.5 26,714,597.9 3,837,811.0 26,715,356.9

10 4,098,046.3 26,687,908.1 4,422,378.7 26,675,030.1 4,427,962.4 26,688,613.0 3,831,043.8 26,691,335.4 3,834,422.1 26,712,377.7 3,844,114.5 26,749,794.7
11 3,822,723.1 26,670,276.8 3,822,723.1 26,670,276.8 4,090,840.2 26,670,957.4 4,424,708.5 26,680,575.6 3,838,997.9 26,749,285.6 3,860,551.2 26,812,438.0
12 3,822,723.1 26,670,276.8 4,090,639.1 26,670,276.8 4,421,846.9 26,673,764.3 4,094,550.7 26,679,759.9 3,832,276.8 26,708,331.7 3,832,242.2 26,734,012.5
13 4,428,645.6 26,689,947.1 4,420,760.4 26,671,178.1 3,833,836.5 26,697,654.5 3,829,345.5 26,686,040.1 3,822,878.2 26,671,004.0 3,837,078.2 26,722,390.6
14 3,822,723.1 26,670,276.8 4,093,831.1 26,677,874.9 4,099,807.9 26,692,617.8 4,422,860.9 26,676,177.9 3,833,610.5 26,732,750.5 3,880,757.4 26,948,312.1
15 4,098,144.6 26,688,142.1 3,831,013.4 26,690,010.2 4,101,920.0 26,698,535.8 4,098,585.6 26,689,191.9 3,831,631.1 26,720,405.2 3,915,723.6 27,289,381.2
16 4,422,083.7 26,674,327.9 3,822,938.7 26770790.0 3,830,424.7 26,788,928.1 4,092,465.8 26,674,625.0 3,838,434.6 26,741,872.9 3,849,356.8 26,818,040.5
17 3,824,886.5 26,675,426.2 3,828,880.8 26,684,933.8 4,421,068.2 26,672,104.2 4,095,168.1 26,681,057.2 3,830,766.1 26,710,390.1 3,843,137.6 26,777,082.8
18 3,822,723.1 26,670,276.8 4,422,163.1 26,674,517.0 3,829,894.7 26,694,327.8 3,828,464.3 26,683,942.5 3,842,429.7 26,755,365.9 3,827,737.8 26,701,775.3
19 4,420,381.8 26,670,276.8 4,421,096.6 26,671,978.3 4,094,847.7 26,780,908.6 3,827,046.0 26,680,566.6 3,832,170.7 26,707,620.9 3,854,353.3 26,779,597.7
20 4,094,744.5 26,680,049.0 4,420,381.8 26,670,276.8 3,828,383.1 26,684,286.1 4,099,757.7 26,691,981.7 3,826,311.6 26,692,093.6 3,846,577.9 26,819,795.3
21 4,090,639.1 26,670,276.8 4,091,717.0 26,672,842.5 4,091,181.4 26,672,974.8 3,823,789.7 26,672,815.5 3,857,112.2 26,818,332.1 3,845,166.9 26,786,016.9
22 3,822,984.1 26,670,898.0 4,091,035.8 26,671,251.0 4,422,529.3 26,676,586.8 3,822,723.1 26,670,276.8 3,832,154.6 26,716,933.8 3,846,331.7 26,806,453.6
23 4,096,497.5 26,684,221.6 4,422,781.5 26,675,988.9 4,091,923.9 26,674,600.6 4,091,739.6 26,672,896.5 3,830,030.8 26,702,518.8 3,841,512.6 26,788,509.8
24 4,098,033.0 26,687,876.6 4,421,425.6 26,672,761.5 4,092,847.1 26,676,393.4 4,421,414.3 26,672,734.5 4,175,468.7 29,169,891.1 3,832,590.9 26,713,656.9
25 4,093,116.3 26,676,173.4 4,092,652.7 26,675,099.5 4,425,736.9 26,686,155.0 4,098,861.3 26,689,848.1 3,829,702.6 26,709,870.0 3,862,680.1 26,851,899.7
26 3,823,551.4 26,672,248.3 4,427,045.8 26,786,139.1 4,422,166.5 26,674,525.0 4,099,084.5 26,690,379.3 3,832,923.7 26,714,515.0 3,847,190.0 26,747,850.2
27 3,831,521.8 26,691,249.9 4,091,183.7 26,671,573.2 4,429,755.7 26,694,284.9 4,420,517.6 26,670,629.8 3,834,191.9 26,702,712.9 3,872,021.5 26,806,869.8
28 4,092,987.7 26,675,867.3 4,091,251.8 26,671,735.2 4,095,770.6 26,683,352.3 4,095,858.3 26,682,700.2 3,829,805.4 26,703,590.3 3,844,960.2 26,799,370.1
29 4,095,396.9 26,681,601.9 3,822,723.1 26,770,276.8 3,823,680.0 26,672,733.5 3,833,165.5 26,695,132.5 3,832,418.3 26,724,789.7 3,853,668.0 26,877,301.7
30 4,093,532.4 26,677,163.7 4,092,443.1 26,674,571.0 3,833,038.7 26,705,152.8 4,093,031.2 26,675,970.9 3,842,743.9 26,761,566.9 3,848,918.1 26,787,319.3

