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Abstract: The current work aims to develop an approximation of the slice of a Minkowski sum of
finite number of ellipsoids, sliced up by an arbitrarily oriented plane in Euclidean space R3 that, to
the best of the author’s knowledge, has not been addressed yet. This approximation of the actual slice
is in a closed form of an explicit parametric equation in the case that the slice is not passing through
the zones of the Minkowski surface with high curvatures, namely the “corners”. An alternative
computational algorithm is introduced for the cases that the plane slices the corners, in which a family
of ellipsoidal inner and outer bounds of the Minkowski sum is used to construct a “narrow strip”
for the actual slice of Minkowski sum. This strip can narrow persistently for a few more number of
constructing bounds to precisely coincide on the actual slice of Minkowski sum. This algorithm is also
applicable to the cases with high aspect ratio of ellipsoids. In line with the main goal, some ellipsoidal
inner and outer bounds and approximations are discussed, including the so-called “Kurzhanski’s”
bounds, which can be used to formulate the approximation of the slice of Minkowski sum.

Keywords: slice of Minkowski sum; ellipsoids; closed-form parametrization; approximation;
computational algorithm; Kurzhanski’s bounds
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1. Introduction

The Minkowski sum is a binary operator between two sets of position vectors in n-
dimensional Euclidean space Rn, which defines a way to add up the two sets and generate
a new set of points with a different geometry. This operator is commutative and associative
and allows successive implementation of that to the countable (more practically finite)
number of the sets. Let S1 ⊂ Rn and S2 ⊂ Rn be two sets of vectors, then the Minkowski
sum S1 ⊕ S2 ⊂ Rn is defined by vector addition of every vector s1 ∈ S1 with every vector
s2 ∈ S2

S1 ⊕ S2
.
= {s1 + s2 : s1 ∈ S1 , s2 ∈ S2}. (1)

This is equivalent to define the Minkowski sum S1 ⊕ S2 as the set of all translated copies of
set S2 by every translation vector s1 ∈ S1

S1 ⊕ S2
.
= {s1 + S2 : s1 ∈ S1}. (2)

From (2), one can easily imagine that the Minkowski sum of a geometrical shape (object)
and a point is the translated shape by the position vector of that point and, similarly, the sum
of an object and a curve is that object moving along the curve. The concepts of Minkowski
sum and slice of Minkowski sum are widely used in vast areas of engineering, such as robot
motion planing [1,2], computer-aided design [3], assembly planning [4] and especially
crystallography [5,6]. In crystallography, X-ray diffraction is an experimental technique to
determine the atomic and molecular structure of a crystalline material, that is to figure out
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the orientation and position of each atom or molecule within a unit cell of the crystal. The
unit cell is the smallest building unit of the crystalline material that inherits the symmetry
of the crystal, such that the entire crystal is constructed from repeating this unit. The X-ray
diffraction experiment does not provide full information about the electron density within
a unit cell, which is required to determine the crystal structure. It measures the magnitude
of the Fourier transform of the electron density of the entire molecular contents in a unit
cell. In order to apply the inverse of Fourier transform to compute the electron density
function in Euclidean space, the phase information is required that is not provided from
measurement of X-ray diffraction. Therefore, molecular replacement (MR) was developed
as a computational technique in the 1960s [7] to complement the X-ray experimental data.
The idea of MR is to search first for the orientation of each molecule within a unit cell
of crystal over the Lie group SO(3) of spacial orthogonal 3× 3 matrices, followed by a
search for the position of that molecule over the unit cell, which is computationally a heavy
search. Chirikjian et al. [8–11] developed the concept of motion space through a series of
papers, which shrinks the feasible search space in MR to a subset (fundamental domain)
FΓ\SE(3) ⊂ SE(3), where FΓ\SE(3) = SO(3)× FΓ\R3 and the symmetry group Γ of the crystal
is a discrete subgroup of SE(3) .

= SO(3)nR3. The SE(3) denotes the Lie group of special
Euclidean transformation of 3× 3 matrices, which is defined as the semi-direct product
of Lie group SO(3) acting on vector space (also group) R3. Shiffman et al. [5] continued
to work on the feasible motion space and used the concept of slice of Minkowski sum to
reduce the size of the feasible search space in MR technique. They used the concept of
moment-of-inertia ellipsoid to approximate the protein macromolecules with ellipsoids.
Then, they discussed that in order for the packing ellipsoids to form a rigid crystal, the
ellipsoids should not interpenetrate (collide) but should be in contact with enough number
of neighbors. They determined the collision zone, which must be excluded from the
searching motion space in MR and showed that the remaining feasible search space is small.
They constructed the collision zone as the intersection of the fundamental domain FΓ\R3

with a slice of Minkowski sum of ellipsoids.
One can show that the Minkowski sum of two convex sets is a convex set. This fact

allows to define the configuration space obstacle in robotic motion planning. Assuming
a robot that can move in three-dimensional Euclidean space R3, the configuration-free
space of the robot is defined as the set of all positions in space that the robot can inhabit.
Conversely, the configuration space obstacle is described as the set of all positions in
configuration space that the robot cannot attain due to collision with existing fixed obstacles.
The geometry and position of the configuration space obstacle depend on geometries and
positions of both the obstacle and the robot. Let P ⊂ R3 be the set of all points of an obstacle
and R ⊂ R3 represent the set of points that describes a robot, then the configuration space
obstacle is mathematically determined by Minkowski sum P ⊕ (−R), where −R is the
inverse of the set R with respect to an arbitrarily selected body-fixed reference frame on
the robot R. In this computation, the coordinates of every point on robot R are measured
with respect to the body-fixed reference frame on R, while the coordinates of points on
the obstacle P and also the coordinates of the points in the Minkowski sum P⊕ (−R) are
measured with respect to the global frame of reference. The configuration of P⊕ (−R)
is geometrically determined by locating the boundary of robot R on the boundary of
obstacle P and sweeping it along the boundary of P. In other words, the configuration
space obstacle P⊕ (−R) is described as the locus of the reference point on the robot R,
measured in the global frame of reference, when the boundary of robot R is touching
the boundary of obstacle P and sweeping along it. This is similar to interpreting the
Minkowski sum P⊕ (−R) as a deformed offset of the set P with variable offset distance.
This deformed-offset interpretation was creatively used in [12] to suggest a closed-form
parametric equation for the Minkowski sum of two ellipsoids. The novelty in that work is
to use the fact that the affine transformation of an ellipsoid is an ellipsoid, possibly with
different sizes of semi-axes and orientation, and also to use the concept of offset surface of
an ellipsoid.
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For the rest of this paper let Ei(Ai, µi) ⊂ Rn for i ∈ {1, 2, . . . , m} denote the so-
called “solid ellipsoid” as the set of all points x + µi ∈ Rn that satisfy the implicit relation

