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Abstract: In this paper, we study the Cauchy problem in a strip for a two-dimensional hyperbolic
equation containing the sum of a differential operator and a shift operator acting on a spatial variable
that varies over the real axis. An operating scheme is used to construct the solutions of the equation.
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1. Introduction

In recent years, functional-differential equations, or, their special case, differential
equations with a deviating argument, have become widespread in applications of mathe-
matics. The systematic study of equations with a deviating argument began in the 1940s in
connection with applications to automatic control theory and it was associated with the
research by Pinney [1], Bellman and Cooke [2], Hale [3], and other authors.

Interest in problems for differential-difference equations is due to their numerous
applications: in the mechanics of a deformable solid body; in relativistic electrodynamics;
when studying the processes of vortex formation and the formation of complex coherent
spots; when solving some problems related to plasma; in simulation of vibrations of the
crystal lattice; in problems of nonlinear optics; in the study of neural networks; when study-
ing models of population dynamics in mathematical biology; in the study of environmental
and economic processes; in a wide range of tasks in the theory of automatic control; when
solving problems of optimizing the treatment of oncological diseases (see, for example,
works [4-6]); etc.

Differential-difference equations form a special class of functional-differential equa-
tions for which the theory of boundary value problems is currently developed. Problems
for elliptic differential-difference equations in bounded domains have been studied quite
comprehensively by now; the theory for such equations was created and developed by
Skubachevskii [7,8].

Problems for parabolic and hyperbolic differential-difference equations have been
studied to a much lesser extent [9-11].

As far as the authors know, at present, there are few papers dealing with hyperbolic
differential-difference equations containing shifts with respect to the spatial variable. In [12-14],
the families of classical solutions are constructed for two-dimensional hyperbolic equations
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with shifts in the only space variable x ranging over the real line; the shifts occur either in the
potentials or in the highest derivative. Some similar problems for elliptic equations were studied
in [15,16].

In this paper, we study the solvability of the Cauchy problem in a strip for a two-
dimensional hyperbolic equation with a nonlocal potential.

Let D = {(x,t) : x € R, 0 < t < T} be the coordinate plane area Oxt, where T > 0 is
the given real number, D = {(x,t) : x € R, 0 <t < T}. Let us consider in the domain D
the hyperbolic differential-difference equation, which contains the sum of the differential
operator and the shift operator with respect of the spatial variable x:

def Q*u(x,t) 2 0%u(x,t)

L
" or2 ox2

+bu(x—h,t) =0, 1)

where a, b > 0, h # 0 are given real numbers.
Suppose that for all ¢ € R the inequality

a*¢% + beos (h&) > 0, )

holds.

Inequality (2) means that the real part of the symbol of the differential-difference
operator in Equation (1) is positive.

Consider the function a2 + b cos (h¢), ¢ € [0, +0). The derivative of this function is

bh? sin (h¢)
2% pp o _ 92 _ o~
2a°¢ — bhsin (hg) = 2a 6(1 27 he >
Since sin (hg)/hi — 1 at { — 0, and sin (hf)/hé — 0 at { — +oo, then the
derivative is non-negative on the interval ¢ € [0, +-o0) if

242
0<b< ﬁ (3)
In this case, the function a?¢? + bcos (h&) at & € [0, +00) is non-decreasing and its
smallest value is equal to b > 0; hence,

a*& 4 beos (h&) > b > 0, (4)

forall ¢ € [0, +o0).

Since the function a?¢? + bcos (h&) is even, this value b is the smallest for all real
¢ € (—oo, +00). Thus, the condition (2) is satisfied if the coefficients a, b and the shift / of
the equality (1) satisfy the inequalities (3).

Formulation of the problem. Find a function u(x, t) that satisfies the conditions

u(x,t) € CY(D) N C*(D); (5)
Lu(x,t) =0, (x,t)€D; (6)
u(x,0) = up(x), ur(x,0)=0, x€R, @)

where the initial function satisfies the conditions uo(x) € L1(R), and ug(x) € C}(R).

Definition 1. A function u(x, t) is called a classical solution of the problem (5)—(7), if

e It is continuous and continuously differentiable with respect to the variables x and t in the
set D;

e [t has continuous derivatives uyy and uy in the domain D;

* It satisfies at each point (x,t) € D Equation (1);

e For each point xy € (—o0,+00), the limits of the functions u(xg, t) — ug(xo) and us(xo, t)
at t — 0+ exists and are equal to zero.
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This paper studies the initial problem (5)—(7) for two-dimensional hyperbolic equation
with a nonlocal term. The solution of the problem is obtained in the form of a convolution
of the function found by using the operating scheme and the initial conditions (7).