min 3,822,723.1 26,670,276.8 3,822,723.1 26,670,276.8 3,823,680.0 26,670,957.4 3,822,723.1 26,670,276.8 3,822,878.2 26,671,004.0 3,827,737.8 26,701,775.3
average 4,048,535.0 26,677,980.8 4,121,950.6 26,687,830.2 4,122,888.3 26,692,882.1 4,063,223.2 26,681,944.5 3,846,133.5 26,805,587.5 3,853,531.6 26,828,051.3

max 4,428,645.6 26,691,249.9 4,427,045.8 26,786,139.1 4,429,755.7 26,788,928.1 4,431,425.5 26,696,563.9 4,175,468.7 29,169,891.1 3,979,915.8 27,694,901.1
Wilcoxon p-value 0.014 1.1× 10−4 3.4× 10−5 7.2× 10−4

4.2. Embodied Energy and Cost Optimization Methods Comparison

This section describes and analyzes the energy minimization results achieved by the
TAMO, discrete CS, and discrete SCA algorithms. Table 8 shows the outcomes of the
30 executions of each of the algorithms. The results correspond to the minimization of the
steel–concrete embodied energy of the structure. The minimum value of embodied energy
obtained throughout the execution is represented in the Energy column. The Cost column
represents the structure’s cost that was minimized. The Time corresponds to the amount of
time it takes to achieve the minimum in seconds.

When analyzing the table, it is observed that concerning the best value obtained, all
three algorithms obtain the same value, 26,670,276.8 kW·h. In the case of the average
indicator, TAMO obtained a slight superiority, with a value of 26,671,471.6 kW·h, followed
by CS with a value of 26,677,980.8 kW·h, and finally SCA with 26,681,944.4 kW·h. In the
case of the worst value obtained, TAMO again obtained the best value, followed by CS and
finally SCA. The Wilcoxon test compared TAMO-CS and TAMO-SCA to determine whether
this difference is significant. The result indicates that the difference is not significant since it
delivers values greater than 0.05 in the p-value. When the times are analyzed, the situation
changes. A notable difference is observed where CS obtains the best result with an average
of 7305 s, CSA with an average of 7960 s, and TAMO with an average of 9399 s. In addition,
in the table, we must highlight the dispersion of the results obtained for the costs in the
three algorithms. For example, in the case of TAMO, some energy optimizations obtain
costs of 3,822,723 and, in other cases, values of 4,422,594.
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Table 8. Embodied energy minimization results for 30 executions of TAMO, hybrid CS, and hybrid
SCA algorithms.