Ei =
{

x + µi ∈ Rn : xT A−2
i x ≤ 1

}
. In this notation, µi ∈ Rn is the center of ellipsoid Ei, and

Ai = RiΛ(ai)RT
i ∈ S+(n,R) is a symmetric positive definite n× n matrix with real entries,

which determines the size and orientation of the ellipsoid Ei such that Ri ∈ SO(n) is the
rotation matrix corresponding to the orientation of that ellipsoid, Λ(ai) is the n× n diagonal
matrix with entries a(j)

i of the jth semi-axis length of the solid ellipsoid Ei corresponding

to the size of that ellipsoid, such that ai = [a(1)i , a(2)i , . . . , a(n)i ]. Note that, here, S+(n,R)
denotes the set of all symmetric positive definite n × n matrices with real entries, and
SO(n) is the special orthogonal group corresponding to Rn [13–15]. Similarly, the ellipsoid
is defined as the n− 1 dimensional surface, which is embedded in Rn and encloses the sold
ellipsoid Ei, that is ∂Ei(Ai, µi) =

{
x + µi ∈ Rn : xT A−2

i x = 1
}

. Note that, in the current
work, both terms “solid ellipsoid” and “ellipsoid” might be used interchangeably, where
the precise meaning is clear from the content. Furthermore, here, the word “ellipse” is
used with its common meaning as a one-dimensional curve, embedded in Rn for n ≥ 2,
while the word “ellipsoid” is also used to describe the one-dimensional ellipse, in general.
Chirikjian et al. [16] reformed the closed-form formula of the Minkowski sum of two
ellipsoids in [12] as:

xE1⊕E2(φ) = µ1 + A1u(φ) +
A2

2 A−1
1 u(φ)

‖A2 A−1
1 u(φ)‖2

, (3)

where ‖ ‖2 denotes the Euclidean L2(Rn) norm, x = A1u(φ) + µ1 explicitly parametrizes
the ellipsoid E1 centered at µ1 ∈ Rn and u(φ) ∈ Sn−1 ⊂ Rn is the unit vector in Rn that
is parametrized by n− 1 angles φ = [φ1, φ2, . . . φn−1] such that it describes the (n− 1)-
dimensional surface of the unit sphere Sn−1 ⊂ Rn centered at the origin and embedded in
Rn. Note that in the Minkowski sum formula (3), the ellipsoid E2 is centered at the origin
µ2 = 0 so that the Minkowski sum also represents the configuration space obstacle of the
two ellipsoids. This has many applications in robot motion planning, where the geometries
of the robot and each obstacle are approximated by the enclosing ellipsoids, and then the
configuration space obstacle is calculated as the Minkowski sum of two ellipsoids, when
the robot ellipsoid is measured in the body-fixed frame of reference located on the center of
the ellipsoid µ = 0 [1].

Recall that Minkowski sum is a commutative operator such that E1 ⊕ E2 = E2 ⊕
E1, however, the form of the equation in (3) does not imply the symmetry in formula-
tion, such that xE1⊕E2(φo) 6= xE2⊕E1(φo) for a particular angular parameter φo. There-
fore, Chirikjian et al. [16] also reformulated a symmetric closed-form parametrization of
the Minkowski sum that is more consistent with the commutative characteristic of the
Minkowski sum operator. The advantage of this symmetric formula compared with the
asymmetric (3) is that they could extend it to the Minkowski sum of countably finite number
of ellipsoids (also see [17]):

xE1⊕E2⊕ ...⊕Em(φ) = µ +
m

∑
i=1

A2
i u(φ)

‖Aiu(φ)‖2
, (4)

where µ = µ1 + µ2 + . . . µm. As expected from the definition of the Minkowski sum in
(1) and (2), the Minkowski sum of ellipsoids is not an ellipsoid. This fact is also inferred
from (4), where the sum of the countably finite number of symmetric positive definite
matrices A2

i returns a symmetric positive definite matrix, necessary for generating an
ellipsoid, however, in this case, the formula (4) does not parametrize an ellipsoid, since
the denominators are variable parametrized positive scalars, ‖Aiu(φ)‖2, rather than being
fixed positive scalars. At the end, it is notable that in the literature the Minkowski sum of
two ellipsoids was also studied numerically [18–20] or by calculus of ellipsoids [21–23].
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For the rest of this paper, some ellipsoidal outer and inner bounds of the Minkowski
sum are briefly reviewed, including the so-called “Kurzhanski’s” bounds. Furthermore,
some ellipsoidal approximations are suggested for the Minkowski sum, which they do not
necessarily bound the Minkowski sum from, neither inside nor outside; however, they are
used later, as well as the inner and outer bounds, to derive a closed-form parametrization
of the slice of Minkowski sum. This symmetric closed form is to approximate the slice of
Minkowski sum in the case that the actual slice does not pass through the zones of the
Minkowski surface with high curvature, namely the “corner” zones. Then, the results
from model are compared with the actual slice of Minkowski sum for different ellipsoidal
approximations and bounds. Finally, an alternative algorithm is introduced in the case
that the actual slice passes closely through the corners of the Minkowski surface with high
curvature, in which a family of ellipsoidal inner and outer bounds of the Minkowski sum
is used to construct a “narrow strip” for the slice of Minkowski sum. This strip can narrow
persistently for a few more numbers of constructing bounds to precisely coincide on the
actual slice of Minkowski sum. The strip algorithm is also applied in the case of a slice of a
Minkowski sum of ellipsoids with high aspect ratio.

2. Ellipsoidal Bounds and Ellipsoidal Approximations of Minkowski Sum of Ellipsoids

In this section, some ellipsoidal inner and outer bounds and ellipsoidal approximations
of the Minkowski sum of ellipsoids are discussed. These bounds and approximations
are later used in the following section to derive a closed-form equation of the slice of
Minkowski sum.