2. Construction of Solutions of the Equation

The fundamental solution of a linear differential operator L with constant coefficients
is a generalized function & (x, t), that satisfies the equation

02E (x,t) 2 02E (x,t)
ot2 ox?2

LE(x,t) +b0E(x—h,t) =6(x,t), 8)
where 6(x, t) is the Dirac é-function.

We formally apply the Fourier transform with respect to the variable x to Equation (1),
and passes to the dual variable §. For the function £(¢,t) := Fx[€](¢,t), we obtain
the equation

92E(x, 1)
ot2

The solution of Equation (9) has the form

+ (azéz + beihé‘) Elx,t) = 1(6)o(1). )

E(&,1) = 6(t)Z(b), (10)
where 6(t) is the Heaviside step function and the function Z(t) satisfies the equation
2" (5) + (22 + be™) Z(t) = 0, (11)

with the initial conditions
Z(0) =0, Z’(O) =1. (12)

The characteristic equation for Equation (11) has the roots

kip =+ /—(a2¢% + belhd) = ii\/m = +ip(2)e' 29,

where the functions p(&) and ¢(¢) are denoted by

By 1/4
p(¢) == [(aszz + bcos (h(f)) + b? sin? (hg)] , (13)
(€)= 1alrct bsin (h¢) (14)
Pl =5 84262 T b cos (h¢)’
Note that, whenever the condition (2) is satisfied, Functions (13) and (14) are defined

correctly.
The general solution of Equation (11) is determined by the formula

Z(t) = C1(¢) cos (p(&) [cos ¢(8) +isin ¢(Z)]t) + C2(E) sin (p(8) [cos ¢(C) + isin ¢(£)]E),

where C;(¢) and C;(§) are arbitrary constants depending on the parameter ¢. To find these
constants, substitute we substitute the last expression to the conditions (12):

1
p(¢)[cos @(&) +ising(¢)]

As a result, the solution to the problem (11), (12) has the form

Cl(‘:) =0, CZ(C:-() =

Z(t) = sin (0(§) [cos ¢(¢) +isin@(8)])
p(¢)[cos @(¢) +isin@(¢)]
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Taking into account Equation (10), the solution of Equation (9) is determined by
the formuia (0(&)[cos (&) + isin p(&)]1)
= sin (0(&)|cos @(&) +isinp(Q)]t
E(C,t) =0(t — .
G0 =8 @) cos p(2) + Tsin 9 )

Applying the inverse Fourier transform F,- ! to the last expression, we obtain

e [sin (0() cos () + isin p()]0)
“:(’t)‘“”%{ 0(@)lcos 9(¢) 1 7sin 9(C)] }

1 7"sm (0(&)[eos 9(&) + isin @(O)]1) -ing 4
27 ] " p(@)[cos p(2) +isin g(¢)
1 7°sm (p(&)[c0s @(&) +isin @(O)]1) _ig(e)+sc)
27 p(%)

.

—00

Transform this expression using the equalities p(—¢&) = p(¢) and ¢(—¢&) = ¢(&):

0
1 [ sin (p(8)[cos (&) + isin @(E)]E) _ito(e)ex
E(x,t) = —/ () e~ H(9(0)+x0) g
1 sin (p(&)[cos (&) +isin 9(@)]E) io(ersa
/ 5 e~i(p(@) D) g

1 'sin (o(&)[cos (&) — isin @(@)]E) sp(e)xc)
~ O/ o (@) TG

1 [ sin(p(§)[cos @(C) +isin(8)]) i(p(e)+x2)
* 0/ e(¢) ’ %

+oo
/ p(lg) [sin (£ p(&) cos ¢(§)) cos (¢(§) + x§) cos (it p(§) sin ¢(¢))
0

—icos (tp(¢) cos ¢(&)) sin (¢(£) + x¢) sin (it p(&) sin (&) )]de.