TAMO Hybrid CS Hybrid SCA

Run Cost (e) Energy (kW·h) Time(s) Cost (e) Energy (kW·h) Time(s) Cost (e) Energy (kW·h) Time(s)

1 3,823,571.1 26,672,341.6 10,279.2 4,096,945.7 26,685,288.4 7879.9 4,093,040.7 26,675,993.4 8082.0
2 4,421,229.7 26,672,341.6 10,300.6 3,825,898.2 26,677,834.4 7935.3 3,833,087.9 26,694,948.0 8071.9
3 3,822,723.1 26,670,276.8 8491.2 4,094,985.4 26,680,668.9 7954.9 4,093,055.8 26,676,029.4 8049.9
4 4,420,387.1 26,670,319.2 8401.6 4,092,167.0 26,673,913.8 7943.6 4,431,425.5 26,696,563.9 8083.9
5 4,093,735.5 26,677,693.6 9413.9 4,090,639.1 26,670,276.8 6210.6 3,832,058.8 26,692,528.2 8068.3
6 4,420,381.8 26,670,276.8 9673.1 4,428,019.7 26,688,457.2 7931.1 3,827,006.3 26,680,472.1 7982.8
7 4,421,453.6 26,672,857.9 10,329.4 4,092,030.9 26,673,589.7 7943.5 4,097,544.0 26,686,759.0 7920.5
8 3,822,723.1 26,670,276.8 7197.4 4,090,639.1 26,670,276.8 5819.4 3,824,911.8 26,676,124.8 8040.6
9 4,420,387.1 26,670,319.2 9833.4 3,828,638.3 26,684,356.6 7936.6 4,420,381.8 26,670,276.8 6843.4
10 4,420,390.1 26,670,343.1 10,301.9 4,098,046.3 26,687,908.1 7938.0 3,831,043.8 26,691,335.4 8041.0
11 3,822,728.4 26,670,319.2 8970.8 3,822,723.1 26,670,276.8 4391.3 4,424,708.5 26,680,575.6 7816.5
12 4,091,044.5 26,671,288.4 10,190.0 3,822,723.1 26,670,276.8 7432.1 4,094,550.7 26,679,759.9 7970.6
13 3,822,728.4 26,670,319.2 8764.4 4,428,645.6 26,689,947.1 7947.4 3,829,345.5 26,686,040.1 7943.1
14 4,090,814.6 26,670,724.3 9583.6 3,822,723.1 26,670,276.8 3696.5 4,422,860.9 26,676,177.9 8058.6
15 4,090,644.4 26,670,319.2 8901.5 4,098,144.6 26,688,142.1 7851.8 4,098,585.6 26,689,191.9 7998.2
16 3,822,728.4 26,670,319.2 8943.7 4,422,083.7 26,674,327.9 7878.0 4,092,465.8 26,674,625.0 7877.0
17 4,090,647.4 26,670,343.1 9023.6 3,824,886.5 26,675,426.2 7956.7 4,095,168.1 26,681,057.2 7955.3
18 4,420,897.7 26,671,534.5 9810.1 3,822,723.1 26,670,276.8 4146.4 3,828,464.3 26,683,942.5 8033.3
19 3,825,015.1 26,675,732.3 9418.1 4,420,381.8 26,670,276.8 6630.4 3,827,046.0 26,680,566.6 7989.0
20 4,421,340.2 26,672,587.8 9636.9 4,094,744.5 26,680,049.0 7928.1 4,099,757.7 26,691,981.7 8085.7
21 4,090,639.1 26,670,276.8 9307.2 4,090,639.1 26,670,276.8 6688.8 3,823,789.7 26,672,815.5 8069.1
22 4,422,594.3 26,675,543.2 9135.0 3,822,984.1 26,670,898.0 7869.7 3,822,723.1 26,670,276.8 7700.6
23 3,822,731.4 26,670,343.1 10,188.8 4,096,497.5 26,684,221.6 7899.5 4,091,739.6 26,672,896.5 7954.8
24 3,822,751.1 26,670,373.2 10,339.3 4,098,033.0 26,687,876.6 7922.8 4,421,414.3 26,672,734.5 8083.7
25 4,090,639.1 26,670,276.8 8644.7 4,093,116.3 26,676,173.4 7878.3 4,098,861.3 26,689,848.1 8008.9
26 4,420,381.8 26,670,276.8 8094.5 3,823,551.4 26,672,248.3 7897.7 4,099,084.5 26,690,379.3 8066.2
27 4,092,119.4 26,673,830.1 9663.9 3,831,521.8 26,691,249.9 7858.2 4,420,517.6 26,670,629.8 8043.6
28 4,420,381.8 26,670,276.8 8717.0 4,092,987.7 26,675,867.3 7902.9 4,095,858.3 26,682,700.2 7941.9
29 3,823,185.3 26,671,423.4 10,032.6 4,095,396.9 26,681,601.9 7935.4 3,833,165.5 26,695,132.5 7970.4
30 3,823,012.1 26,670,994.4 10,402.4 4,093,532.4 26,677,163.7 7952.5 4,093,031.2 26,675,970.9 8059.3