Given a countably finite number of ellipsoids Ei(Ai, µi) ⊂ Rn centered at the origin
µi = 0 for i = 1, 2, . . . , m, every solid ellipsoid defined by:

A2 .
=

m

∑
i=1

γi A2
i , (5)

contains the Minkowski sum E1 ⊕ E2 ⊕ . . .⊕ Em ⊂ Rn as an outer bound for γi > 0 such
that [21,24,25]

m

∑
i=1

1
γi

= 1. (6)

Other suggestions for possible coefficients γi in (5) were introduced in [16]. Consid-
ering again the finite number of arbitrary ellipsoids Ei(Ai, µi) ⊂ Rn for i = 1, 2, . . . , m
Kurzhanski et al. [21,26] presented a family of outer ellipsoidal bounds Eko(Ako(u), µko) ⊂
Rn, centered at µko = µ1 + µ2 + . . . µm, where Ako(u) ∈ S+(n,R) is parametrized by the
unit vector u ∈ Sn−1 ⊂ Rn. Similarly, but by different parametrization, Durieu et al. [24]
suggested a family of outer bounds of the Minkowski sum of a finite number of ellipsoids.
Compatible with (5), in the case of a Minkowski sum of two ellipsoids, a family of outer
ellipsoidal bounds Eβ(Aβ(β), µ1 + µ2) ⊂ Rn is parametrized by β > 0 [21,27,28]

A2
β(β) =

(
1 + β−1

)
A2

1 + (1 + β)A2
2,

β ∈ Γβ =
[
λ1/2

min, λ1/2
max

]
, (7)

where λmin > 0 and λmax < ∞ are the roots of the equation:

det
(

A2
1 − λA2

2

)
= 0. (8)

Halder [29] showed that, in the case of two ellipsoids, the parametrized matrix
Ako(u) ∈ S+(n,R) of the Kurzhanski’s outer bound Eko(Ako(u), µko) ⊂ Rn in [21,26]
is transformed into Aβ(β) ∈ S+(n,R) in (7). He also showed that, similarly but by a
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different transformation, the corresponding matrix of the outer bound presented in [24] is
transformed into Aβ(β) ∈ S+(n,R) in (7).

The Minkowski sum operator preserves the convexity and compactness of its con-
stituent sets such that the Minkowski sum of convex and compact (closed and bounded)
sets is convex and compact. This is used to show that there exists a unique minimum
volume outer ellipsoid (MVOE) for the Minkowski sum of a countably finite number of el-
lipsoids [25,29,30]. The MVOE is centered at µmvoe = µ1 + µ2 + . . . µm, however, no general
formula exists for the symmetric positive definite matrix corresponding to that. As a compu-
tational solution, Halder [29] studied the optimization problem min

β∈(0,∞)
log
[
det(A2

β(β))
]

to

determine the β > 0 in (7) corresponding to the MVOE. He suggested an iterative algorithm
to compute the optimal β in (7) of a MVOE (see Algorithm A5 in Appendix A).

Kurzhanski et al. [21] also introduced a family of inner ellipsoidal bounds
Es(A[1,2,...,k+1](S), µs), which bounds the Minkowski sum of k + 1, k ≥ 1 number of el-
lipsoids from inside, where µs = µ1 + µ2 + . . . + µk+1 and

A2
[1,2,..., k+1](S) =S−1

k

[
(Sk A2

[1,2,..., k]Sk)
1/2 + (Sk A2

k+1Sk)
1/2
]2

S−1
k ,

A[1]
.
= A1, S .

= (S1, S2, . . . , Sk),

∀Si ∈ S+(n,R), i ∈ {1, 2, . . . , k}. (9)

It is of great interest that they showed that the Minkowski sum E1 ⊕ E2 could be
precisely constructed from the intersection of a countably infinite number of outer bounds
from (7) or, similarly, by union of a countably infinite number of inner bounds from (9),
which means:

E1 ⊕ E2 =
⋂

β∈Γβ

{
Eβ(Aβ(β), µ1 + µ2)

}
, (10)

E1 ⊕ E2 =
⋃

S∈S+(n,R)
{Es(As(S), µ1 + µ2)}. (11)

This fact is the main inspiration behind the idea in this work to construct a narrow strip
from the slices of a few numbers of inner and outer ellipsoidal bounds of the Minkowski
sum that enclose the actual slice of the Minkowski sum, such that it is also applicable to the
cases in which the actual slice passes closely through the corners of the Minkowski surface
with high curvatures, such as the corners of a Minkowski surface of ellipsoids with high
aspect ratio of semi-axes.

The Löwner–John maximum volume inner ellipsoidal bound of the Minkowski
sum of k + 1, k ≥ 1 ellipsoids is determined by the symmetric positive definite matrix
Ck+1(A1, A2, . . . , Ak+1) ∈ S+(n,R), where [31,32]

Ck+1 =

[
C2

k + Ck

(
C−1

k A2
k+1C−1

k

)1/2
Ck+

+ A2
k+1 + Ak+1

(
A−1

k+1C2
k A−1

k+1

)1/2
Ak+1

]1/2
,

C1
.
= A1, Ci

.
= C(A1, A2, . . . , Ai), i ∈ {1, . . . , k + 1}, k ≥ 1. (12)

This formula is symmetrical in arguments, such that C(A, B) = C(B, A). It is notable
that John’s (12) and Kurzhanski’s (9) formulas return identical inner ellipsoids, that is
A[1, 2, . . . , k + 1] = Ck+1, when Si ∈ S+(n,R) is calculated from:
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Si =
(

V∆VT
)1/2

i ∈ {1, 2, . . . , k},

D = A−2
i+1 A2

[1,2,...,i] = VΛV−1, A[1]
.
= A1, (13)

where VΛV−1 represents the Eigen-decomposition of the matrix D and ∆ is an arbitrary n×
n diagonal matrix with positive entries. This implies that the Kurzhanski’s inner ellipsoid
(9) is independent of the choice of diagonal matrix ∆ in (13), which is also deducible from
(9), as the impact of matrix Sk is canceled out in the formula.

Figure 1 shows the Minkowski sum of two ellipsoids with outer and inner Kurzhan-
ski’s bounds. The MVOE and John’s inner bound are also plotted in the subfigures, succes-
sively, as the optimal Kurzhanski’s outer and inner bounds to lay out the outer ellipsoid
with the minimum volume and the inner ellipsoid with the maximum volume that bound
the Minkowski sum from outside and inside. Kurzhanski’s outer bound for β = 1 ∈ Γβ in
(7) and the Kurzhanski’s inner bound for the identity matrix S1 = I ∈ S+(n,R) in (9) are
also plotted for comparison purposes. Figure 1a illustrates that Kurzhanski’s outer bounds
(7) for minimum and maximum possible values of β = λ1/2

min, λ1/2
max provide maximum

coverage of the boundary of Minkowski sum. This observation is in fact in line with the
conceptual ideal behind the construction of Minkowski sum from the intersection of an in-
finite number of Kurzhanski’s outers in (10). Figure 1b displays Kurzhanski’s inner bounds
for two arbitrary nonidentity matrices of S1 ∈ S+(n,R), which fit into the corners of the
Minkowski sum. It is predictable that, in general, an outer ellipsoidal bound touches a
wider region of the Minkowski sum boundary, compared with the touching region between
an inner ellipsoid and the Minkowski sum.
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(a) Minkowski sum and outer bounds
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(b) Minkowski sum and inner bounds

Figure 1. Green: Minkowski sum, red: Kurzhanski’s outer for β = 1 in subplot (a) and Kurzhanski’s
inner for S1 = I in subplot (b), blue: MVOE in subplot (a) and John’s inner in subplot (b) and black:
Kurzhanski’s outer for β = λ1/2

min, λ1/2
max in subplot (a) and also Kurzhanski’s inner for two arbitrary

nonidentity matrices of S1 ∈ S+(n,R) in subplot (b).