Define the functions

G1(§) == p()sing(Z), Ga(g) := p(S) cos (3). (15)

Since cos (ix) = chx and —isin (ix) = shx, we can write £(x, t) in the form

E(xt) =~ O/ 77150 (¢ G2(9) cos (p(&) + x)eh( Gr ()

+ cos (t G2(¢)) sin (¢(¢) + x)sh(t G1(8))]dg

—+o0
1

=5 / p(lér)[[sin(th(C))cos(go(é‘)+x§)+cos(tG2(g))Sin((p(g)+x§)}etc1(g)
0

+[sin (£ Ga(8)) cos (9(2) + X&) — cos (£ Ga (&) sin (&) + x¢)]e ™ 1€ |ag

—+00
= 57 | 5 (S (GO + 9(@) + 1) 4500 (1Ga(E) — @) — xE)e "0z
0

We will use the resulting integral to construct a solution to the system (5)—(7).
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We introduce a weight function A(() (according to [15]), that is continuous, non-
negative for each ¢ € [0, +0), and satisfies the conditions:
(1) For any arbitrarily small number « > 0:

lim A@)e'@Ogtt =0, lim A@)e ' OgH =0, (16)
§—oo E—+oo

(2) Improper integrals

+o0 +o0 +00 +0c0
A(G)¢ AG)¢ A(g) & CA(E) &
/ 1G9 / 21Gi(0) 16 / 1 (7 / G0 4o (17)
0 0 0 0
converge for each t € (0, T;
(3) Improper integrals
—+o00 —+o0
A(Q) A(S)
0/ e—tcl(f:) dé’ ,O/ etcl(g) d(: (18)

converge for each t € [0, T].
As an example of such weight function A(¢), which is continuous and non-negative

for any value of ¢ € [0, +00), and satisfies conditions (16)-(18), one can take any function

&Pe~TCC where B > 0 and C > a > 0 are any real constants.
Indeed, Function (13) is represented in the following form:

1/4
p(g) = [(azgz + bcos (h(",‘))2 + b? sin? (h(j)] =
2bcos (he) v 1*

- [a4§4+2a2b§2 cos (h¢) +b2}1/4 = a|¢| {1+ 20 |

that is, for { — o0, the function p(§) is equivalent to the function ag(1 + ¢), where ¢ > 0

is any arbitrarily small number.
From Formula (14), it follows that |@(&)| < 7r/4, which means that | sin ¢(¢)| < v/2/2.

Thus, for Function (15) for { — +o00 we have the estimate
. V2
GL(E)] = [p(&) sin ()] < —-a(l+e)S.
Since the inequalities
2 2
ot < ~L2a(14+9¢ < Gi(©) < La(l+ )2 < at,

hold for any arbitrarily small number ¢ > 0 and § — -+oco, we obtain the conditions

TCEZ — tGy (&) > (TC — ta)Z > 0, TCE+tG1(Z) > (TC — ta)é > 0. (19)

Using the inequalities

(;’/3 14+« §1+m+ﬁ
0< T ramt < (e e

and Lopital’s rule, one can show that

. €l+1x+ﬁ
Am e = O
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therefore,
_ 1+a+p
Am e — 0

Thus, for the function A({) = &Pe~TCS  the first condition from (16) is satisfied.

Similarly, taking into account the second inequality from (19), we can check that the
second condition from (16) for the function A(&) = &Pe~T¢¢ is also satisfied.

To prove the convergence of the integrals (17) and (18), we use the criterion for the
convergence of improper integrals: if there is a finite limit lirf |f(x)|-xPatp > 1, then

X—r—+00

—+o0
the integral | f(x)dx converges. The existence of finite limits
a

gl+o¢+ﬁ gl+a+ﬁ

=0, Ilm —%——F =0

lim Etoo eTCEHEG1(E)

F—to0 eTCE—1G1(E)

implies the convergence of the integrals (18) for the function A(&) = &Pe~TC¢ for any fixed
valuest € [0,T], > 0and C >a > 0.
Using the inequalities (19) and Lopital’s rule, one can check that all four limits

lim glJrﬁ §1+tx lim §1+'B érl+0t.
F—+o0 eTCE—Gy &) ! F+too eTCEHG1(E) !

F—r Yoo TCE—tG1(E) " oo eTCTH G (D)

are equal to zero for any arbitrarily small number & > 0. This means that the integrals (17)
converge for the function A(&) = &fe~T¢¢ (3 >0,C > a > 0)and each t € [0, T].
Let us prove the following assertion.

Lemma 1. Under condition (2), the function

+oc0
Gl )= [ A [oin (1 Ga(@) + 9(E) +36)¢ O 4 5in (1 Go(&) — 9(€) — xE)e O] g 0
0

satisfies the equality (1) in the classical sense. Here, A(E) is a definite and non-negative for any
value § € [0, +o0) function, which satisfies the conditions (16)—(18); functions G1(&) and Gy(§)
are determined by Equation (15).