min 3,822,723.1 26,670,276.8 7197.4 3,822,723.1 26,670,276.8 3696.5 3,822,723.1 26,670,276.8 7700.6
average 4,113,800.2 26,671,471.6 9399.6 4,048,535.0 26,677,980.8 7305.2 4,063,223.2 26,681,944.4 7960.3

max 4,422,594.3 26,677,693.6 10,402.4 4,428,645.6 26,691,249.9 7956.7 4,431,425.5 26,696,563.9 8085.7
Wilcoxon p-value 0.087 0.064

In Figure 5, the results of Table 8 are complemented with violin charts. The chart on
the left shows the results of embodied energy, and the graph on the right shows the cost in
euros for each configuration obtained. In the chart on the left, it can be seen that in the case
of TAMO, the dispersion is less than that of CS and CSA; it should be noted that the scale is
in the fourth digit. CS and SCA have similar distributions; however, according to the shape
of the distribution obtained and the interquartile range, CS consistently produces better
results than SCA. When analyzing the costs resulting from the configurations obtained by
minimizing energy, we see that the dispersion of values is substantial and similar in the
three algorithms. However, TAMO generates more sparse configurations than CS and SCA.
In the case of CS and SCA, the distributions are similar.

In Table 9, the results of the cost optimization are shown. Regarding the algorithms
and their results, something similar to the previous experiment occurs. In the best value,
which corresponds to the minimum, they all obtain the value 3,822,723.1. Later in the
average and the worst value, TA obtains the best results, closely followed by CS and then
SCA. The statistical test indicates that the difference is not significant in the TAMO-CS
and TAMO-SCA comparison. When analyzing the convergence times, the result is a little
different since the best times in the minimum, average, and maximum are for the SCA,
followed by the CS and at the end, TAMO. Another interesting point that marks a difference
concerning the previous results is that in this case, the energy results for cost optima are
good and very similar to those obtained in energy minimization. In this case, TAMO
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obtained the best values, but the values obtained by CS and SCA were very close. This
effect will be analyzed in the next section.

Table 9. Cost minimization results for 30 executions of TAMO, hybrid CS and hybrid SCA algorithms.

TAMO Hybrid CS Hybrid SCA

Run Cost (e) Energy (kW·h) Time(s) Cost (e) Energy (kW·h) Time(s) Cost (e) Energy (kW·h) Time(s)

1 3,822,774,9 26,670,446.6 9283 3,825,644.2 26,626,556.8 7975 3,830,092.8 26,693,576.1 7836
2 3,822,728.4 26,670,319.2 8803 3,825,115.3 26,675,970.9 7976 3,864,892.6 26,947,434.0 7932
3 3,822,878.9 26,670,694.2 8936 3,825,644.8 26,677,231.2 7892 3,826,395.0 26,685,077.6 7873
4 3,823,185.3 26,671,423.4 8989 3,830,529.3 26,688,857.8 7959 3,825,919.0 26,677,883.9 7930
5 3,822,731.4 26,670,343.1 7685 3,822,875.9 26,670,670.3 7930 3,823,801.1 26,673,916.7 7916
6 3,822,728.4 26,670,319.2 6602 3,827,681.4 26,682,079.0 7984 3,835,442.1 26,703,151.7 7911
7 3,822,984.1 26,670,898.0 8983 3,824,141.4 26,673,652.7 8008 3,826,324.6 26,687,619.9 7920
8 3,824,088.1 26,673,555.6 9202 3,827,522.6 26,681,700.9 7972 3,826,206.4 26,678,568.1 7936
9 3,823,937.2 26,673,166.6 8475 3,827,541.5 26,681,745.9 7949 3,830,234.3 26,688,155.7 7858