Aside from the ellipsoidal bounds reviewed above, ellipsoidal approximations of the
Minkowski sum are also developed here, which in contrast to the bounds, they neither
necessarily enclose the Minkowski sum from outside nor are they fully contained inside
the Minkowski sum. However, they are used later, as well as the inner and outer bounds,
to derive a closed-form model of the slice of Minkowski sum. These ellipsoidal approxima-
tions are constructed from replacing the parametrized positive scalar term ‖Aiu(φ)‖2 for
i ∈ {1, . . . , m} in the denominator of the Minkowski Formula (4) with some fixed positive
scalars ci ∈ R+. As discussed above, this is due to the fact that the sum of finite numbers

of symmetric positive definite matrices ∑m
i=1

A2
i

ci
, for any positive constant ∀ci ∈ R+, is

a symmetric positive definite matrix, which parametrizes an ellipsoidal approximation
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x(φ) = ∑m
i=1

A2
i

ci
u(φ) of the corresponding Minkowski sum in (4). Here, in R3, each denom-

inator in the Minkowski sum (4) is replaced by the second eigenvalue λ2(AT
i Ai) > 0 of the

matrix AT
i Ai ∈ S+(3,R) or by the Frobenius norm of the matrix Ai ∈ S+(3,R), so that the

explicit parametric relation of the family of ellipsoidal approximations of the Minkowski
sum is obtained by:

x(φ) = µ +
m

∑
i=1

A2
i u(φ)√

λ2(AT
i Ai)

, (14)

or by:

x(φ) = µ +
m

∑
i=1

A2
i u(φ)

‖Ai‖F/
√

n
, (15)

where each ellipsoidal approximation is centered at µ = µ1 + µ2 + . . . µm, n = 3 denotes
the dimension of the space R3 and ‖Ai‖F is the Frobenius norm of the matrix Ai ∈ S+(3,R).
In this work, for any B ∈ S+(3,R), the three positive eigenvalues are assumed to be sorted
as 0 < λ1(B) ≤ λ2(B) ≤ λ3(B).

Figure 2 illustrates some ellipsoidal approximations, obtained from (14) and (15),
for various geometries of the Minkowski sums of two, three, six and ten numbers of
ellipsoids in R2 with different sizes of semi-axes and orientations. As the results show, the
ellipsoidal approximations do not necessarily bound the Minkowski sum from outside
or inside. It is notable that the ellipsoid obtained from Frobenius norm in (15) shows
more level of accuracy relative to the actual Minkowski sum. Although these ellipsoids
do not approximate the Minkowski sum precisely, they could be used in derivation of the
closed-form explicit parametric equation of the slice of Minkowski sum of ellipsoids, as
discussed in the following section.
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(c) Minkowski sum of six ellipsoids
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(d) Minkowski sum of ten ellipsoids

Figure 2. Two ellipsoidal approximations of Minkowski sums of two, three, six and ten numbers
of ellipsoids. The blue dotted curves represent the actual Minkowski sums, the black curves are
ellipsoidal approximations (14) for µ = 0 and the red curves are ellipsoidal approximations (15) for
n = 2 and µ = 0.

3. Slice of Minkowski Sum of Ellipsoids

In this section, a closed-form explicit parametric formula is developed to approximate
the slice of Minkowski sum of a finite number of ellipsoids, sliced up by an arbitrarily oriented
plane in Euclidean space R3. This formulation is mathematically of immense interest, since
the Minkowski sum of ellipsoids is in general a geometry with an irregular shape, which by
nature makes its slice ambiguous. In addition to that, although different closed-form equations
of Minkowski sum of ellipsoids were previously developed [12,16], to the best of the author’s
knowledge, a closed-form parametrization of the slice of Minkowski sum of finite number
of ellipsoids has not been addressed yet. The main idea behind this derivation is first
to approximate the Minkowski sum by an ellipsoid and then slice it up by that plane.
Then, the resultant elliptical intersection is used to define a sector of a unit sphere, which
is composed of a spherical cap and a cone formed by the center of that unit sphere and
the base of that cap (see Figure 3). The base of this cone is a circle, which is mapped to
an approximation of the slice of Minkowski sum by the same transformation (from the
parametric equation of Minkowski sum) that maps the unit sphere to the Minkowski sum.

Figure 2. Two ellipsoidal approximations of Minkowski sums of two, three, six and ten numbers
of ellipsoids. The blue dotted curves represent the actual Minkowski sums, the black curves are
ellipsoidal approximations (14) for µ = 0 and the red curves are ellipsoidal approximations (15) for
n = 2 and µ = 0.
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3. Slice of Minkowski Sum of Ellipsoids

In this section, a closed-form explicit parametric formula is developed to approximate
the slice of Minkowski sum of a finite number of ellipsoids, sliced up by an arbitrarily oriented
plane in Euclidean space R3. This formulation is mathematically of immense interest, since
the Minkowski sum of ellipsoids is in general a geometry with an irregular shape, which by
nature makes its slice ambiguous. In addition to that, although different closed-form equations
of Minkowski sum of ellipsoids were previously developed [12,16], to the best of the author’s
knowledge, a closed-form parametrization of the slice of Minkowski sum of finite number
of ellipsoids has not been addressed yet. The main idea behind this derivation is first
to approximate the Minkowski sum by an ellipsoid and then slice it up by that plane.
Then, the resultant elliptical intersection is used to define a sector of a unit sphere, which
is composed of a spherical cap and a cone formed by the center of that unit sphere and
the base of that cap (see Figure 3). The base of this cone is a circle, which is mapped to
an approximation of the slice of Minkowski sum by the same transformation (from the
parametric equation of Minkowski sum) that maps the unit sphere to the Minkowski sum.

Figure 3. Sphere and cone with its apex on the center of the sphere.