Proof. As noted above, if the condition (2) is satisfied, the functions p(¢) and ¢(¢) are
defined correctly for all values of the parameters a, b, i, and ¢. Moreover, the function p(¢)
is non-zero. That is, the integrand in (20) is continuous at every point ¢ € [0, +0c0) as a
composition of continuous functions.

Let us first investigate the convergence of the integral:

+o00 +o00
aygr . [ AQ)sin(tGa(E) + @(S) + xT)
O/F(x,t,g)dg._o/ e dz. 1)

It follows from Formulas (4) and (13) that for the function p(&) satisfies the estimate

1/4
p(g) = [({1252 + bcos (h(:))z + b? sin? (h@‘)] > {bz + b? sin? (hf,‘)} e >V (22)
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Consider the expression

[AQsin (¢ GoE) 1 9(0)+20) 1
p(@)e il '

where & > 0 is any arbitrarily small number. Taking into account (22), we have

A(G) sin (£ G2(8) + (&) + XC) 144
0 oS p(g)g_tcl(g) §1+

<

A(C)Isin(th(C)+qv(§)+x€)l§1+a<i A(¢) gl
Ve tG(§) = Ve tG1(9) ’

Using the first condition from (16) we obtain

A sin (1Ga(8) + 9(0) +30) e _ g
p(E)e~tC1(®) '

g—r+oo

+o00
that is, the integral f F(x,t;¢)d¢ converges.
0

Similarly, it can be shown that when the second condition in (16) is satisfied, the integral

+oo +o0
o [ AQ)sin (£ Ga(E) — 9(&) = x0)
0/ H(x, £ )d¢ = 0/ R dz (23)

converges.
Let us now check that Function (21) satisfies Equation (1). To do this, we formally
differentiate Function (21) with respect to the variables x and f up to the second order under

the integral sign.

400 00
[ B pyae = [ AEECEL IO g 24
0 0
+0c0 o0 5 .
/Fxx(X, t;¢)dg = — / )¢ Smp(é();:_(?g;;(:;;p@)+x§)d§; (25)
0 0
+o00 +o0
e~ [ AQ)
O/ i, ;)2 = 0/ e G20 s (1Ga(E) +9(0) + 20)

+G1(¢) sin (£ G2(8) + (&) + xE)]dS;  (26)

T A .
0/ Fu(x, 8)dE = 0/ e | (GH0) = GHO) ) sin (Ga(@) + 9(@) + 0

)eft Gy

+2G1(§)G2(€) cos (£ G2(8) + @(8) + x5)]dG. (27)
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Taking into account Equation (15), we obtain 2G;(&)G2(&) = p?(¢&) sin2¢(&). Since
¢ (&) is determined by Equation (14), the inequality [2¢(&)| < 7r/21is satisfied, and therefore,
cos2¢(&) > 0. Therefore,

_ t829(6)
1+tg%2¢(¢)

B bsin (h$) bsin (h$) /2
=s(orts e i ) 119 (ar“g 2 L heon(i))

bsin (h$) ?sin? (hg) o
~ 2282 + beos (he) (a2§2 + beos (hE))?

2 1/2
~ bsin (k) (a*¢* + beos (h))
 a?32 +beos (h) (2282 + bcos (hE))* + b2 sin? (h¢)

sin2¢(g) =

is true.
Taking into account the inequality (2) and Equation (13), we deduce that sin2¢(¢) =

bsin (h&)/p*(&), whence, 2G1 ()G (&) = bsin (h¢).
If the inequality cos 2¢({) > 0 and the condition (2) are satisfied, we can calculate

GH(§) — G3(2) = p(&) [sin? 9(8) — cos? 9(©)
P (&)
1+1tg%2¢(3)

1/2
(a%¢* + bcos (h@‘))2 U
(282 + beos (hE))* + b2 sin? (h¢) a“g= — beos (hg).