10 3,825,711.7 26,677,437.0 9073 3,825,756.9 26,683,046.9 8056 3,825,188.7 26,676,175.3 7932
11 3,822,887.3 26,670,697.3 8951 3,824,519.6 26,674,553.0 8267 3,828,878.5 26,684,928.3 7749
12 3,822,723.1 26,670,276.8 6477 3,831,847.4 26,691,995.2 8293 3,831,864.4 26,692,035.7 7720
13 3,822,723.1 26,670,276.8 7330 3,828,029.4 26,682,907.2 8167 3,823,462.5 26,672,036.8 7638
14 3,823,619.5 26,672,410.4 9412 3,823,891.8 26,673,058.6 8268 3,828,178.8 26,683,620.9 7819
15 3,822,984.1 26,670,898.0 9305 3,825,444.4 26,677,712.0 8149 3,826,902.0 26,680,253.4 7762
16 3,822,731.4 26,670,343.1 8173 3,823,063.7 26,672,698.4 8210 3,824,311.6 26,674,057.8 7687
17 3,823,598.3 26,672,389.8 9244 3,832,782.3 26,723,089.8 8308 3,822,723.1 26,670,276.8 6165
18 3,823,676.2 26,672,545.4 8499 3,828,246.8 26,683,424.9 8370 3,824,024.1 26,673,373.7 7768
19 3,822,728.4 26,670,319.2 7017 3,831,724.5 26,691,702.6 8250 3,824,115.0 26,673,947.8 7918
20 3,822,728.4 26,670,319.2 9366 3,824,459.1 26,674,408.9 8236 3,829,979.1 26,688,085.1 7891
21 3,822,723.1 26,670,276.8 8797 3,830,466.9 26,688,709.3 7898 3,823,245.0 26,671,519.2 7870
22 3,824,379.7 26,674,219.9 8614 3,825,593.7 26,677,109.7 7645 3,828,654.6 26,687,985.8 7945
23 3,823,525.7 26,672,233.6 8612 3,826,446.6 26,679,318.8 7912 3,827,333.5 26,681,250.8 7896
24 3,823,981.4 26,673,318.4 9302 3,827,796.8 26,682,353.6 7915 3,824,394.2 26,669,105.1 7876
25 3,823,079.4 26,671,171.3 9420 3,822,766.6 26,670,380.3 7897 3,830,913.2 26,689,771.6 7856
26 3,822,723.1 26,670,276.8 7891 3,822,723.1 26,670,276.8 7024 3,829,366.5 26,687,342.8 7669
27 3,822,728.4 26,670,319.2 8318 3,822,723.1 26,670,276.8 5219 3,833,463.0 26,701,586.6 7731
28 3,822,728.4 26,670,319.2 7088 3,825,907.6 26,677,856.9 7943 3,824,394.8 26,674,255.9 7845
29 3,822,731.4 26,670,343.1 8513 3,823,593.0 26,672,347.4 7924 3,823,562.7 26,672,275.4 7696
30 3,823,015.1 26,671,018.3 8802 3,830,083.2 26,688,753.5 7914 3,830,124.4 26,688,997.7 7948

Min 3,822,723.1 26,670,276.8 6477 3,822,723.1 26,670,276.8 5219 3,822,723.1 26,669,105.1 6165
Average 3,823,192.1 26,671,419.2 8505 3,826,485.4 26,678,814.9 7917 3,828,479.6 26,690,942.2 7783

Max 3,825,711.7 26,677,437.0 9420 3,832,782.3 26,723,089.8 8370 3,864,892.6 26,947,434.0 7948
Wilcoxon p-value 0.091 0.093

106107

Figure 5. Embodied energy and cost result violin plots.

4.3. Optimization Results

The objective of this section is to compare the results obtained for embodied energy
and cost optimizations. As it can be seen in Tables 8 and 9, the three algorithms obtain
the same best result. If the average results are compared, TAMO obtains the lower cost
and energy values. However, if the computation time is taken into account, it can be seen
that for cost optimization, SCA is 14.27% faster than TAMO, while CS results in a 25.79%
faster energy optimization with little increase in the objective function. These variations
correspond to 0.21% and 0.02% if SCA is considered for cost optimization and CS for energy
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optimization, respectively. For these reasons, SCA and CS were chosen to compare their
optimization results. Results of the optimization problem variables are shown in Table 10.