As discussed in the previous section, there are several ways to bound (see (5), (7),
(9), (12)) or approximate (see (14) and (15)) a Minkowski sum of ellipsoids. Consider
an ellipsoidal approximation ∂E(C, µ) ⊂ R3 of the boundary of Minkowski sum ∂(E1 ⊕
E2 ⊕ . . .⊕ Em) ⊂ R3 for i ∈ {1, . . . , m}, which is centered at µ = µ1 + µ2 + . . . µm and is
successively described by the explicit and implicit descriptions ∂E = {x(φ) = µ + Cu(φ)}
and ∂E =

{
x + µ ∈ R3 : xTC−2 x = 1

}
. Note that, here, u(φ) ∈ S2 ⊂ R3 is a unit vector in

R3 that is parametrized by two angles φ = [φ1, φ2], for instance φ1 ∈ [0, 2π] and φ2 ∈ [0, π],
such that it describes the two-dimensional surface of the unit sphere S2 ⊂ R3 centered at
the origin and embedded in R3. Here, C ∈ S+(3,R) is a symmetric positive definite matrix,
which defines the ellipsoidal approximation of the Minkowski sum and could be obtained
from either (14) or (15) for n = 3 as:

C2 =
m

∑
i=1

A2
i√

λ2(AT
i Ai)

, (16)

C =
m

∑
i=1

A2
i

‖Ai‖F/
√

3
, (17)

where C2 ∈ S+(3,R) in (16) is the matrix C corresponding to the second eigenvalue
λ2(AT

i Ai).
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Let P ⊂ R3 be a generally oriented plane embedded in Euclidean space R3, that means
P =

{
x ∈ R3 : n · x = h

}
, where · denotes the Euclidean inner product of two vectors, n is

the normal unit vector of the plane and the so-called “height” h = n · x0 of the plane is the
component of any arbitrary point x0 ∈ P on the plane, along the normal unit vector n. Now,
slice up the ellipsoidal approximation ∂E of the Minkowski sum by the plane P, where
the elliptical intersection ∂E ∩ P = {x ∈ ∂E : n · (x + µ) = h} is parametrized by angles
φ = [φ1, φ2] as

(
CTn

)Tu(φ) = h− nTµ, such that from implicit definition of ∂E, x = Cu(φ).

This implies c · u = h−nTµ
‖CTn‖2

, where the unit vector c is defined by c .
= CTn
‖CTn‖2

= [c1, c2, c3]
T .

Since both c and u are unit vectors, hence

α = cos−1
(

h− nTµ

‖CTn‖2

)
(18)

is used to define a sector of a unit sphere. This sector is a portion of the unit sphere and is
composed of a cone with its apex on the center of the sphere and also of a spherical cap
(see Figure 3).

The base of this cone is the circular intersection of the unit sphere S2 ⊂ R3 centered
at the origin and embedded in R3, which at is sliced up by the plane Pc ⊂ R3, defined by

the unit normal vector c .
= CTn
‖CTn‖2

= [c1, c2, c3]
T and height hp = h−nTµ

‖CTn‖2
= cos(α), as Pc ={

x ∈ R3 : c · x = hp
}

. Therefore, the circular intersection of the unit sphere with the plane

Pc ⊂ R3 is centered at rc = hpc ∈ R3 and has the radius of Rc =
√

1− h2
p = sin(α) > 0.

Using the unit vector c ∈ R3, let us define two other unit vectors c′ .
= [−c2,c1,0]T

‖[−c2,c1,0]T‖2
and

c′′ .
= c×c′
‖c×c′‖2

, such that {c, c′, c”} forms an orthonormal basis. Then, this orthonormal
basis is used to determine the orientation of the circular intersection by 3 × 2 matrix

Cc =
[
c′ c′′

][Rc 0
0 Rc

]
. Therefore, the circular intersection of the unit sphere S2 ⊂ R3 and

the slicing plane Pc ⊂ R3 is explicitly parametrized by the angle φc ∈ [0, 2π) as:

uc(φc) = rc + Ccub(φc) = c cos(α) + sin(α)
[
c′ cos(φc) + c′′ sin(φc)

]
, (19)

where ub(φc) =
[
cos(φc) sin(φc)

]T ∈ S1 ⊂ R2 is a unit vector in R2 that is parametrized
by one angle φc ∈ [0, 2π), such that it describes the one-dimensional circumference of
the unit circle S1 ⊂ R2 centered at the origin and embedded in plane R2. Now, an
approximation of the slice of Minkowski sum is suggested by mapping this circular base
of the cone in (19) using the same transformation (from the parametric Equation (4) of
Minkowski sum), which maps the unit sphere to the Minkowski sum. Therefore, the
slice of Minkowski sum of ellipsoids by an arbitrarily oriented plane in R3 is explicitly
parametrized as a curve embedded in R3 by:

xs(φc) = µ +
m

∑
i=1

A2
i uc(φc)

‖Aiuc(φc)‖2
. (20)

The planar slice of Minkowski sum is finally obtained from projection of this curve onto
the slicing plane P along the normal unit vector n of the plane. This means that the planar
slice of Minkowski sum is explicitly parametrized by:

xp(φc) = xs(φc)− H(φc)n, (21)
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where H(φc) = (xs(φc)− x0) · n for any arbitrary point x0 ∈ P on the slicing plane. It is
notable that the necessary and sufficient condition under which the arbitrarily oriented
plane P slices up the ellipsoidal approximation of the Minkowski sum is:

|h− nTµ|
‖CTn‖2

≤ 1, (22)

which is consistent with (18).
Figure 4 shows a sample of one Minkowski sum of two ellipsoids, sliced up by an

arbitrarily oriented plane at different heights of h, for which the actual slice is modeled by
the parametric formula in (20) (and its projection onto the slicing plane in (21)), based on
three various ellipsoidal approximations of Minkowski sum. Recall that the formulation
of parametric Equation (20) of the slice of Minkowski sum is based on calculating the
circular base (19) of a cone, for which an ellipsoidal approximation of the Minkowski
sum is required. Among various ellipsoidal outer and inner bounds and also ellipsoidal
approximations of the Minkowski sum introduced above, the MVOE from the minimization
of (7), John’s maximum volume inner bound (12) and the ellipsoidal approximation by
matrix C2 in (16) from the second eigenvalue λ2(AT

i Ai) for i ∈ {1, 2} are selected here
for computing the parametric slice of Minkowski sum (20). In fact, the MVOE and John’s
maximum volume inner ellipsoid are selected successively as the optimal representatives
of the family of parametrized outer Kurzhanski’s (7) and inner Kurzhanski’s (9) bounds.
Recall that, here, three positive eigenvalues of any 3× 3 symmetric positive definite matrix
are assumed to be sorted in ascending order; therefore, the ellipsoidal approximation of the
Minkowski sum by second eigenvalue is assumed to be a moderate approximation, wisely
chosen for computation of a parametric slice of Minkowski sum. The Minkowski sum in
this sample is constructed from two ellipsoids with an aspect ratio of 3, which is the ratio
of the length of the major axis (longest axis) to the length of the minor axis (shortest axis).