= —p*(§) cos2¢(8) = —

= —p%(¢) [

Using the obtained expressions for G?(¢) — G3(&) and 2G1 (£) G2 (), from equality (27)
we obtain

T TaE .
O/ Fi(x,t;¢)d¢ = O/ W {— (azgz + bcos (hﬁ)) sin (t G2(¢) + ¢(¢) + x¢)
+bsin (hg) cos (t Go(&) + ¢(&) + x&)]dE.  (28)

“+o0
Substitute the obtained expressions of the derivatives [ Fy(x,t;&)d¢ and
0

+o0
| Fux(x,t;&)d¢ to Equation (1):
0

/FttXthC /Fxxx“:

_ sm (tG2(8) + @(C) + x§) - cos (hG) — cos (£ G2(8) + () + x¢) - sin (hS)
s gt R "

+oco +o00

L / A(E) sm(tG:((g))e—:(gl(é)) Rl ) S / F(x —h,t; &)de.

0 0

Thus, Function (21) satisfies Equation (1) in the classical sense.
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Now let us prove the uniform convergence of the integrals (24) and (25) with respect
to the variable x on any segment [x1, x3] C (—00, +00), and the uniform convergence of the
integrals (26) and (28) with respect to the variable t on any segment [t1, 5] C (0, T]. Note
that the integrands of all these integrals have no singularities at the point ¢ = 0.

Let us investigate the integral (24) for the uniform convergence, taking into account
the estimate (22) and using the Weierstrass criterion:

e TTA()E cos (£Ga(€) + 9(&) + x2)
0/|Fx<x,twr:)|dc 0/‘ ’d§< /

p(g)e—tcl((f) —tcl

According to the convergence of the integrals (17), the integral on the right-hand side
of the latter inequality converges and the integrand does not depend on the variable x;
hence, the integral (24) converges uniformly with respect to the variable x on any finite
segment [x1, Xp] C (—00,+00).

Let us investigate the uniform convergence of the integral (25) with respect to the vari-
able x on any finite segment [x1, x3] C (—o0, +00). Using the inequality (22), we calculate

“+o00

70|Fxx<x, sl = |
0 0

By virtue of the convergence of the integrals (17), the integral on the right-hand side
of the latter inequality converges, and the integrand does not depend on the variable x.
Thus, the integral (25) converges uniformly, which means that differentiation under the
integral sign of Function (21) with respect to the variable x up to the second order including
was legal.

It remains to check the uniform convergence of the integral (26) with respect to the
variable t on any finite segment [t1, t;] C [0, T], and the integral (28) with respect to the
variable ¢ on any finite segment [t1, f2] C (0, T]. Using the definition (15), we can write
Function (26) as

A() &sin (£Go(&) + 9(@) + x2)
o@D s /

P tGl

+o00 400
[ Etosyie = [ AEL fcos (@) cos (1Gal@) + 9(@) + x0)
0 0
+oo
Feing(@)sin (1 Go(&) + (@) +20))de = [ FE)cos (1Ga(e) + x0) .
0
Hence,
—+o00
o o [ A d, Gi@) >0,
[ ol < [ 5 e < ﬁw
i o [ i, 6 <

Since the integral (18) converges, the integrals on the right side of the latter inequality
converge and not depend on the variable t. Therefore, the integral (26) converges uniformly
for any value of t € [0, T].

Let us now estimate the integral (28):

/|Fttxt§ dg = /‘ %G] @‘|— @G+ beos (k) ) sin (£ Ga (&) + (&) + 12)
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+ bsin (h¢) cos (t Ga(§) + @(G) + x&)[dE
+00
- 1 AQ) (aE42h)
<L 7 AQ) (@2 +2b) o ) VP of e e 1) 20
VA ~tG1({) - T A@) (@222
Vhyoooe b A, G <o

Since the integrand in the latter integral does not depend on ¢, then, according to
the Weierstrass test, the integral (28) converges uniformly in the variable ¢ on any finite
segment [t1, ] C (0, T]. This means that differentiation under the integral sign in (21) with
respect to the variable t up to the second order including was legal if the integral

+00 +o0 +oo
A@Q) (@2 +2b) A(G) & A()
0/ e—tG1(8) i =a 0/ e—tGi(g) 45 +2b 0/ e~tGi(E) 4%

converges for any value t € (0, T]. And this is true, since the integrals (17) and (18) converge.

It can be shown similarly that the improper integrals obtained after the formal differ-
entiation under the sign of the integral over the variables x and ¢ up to the second order
including of the integrand in (23) converge uniformly if the integrals

+o0 —+00 +o00
A(E) A(G)¢ A(g)¢?
0/ G @Y% 0/ G0 1 0/ PR

converge. Their convergence was considered above, see (17) and (18).

Thus, we have proved that the function G(x,t), defined by Equation (20), exists at
every point of the area D and satisfies the equality (1) in the classical sense. Hence, the
lemma is proved.