The first finding is related to the number of optimums found by both algorithms.
Table 8 shows that CS found the same minimum value of energy several times but with
different results in terms of costs. This is in line with Figure 6 that shows that the same
results in energy can yield different cost values. This is because the embodied energy of
steel does not depend on the yield stress. On the contrary, as the yield stress of steel rises,
the cost increases. This comparison can be observed in Table 1. This allows the energy
optimization to increase the yield stress without penalizing the objective function and,
consequently, to obtain an optimum design with higher yield stress. On the contrary, the
cost optimization searches for solutions with lower yield stresses to reduce the overall
structure cost. Nevertheless, if we consider the relation between the cost and energy
optimization obtained in the regression plots of Figure 6 we see that by reducing the cost
by one EUR, the energy is reduced by 0.584 kW·h in this optimization problem.

Comparing the variables obtained from both optimizations, it can be observed that the
upper part of the steel beam trends in every case to 7 m, matching the lower bound defined
for this variable. Regarding the angle of the webs, it can be observed that the embodied
energy profits more from the inertia of these elements obtaining, as a result, angles closer to
90 degrees which imply a greater perpendicularity between webs and flanges. Regarding
the cells, the central part of the optimum designs gives a positive value for both upper and
lower cells, which implies that these elements improve the cross section’s behavior. As
can be seen, the optimum designs obtained by the two algorithms are pretty similar. The
differences are mainly in the transverse beams and in the thicknesses of some elements.
Finally, it is worth noting that the optimization removes the stiffeners of the lower wing.
This is due to the double composite action of the slabs in the support zones.
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Table 10. Design variables minimum and maximum values for best cost and energy optimization
results.

Cost Optimization Energy Optimization

Variables Unit Best Min Max Mean Mode Min Max

b m 7 7 7 7 7 7 7
αw deg 55 45 87 64 79 45 90
hs mm 200 200 200 200 200 200 200
hb cm 298 250 381 312 - 255 397
h f b mm 410 400 610 460 450 400 660
t f1 mm 25 25 57 25 25 25 25
b f1 mm 300 300 620 300 300 300 300
hc1 mm 330 0 960 420 - 0 980
tc1 mm 18 16 17 16 16 16 16
tw mm 16 16 16 16 16 16 16
hc2 mm 330 0 900 610 640 80 900
tc2 mm 18 16 25 17 16 16 24
bc2 mm 300 300 370 300 300 300 300
t f2 mm 25 25 29 25 25 25 25
hs2 mm 150 150 150 150 150 150 150
ns f2

u 0 0 0 0 0 0 0
dst m 3.3 1 4.9 2.86 - 1 4.8
dsd m 6 4.1 9.9 6.43 7.6 4 9.6
b f b mm 1000 200 1000 540 500 200 1000
t f f b

mm 33 25 35 30 29 25 35
tw f b mm 27 25 35 28 26 25 35
nr1 u 200 200 436 200 200 200 390
nr2 u 200 200 403 200 200 200 367
φbase mm 6 6 10 6 6 6 6
φr1 mm 6 6 6 6 6 6 6
φr2 mm 6 6 6 6 6 6 6
s f2 * mm 300 200 550 335 220 200 600
sw * mm 450 200 600 295 200 200 450
st * mm 240 200 600 279 200 200 500
hsc mm 100 100 100 100 100 100 100
φsc mm 16 16 22 16 16 16 22
fck MPa 25 25 25 25 25 25 25
fyk MPa 275 275 275 328 275 275 460
fsk MPa 500 500 500 500 500 500 500

* Values of the standard series of IPE profiles [31]. Note: Min and Max correspond to the maximum and minimum
values obtained. Best corresponds to the value obtained for the best individual for cost, and Mean and Mode
refers to the statistics of the best values obtained from energy optimization. The cost optimization data were
obtained from Hybrid SinCos, while the energy optimization ones were obtained from the Hybrid CS.

5. Discussion

In the literature, three studies have optimized steel–concrete composite box-girder
bridges. These studies are [20,43]. This section will compare the results obtained in
Section 4 with those found in previous optimization studies. The value of concrete strength
( fck) obtained from both cost and energy optimizations were 25 MPa. The high inertia of the
section produces this due to its height. In negative bending moment zones, the concrete is
not considered in the calculation, following the method proposed by Eurocode 4 [28], while
in positive bending moments, the high inertia of the cross section produces a reduction in
the stresses. Because of this, higher concrete strength is not necessary.