Figure 4 illustrates both the parametric slices of Minkowski sum embedded in R3 and
the corresponding projections onto the slicing plane. Figure 4a,b corresponds to the case in
which the slicing plane is close to the center of the Minkowski sum, such that the curve of
the actual slice is relatively far enough from the zones of the Minkowski surface with high
curvature, namely the “corners” of the Minkowski surface. In such cases, the suggested
technique above for modeling the actual slice by (20) and (21) generally provides reliable
approximation of the actual slice, such that the accuracy and consistency of the parametric
slice with the actual one increase when the actual slice is farther from the “corners” of the
Minkowski surface. Precisely, the parametric slice, computed by matrix C2 in (16) from the
second eigenvalue λ2(AT

i Ai) for i ∈ {1, 2} presents a more consistent approximation with
the actual slice of Minkowski sum. In other words, the second eigenvalue-based parametric
formula of the slice of Minkowski sum models the actual slice more accurately compared
with the Kurzhanski’s outer–inner bound-based parametric formulas of the slice. Here,
the matrix of normalized error Er is calculated, for verification purpose, to measure the
accuracy of the developed parametric slice of Minkowski sum, as:

Er .
=

Apr − Aac

‖Apr − Aac‖F
, (23)

where ‖ ‖F again denotes the Frobenius matrix norm, Er ∈ Rnp×2 is a np× 2 matrix for
np ∈ Z+ denoting the number of points on either parametric or actual slice, and, also,
Apr and Aac, respectively, denote the matrices that form the points of the parametric slice
and actual slice of the Minkowski sum as the rows in descending order. Note that Z+

denotes the set of positive integer numbers. This error is in the form of distances between
points from the parametric slice and actual slice, normalized by the Frobenius norm. The
calculation of the normalized error matrix Er ∈ Rnp×2 for parametric slice, computed
by matrix C2 in (16) from the second eigenvalue λ2(AT

i Ai) for i ∈ {1, 2}, shows that the
normalized distance between a point of parametric slice and a point of actual slice is less
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than 0.05, that is,
√
(Er2

i1 + Er2
i2) < 0.05 for each row i ∈ {1, . . . , np}. In other words,

the normalized error is less than 5% for the parametric slice, computed by matrix C2 in
(16) from the second eigenvalue λ2(AT

i Ai) for i ∈ {1, 2}. Figure 4c–f illustrates identical
samples of Minkowski sum to Figure 4a,b, sliced up by the same oriented plane, but at
larger heights of h, for which the parametric slices present weaker approximations. This
observation approves the hypothesis that by increasing the distance of the slicing plane
from the center of the Minkowski sum toward the “corners”, the parametric model will
lose accuracy.
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(a) Minkowski sum and parametric and
actual slices of Minkowski sum
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(b) Projections of parametric and actual slices
of Minkowski sum onto the slicing plane

(c) Minkowski sum and parametric and
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(d) Projections of parametric and actual slices
of Minkowski sum onto the slicing plane

(e) Minkowski sum and parametric and
actual slices of Minkowski sum
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(f) Projections of parametric and actual slices
of Minkowski sum onto the slicing plane

Figure 4. Parametric slices of Minkowski sum for a particular Minkowski sum and orientation of
the slicing plane but at different heights h, computed by: MVOE from minimization of (7) (black),
John’s inner bound in (12) (blue), second eigenvalue λ2(AT

i Ai) in (16) (green). The actual slice of
Minkowski sum is pink.

Figure 5 enlightens that the weak consistency of the slice approximations with the
actual one, observed in Figure 4c–f, is in fact an indirect consequence of the distance of
the slicing plane (actual slice) from the center of the Minkowski sum. This figure shows a
similar slicing sample to Figure 4a,b, such that the same Minkowski sum is sliced up by
a plane at the same height h but with different orientation. Although, the slicing plane is
in the same distance h from the Minkowski center, as in Figure 4a,b, the parametric slices

Figure 4. Parametric slices of Minkowski sum for a particular Minkowski sum and orientation of
the slicing plane but at different heights h, computed by: MVOE from minimization of (7) (black),
John’s inner bound in (12) (blue), second eigenvalue λ2(AT

i Ai) in (16) (green). The actual slice of
Minkowski sum is pink.
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Figure 5 enlightens that the weak consistency of the slice approximations with the
actual one, observed in Figure 4c–f, is in fact an indirect consequence of the distance of
the slicing plane (actual slice) from the center of the Minkowski sum. This figure shows a
similar slicing sample to Figure 4a,b, such that the same Minkowski sum is sliced up by
a plane at the same height h but with different orientation. Although, the slicing plane is
in the same distance h from the Minkowski center, as in Figure 4a,b, the parametric slices
show some discrepancy with the actual one at two corners of the projected (planar) slices
(see Figure 5b). These corners of the planar slices correspond to the slicing of the corners
of the Minkowski sum with high curvatures (see Figure 5a). In summary, the comparison
between Figures 4a,b and 5a,b implies that the inconsistency between the parametric slice
and actual slice of Minkowski sum occurs in the case that the curve of the actual slice
passes closely through the corners of the Minkowski surface with high curvature, where
the parametric model presents lower accuracy of approximation.

(a) Minkowski sum and parametric and
actual slices of Minkowski sum
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y

(b) Projections of parametric and actual slices
of Minkowski sum onto the slicing plane

Figure 5. Parametric slices of Minkowski sum for similar Minkowski sum and height h of slicing
plane to the sample in Figure 4a,b but for a different orientation of the plane. The parametric slices
are computed by: MVOE from minimization of (7) (black), John’s inner bound (12) (blue) and the
second eigenvalue λ2(AT

i Ai) in (16) (green). The actual slice of Minkowski sum is pink.

In line with the current discussion of the destructive impact of curvature of the
Minkowski surface on the accuracy of the suggested parametric model for the slice of
Minkowski sum, Figure 6 represents another type of condition under which the Minkowski
surface might likely have high curvature at particular zones. This is the case in which
the constituting ellipsoids of the Minkowski sum have a “strong” high aspect ratio. For
an ellipsoid with a “strong” high aspect ratio, not only the ratio of the lengths of major
semi-axis (third semi-axis) to the minor semi-axis (first semi-axis) is high but also this ratio
is high between the major semi-axis and the second semi-axis, so that the ellipsoid has a
“cigar” shape. For the same reason as the high curvature of the Minkowski surface, the
parametric approximation of the slice of Minkowski sum of two cigar ellipsoids shows
weak modeling of the actual slice.
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(a) Minkowski sum of two ellipsoids with
high aspect ratio of 8

(b) Minkowski sum and parametric and
actual slices of Minkowski sum
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(c) Projections of parametric and actual slices of Minkowski sum onto the slicing plane

Figure 6. Parametric slices of Minkowski sum for a Minkowski sum of two ellipsoids with high
aspect ratio of 8, sliced up by a similar plane to the sample in Figure 4a,b. The parametric slices are
computed by: MVOE from minimization of (7) (black), John’s inner bound (12) (blue) and the second
eigenvalue λ2(AT

i Ai) in (16) (green). The actual slice of Minkowski sum is pink.

4. Alternative Algorithm of a Narrow Strip for a Slice of Minkowski Sum

In this section, a computational algorithm is introduced to determine a “narrow strip”
around the slice of Minkowski sum of ellipsoids, as an alternative approximation in the
cases that the suggested parametric model of the slice returns a weak approximation. As
discussed above, in regard to Figures 4e,f, 5 and 6, these failure cases basically correspond
to the slicing conditions in which the curve of the actual slice is closely passing through
“corners” of the Minkowski surface with high curvatures.

Here, the algorithm is demonstrated for the slice of Minkowski sum of two ellipsoids
in R3. This strategy was basically inspired by the rationale behind (10) and (11), which
indicates that the Minkowski sum of two ellipsoids, E1⊕ E2, could be precisely constructed
from the intersection of a countably infinite number of outer bounds from (7) or, similarly,
from the union of a countably infinite number of inner bounds from (9). The idea is to
determine a “narrow strip” around the slice of Minkowski sum by using a few numbers of
outer and inner ellipsoidal bounds of the Minkowski sum. In other words, it is expected
that the elliptical slices of a few outer and inner ellipsoidal bounds of the Minkowski
surface could be used to form a narrow strip around the slice of that Minkowski surface.
Consider the Minkowski sum of two ellipsoids which is sliced up far from the center of that
Minkowski sum and close to its corner, as displayed in Figure 7a. A number of outer and
inner bounds of the Minkowski are chosen and sliced up by the plane. In this example, the
elliptical slices of three ellipsoidal outer bounds are used to form an outer bound of the slice
of Minkowski sum, namely the slices of the MVOE from minimization of (7) and two outer
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Kurzhanski’s bounds from (7) for β = λ1/2
min and β = λ1/2

max, as shown in Figure 7a.b. It is
predictable from Figure 1 that, in general, Kurzhanski’s outers for β = λ1/2

min and β = λ1/2
max

touch a wider region of the boundary of Minkowski sum. Similarly, Figure 7a,c shows
elliptical slices of three ellipsoidal inner bounds, namely the slices of John’s inner bound
from (12) and two Kurzhanski’s inner bounds from (9) for two S1 ∈ S+(3,R), which are
used to form the inner bound of the slice of Minkowski sum. It is notable from Figure 7b,c
that the slices of MVOE and John’s bound are not necessarily the minimum area outer
ellipse and the maximum area inner ellipse, respectively, among the elliptical slices of all
the outer and inner Kurzhanski’s bounds. This is due to the fact that the size of the elliptical
slices of the ellipsoidal bounds of the Minkowski sum depends not only on the size of the
bounds but also on the orientation of the slicing plane. Then, an arbitrary point, called
the “new reference”, is picked inside the slice of one of the inner bounds of the Minkowski
sum. This new reference point is surely located inside the actual slice of Minkowski sum,
since it is already inside the slice of one inner bound. The new reference point is shown
in blue color in Figure 7 for differentiation from the original reference point in red. This
new reference point inside the actual slice is then used to find the one closest point to the
actual slice (means also closest to the new reference point) among the three existing points
on the three slices of outer bounds at every radial position within θ ∈ [0, 2π], measured
from the new reference point. Similarly, by applying this technique to three slices of three
inner bounds, the set of closest inner points to the actual slice (means farthest to the new
reference point) is determined. As a result, the loci of the closest points of the slices of
outer and inner bounds to the actual slice form an outer bound (blue curve) and an inner
bound (green curve) of the actual slice, which encloses it within a narrow strip as shown in
Figure 7d. This algorithm is discussed in more details through several Algorithms A1–A11
in Appendix A.

This algorithm might be implemented for more numbers of outer and inner bounds of
the Minkowski sum to increase the consistencies of the generated outer and inner bounds
of the actual slice to the actual slice, and consequently narrow the strip. For instance,
more numbers of outer bounds could be used from the family of Kurzhanski’s outers
in (7), parametrized by β ∈

[
λ1/2

min, λ1/2
max

]
and, similarly, more numbers of inner bounds

from the family of inner Kurzhanski’s in (9) for S ∈ S+(n,R). Figure 8a represents a
narrower strip for the same actual slice in Figure 7, obtained by using MVOE, four outer
Kurzhanski’s, John’s inner and four inner Kurzhanski’s bounds. Figure 8b,c approximates
the same actual slice by successively using MVOE and eight outer Kurzhanski’s, and
then MVOE and ten outer Kurzhanski’s, as both approximations precisely coincide on
the actual slice. In other words, the results in Figure 8b,c confirm that the suggested
computational algorithm generates a strip that can narrow persistently for a few more
numbers of constructing bounds to precisely coincide on the actual slice of Minkowski sum.
It means that the possible error of the suggested computational algorithm in the form of
discrepancy between the actual and parametric slices is negligible for a small number of
constructing bounds. Note that these precise approximations are only constructed from
more numbers of Kurzhanski’s outers, since as observed from the comparison between
Figure 1a,b, it is predictable that in general an outer ellipsoidal bound touches a wider
region of the boundary of Minkowski sum, compared with the touching region between an
inner ellipsoid and the Minkowski sum boundary.
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Figure 7. (a) Minkowski sum and six slices of Minkowski sum by three outer and three inner bounds
of the Minkowski sum and also the actual slice of Minkowski sum, embedded in R3. (b) Projections
of three slices of three outer bounds onto the slicing plane and also the actual slice of Minkowski
sum, where slice 1 corresponds to MVOE, slice 2 corresponds to outer Kurzhanski’s with β = λ1/2

min
and slice 3 corresponds to outer Kurzhanski’s with β = λ1/2

max. (c) Projections of three slices of
three inner bounds onto the slicing plane and also the actual slice of Minkowski sum, where slice 1
corresponds to John’s inner bound, and slices 2 and 3 correspond to inner Kurzhanski’s with two
arbitrary S1 ∈ S+(3,R). (d) Strip for an actual slice of Minkowski sum (pink dotted curve) obtained
from the computational algorithm, using the slices of outer and inner bounds in (b,c). Note that in
subplots (b), (c,d), the single red point indicates the origin of the coordinate system and the single
blue point is an arbitrary point inside the actual slice.
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Figure 8. Cont.
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Figure 8. Strips for a similar actual slice of Minkowski sum (pink) with Figure 7, generated by (a):
MVOE, four outer Kurzhanski’s, John’s inner and four inner Kurzhanski’s, (b): MVOE and eight
outer Kurzhanski’s, (c): MVOE and ten outer Kurzhanski’s.