In the comparison focused on steel yield stress ( fyk), it can be seen that in [20] the results
give a design value for steel yield stress of 275 MPa when optimizing cost. This is in line
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with the results of this optimization problem when optimizing cost. In contrast, if the energy
optimization steel stress results are compared, it can be seen that there is some disparity
between the yield stress results. This is because the energy and the emissions produced
for manufacturing different yield stress steels are the same. Optimizing energy has the
same result as optimizing cost, depending on the yield stress chosen by the optimization
procedure. Comparing the results with [43], it can be seen that the tensile stress chosen is a
parameter and does not vary in this study. This yield stress corresponds with 355 MPa, the
expected value for steel bridges.

Finally, a variable comparison was made with [20]. Regarding the lower flange
stiffeners, these studies’ results align with the ones obtained in this study. In all cases,
these elements are eliminated from the cross section. By comparing the different results, a
compromise solution can be found that optimizes the costs and energy criteria by applying
multi-objective optimization techniques.

6. Conclusions

There is a clear trend in bridge design to consider criteria other than cost to obtain
new alternatives for structural design. Consequently, many studies consider different tech-
niques and objectives in concrete bridge optimization to obtain more sustainable alternative
bridges. In contrast, the optimization studies of steel–concrete composite bridges were
focused on weight and cost reduction, leaving aside other pillars of sustainability (e.g.,
the environmental pillar). There are few studies of SCCB optimization. Three optimiza-
tion algorithms were proposed to compare its results in terms of computation time and
minimization results. One of these algorithms was a threshold accepting with a mutation
operator (TAMO), which belongs to trajectory-based algorithms. The other two metaheuris-
tics fit in the swarm intelligence algorithms family, the sine cosine algorithm (SCA) and
the cuckoo search (CS). A hybridization machine learning strategy was applied to swarm
algorithms to improve their performance.

This study shows a box-girder steel–concrete composite bridge optimization consider-
ing cost and embodied energy as single optimization objectives. The first part of the study
compares the performance of the three algorithms proposed using the best tuning obtained
for each algorithm. As a result of this part of the study, the SCA algorithm obtained similar
results as TAMO, but on average, the computation time for cost optimization was higher.
For energy optimization, the same occurs with CS compared with TAMO. Consequently,
these algorithms were chosen to carry out both cost and energy single objective optimiza-
tion. In both optimizations, the number of stiffeners defined at the end of the optimization
process achieved the value of 0 due to the structural behavior produced by the double
composite action design. Furthermore, in steel plates, upper and lower cells shorten the
distance between non-stiffened zones and increase section stress resistances. Additionally,
as demonstrated by past research on bridges, there is a direct connection between cost
and energy optimization. In this case, 0.584 kW·h of energy reduction can be obtained for
every EUR optimized when applying heuristic optimization techniques. This relation is
only produced in the way of cost optimization. If embodied energy is optimized, it is not
possible to ensure that an optimal solution will be found in relation to cost.

This work allows the structural researcher to enlarge their knowledge of SCCB opti-
mization by considering new methods and target functions. It opens the door to using those
elements to obtain new design criteria for more sustainable and efficient steel–concrete
composite bridge alternatives. In future research, other machine learning techniques will
be applied to study its performance and accelerate the computation time. Furthermore,
this proposed study will consolidate or discard the addition of cells in the cross section and
eliminate stiffeners in the bottom flange in this type of box-girder SCCB bridge.

Regarding the study of the algorithm, it is interesting to carry out a time complexity
analysis. We must consider that the hybrid algorithm has a complexity of the metaheuris-
tic O(MH) plus O(K-means), which is O(n2), plus the discretization process, which is
also O(n2). The preceding suggests carrying out a time analysis study where, on the
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one hand, the structure can be varied by increasing its complexity to analyze how the
different algorithms behave in convergence times. On the other hand, we can vary the
analysis by maintaining the same design, but making the search space more complex, for
example, increasing the number of discrete elements to evaluate the different algorithms at
convergence times.
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