Figure 9a–c successively show the strips generated by MVOE, four outer Kurzhanski’s,
John’s inner and four inner Kurzhansk’s for similar slicing samples in Figures 4e,f, 5 and 6,
for which the suggested parametric model presented weak approximations of the ac-
tual slice.
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Figure 9. Strips generated by MVOE, four outer Kurzhanski’s, John’s inner and four inner
Kurzhansk’s for similar actual slices of Minkowski sums in (a): Figure 4e,f, (b): Figure 5 and
(c): Figure 6.
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5. Discussion

In this work, a closed-form parametric equation was formulated, for the first time,
to approximate the slice of Minkowski sum of finite number of ellipsoids in the case
that the actual slice is relatively far enough from the corners of the Minkowski sum with
high curvatures. In this case, the results show that the normalized error, in the form of
normalized distances between points from parametric slice and actual slice, is less than 5%
for the parametric slice, computed by matrix C2 from the second eigenvalue λ2(AT

i Ai) for
i ∈ {1, 2}. Alternatively, an algorithm was suggested in the case that the actual slice passes
closely through the corners of the Minkowski surface, in which a family of ellipsoidal
inner and outer bounds of the Minkowski sum was used to construct a “narrow strip”
for the slice of Minkowski sum. The algorithm was also applied in the case of slicing the
Minkowski surface of ellipsoids with high aspect ratio. The results approve that more
numbers of outer and inner bounds of the Minkowski sum would increase the accuracies
of the generated outer and inner bounds of the actual slice, and consequently narrow the
enclosing strip of the actual slice. In other words, the results confirm that the suggested
computational algorithm generates a strip that can narrow persistently for a few more
numbers of constructing bounds to precisely coincide on the actual slice of Minkowski
sum. It means that the possible error of the suggested computational algorithm in the form
of discrepancy between the actual and parametric slices is negligible for a small number
of constructing bounds. In line with the goal, some ellipsoidal inner and outer bounds
of the Minkowski sum were reviewed, including Kurzhanski’s bounds. Furthermore,
some ellipsoidal approximations of the Minkowski sum were suggested, which do not
necessarily bound the Minkowski sum from outside or inside; however, they can be
used, as well as the inner and outer bounds, in calculation of the developed parametric
approximation of the slice of Minkowski sum. Precisely, the second eigenvalue-based
parametric formula presented a more consistent approximation with the actual slice of
Minkowski sum, compared with the outer–inner bound-based parametric formulas of
the slice.
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Appendix A. Algorithms

Algorithm A1 Function: Slicing plane

Input: n and h
Output: u1, u2, p1, p2

n: Unit normal of plane
h: Height of plane.
u1, u2: Basis on the plane
p1, p2: Two points on the plane



Mathematics 2023, 11, 137 18 of 21

Algorithm A2 Function: Domain of Kurzhanski’s outer bounds

Input: A1, A2
Output: λmin, λmax

{λ1, λ2, λ3} ← Solve det(A2
1 λA2

2) = 0
λmin ← min{λ1, λ2, λ3}
λmax ← max{λ1, λ2, λ3}

Algorithm A3 Function: Compute a Kurzhanski’s outer bound

Input: A1, A2 and λmin, λmax
Output: Aβ

Pick any β ∈
[
λ1/2

min, λ1/2
max

]
Use (7): Aβ ←

[(
1 + β−1)A2

1 + (1 + β)A2
2
]1/2

Algorithm A4 Function: Compute a Kurzhanski’s inner bound

Input: A1, A2
Output: A[2]

Generate any S1 ∈ S+(3,R)
Use (9):

A[2] ←
{

S−1
1

[
(S1 A2

1S1)
1/2 + (S1 A2

2S1)
1/2
]2

S−1
1

}1/2

Algorithm A5 Function: Compute MVOE [29]

Input: A1, A2, εβ and λmin, λmax
Output: βopt, AMVOE

Initial guess: βo ←
λ1/2

min+λ1/2
max

2 ∈ [λ1/2
min, λ1/2

max]

Rβ ← A−1
1 A2

{λ1, λ2, λ3} ← eig(Rβ)
βopt ← βo
Error ← ∞
while Error > εβ do

N ← ∑3
i=1

1
1+βoλi

D ← ∑3
i=1

λi
1+βoλi

βopt ←
(

N
D

)1/2

Error ←
∣∣βopt − βo

∣∣
βo ← βopt

end while
AMVOE ←

[(
1 + β−1

opt

)
A2

1 +
(
1 + βopt

)
A2

2

]1/2
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Algorithm A6 Function: Compute the John’s inner bound

Input: A1, A2
Output: C2

Use (12):

C2 ←
[

A2
1 + A1

(
A−1

1 A2
2 A−1

1

)1/2
A1+

+ A2
2 + A2

(
A−1

2 A2
1 A−1

2

)1/2
A2

]1/2

Algorithm A7 Function: Calculate elliptical slice of an ellipsoidal bound

Input: A, u1, u2, n, h
Output: XSlice3D, XSlice2D

hs ← h
‖ATn‖

ns ← ATn
‖ATn‖

us ← [−n(2)
s , n(1)

s , 0]T

ws ← ns×us
‖ns×us‖

rs ←
√

1− h2
s

Cs ←
[
us ws

][rs 0
0 rs

]
XSlice3D ← hs Ans + ACsu where: u ∈ S2

X(1)
Slice2D ← XSlice3D · u1

X(2)
Slice2D ← XSlice3D · u2

XSlice2D ← [X(1)
Slice2D, X(2)

Slice2D]
T

Algorithm A8 Function: Choose a new origin inside the actual slide of Minkowski sum

Input: XSlice2D
Output: Onew

O(1)
new ←

∑ X(1)
Slice2D
m where: m is the number of points in XSlice2D

O(2)
new ←

∑ X(2)
Slice2D
m

Onew ← [O(1)
new, O(2)

new]
T

Algorithm A9 Function: Switch the origin to the new one

Input: Onew, XSlice2D, m
Output: XSortNewSlice2D

XNewSlice2D ← XSlice2D −Onew

XSortNewSlice2D ← Sort (XNewSlice2D) by angle measured from new origin for each point
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Algorithm A10 Function: Outer layer of a strip of the slice of Minkowski sum

Input: X(j)
SortOuterSlice2D for j ∈ {1, 2 . . . , k} number of Kurzhanski’s outer bounds

Output: OuterStrip

for i = 1→ m do
for j = 1→ k do

Norm(i, j)← ‖X(i,j)
SortOuterSlice2D‖ of point i of outer bound j

end for
OuterStrip(i)← min

j∈{1,2,...k}
{Norm(i, j)}

end for

Algorithm A11 Function: Inner layer of a strip of the slice of Minkowski sum

Input: X(j)
SortInnerSlice2D for j ∈ {1, 2 . . . , k} number of Kurzhanski’s inner bounds

Output: InnerStrip

for i = 1→ m do
for j = 1→ k do

Norm(i, j)← ‖X(i,j)
SortInnerSlice2D‖ of point i of inner bound j

end for
InnerStrip(i)← max

j∈{1,2,...k}
{Norm(i, j)}

end for
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