O

Theorem 1. Under conditions (2) and ug(x) € L1(R), the function

+o0
u(x,t) = % / G(x —n,t)ug(n)dy, (29)

—00

where G(x, t) is defined by the equality (20), satisfies the equality (1) in the classical sense.

Proof. Function (29) has the following form

+o0
u(e,t) = 5 [ Glx— o)y

1 TTA) sin (£Ga(8) + @(&) + xE — 1)
7/uo(77) 0/{ pz(g)e—tGl(cj)

A(¢) sin (£ G2 (&) — (&) — xG +16)
' p(§)et e e

Function (29) exists in the region D if the condition

—+o00 —+o0
[ lwomldn [ 160y, bldy < +oo

holds.
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Since 1¢(x) is an integrable function for all x € R, we are to check the fulfillment of
condition G(x,t) € L1(R) forany t € (0, T].
Let us find the majorant of Function (20). From the equality (13), we obtain the estimate

(&) = [a4§4 + 20282 cos (hE) + bﬂ Y [a4§4 2232 + bz] Ry A )

The equality (14) implies that |p(&)| < 77/4, hence; v/2/2 < cos ¢(&) < 1. Then,
from (15) and (30), we have

G2(8)] = p()[ cos @(&)] < 7\/01262 +0. (31)

Taking into account the inequalities (22), (31) and |sina/a| < 1, we can estimate
the function

+

oo

Gl < |
0

7 ( ) |sin ( fG2(§)+¢(C) +x0)| | A(S) Isin (tG2(6) — 9(E) —x§)|>
: ) —tG1 () p(g)etGl(g)

A(Q) sin (tG2(€) + @(6) +x6) | A(L) sin (tGa (&) — ¢(C) —X§)’

@ T P *

dg

+o00

1 /(A ¢) lsin sz(§)+<P(é‘)+XC)\+A(é‘)ISin(th(é‘)—<P(§)—X§)|)
b 0

dg

—tG1(€) etG1(%)

+

(e9)

A

Sl-

o Y—— * O~

<A(§) [tG2(8) + @(§) +xE| | A(E) |t Ga(C) — 9(€) — xC] >d§

e—tG1(¢) etG1(¢)

[e.9)

IN

°\~g§%

HG2(O)] + [@(O) [+ |xI¢ | tG2(E)| + [@(E)] + |x]S
< =G PR >A(§)d‘3

(fWHn/Hma th+n/4+|xlé> ()de.

<z TNy oG (D)

\f

Replace the integration variable in the latter integral according to the formula |x|{ = T
forx #0:
Gx, )] <

2Tt bt /AT RVt bt /At T
\f|x|/ + A(t/|x])dt

e—tG1(/1x]) etGi(t/|x|)

7\/Ex20

t 22 1 + T Bl 222 4 i By
/ + A(t/|x])dt. (32)
e—tG1(t/]x]) efcl(T/|x|)

The integrals on the right-hand side of (32), due to conditions (17) and (3), converge
forany t € (0,T] and any x € R\{O} Thus, we have shown that the function |G(x, t)| is
majorized by the function Ct/x?, where t € (0 T] x # 0, where C is an absolute constant.

This implies the convergence of the integral / G(n,t)dn, thatis G(x,t) € L1(R) for any
t € (0, T]. This means that Function (20) exists in the domain D and, by virtue of the proved
Lemma, it is a classical solution of Equation (1).
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Note also that, by virtue of the same Lemma, Function (29) belongs to the class
CY(D) N C%*(D) (the integrand in (29) is continuous, the integrals uy(x,t) and uyy(x,t)
converge uniformly in the variable x on any finite segment [x1, x3] C (—00,+0), the
integrals u;(x,t) and us(x, t) converge uniformly in the variable t on any finite segment
[t1,t2] C (0, T], and the integral u;(x, t) converges at the border t = 0). Thus, the theorem
is proved.

O

3. Fulfillment of the Initial Conditions of the Problem
Theorem 2. Under conditions (2), ug(x) € L1(R) and ug(x) € C*(R) the limit relations

li t) = li t)=20
t_l)%l+u(x0/ ) ”O(xo)/ t_1>r0r}~_ uf(x()/ ) (33)

are valid for any xy € (—o0, +0c0).

Proof. 1. Let xy € (—00,+00). In the equality (29), make the change of variable (xo —
)/t = T, and consider the difference

—+o00

u(xo, t) — up(xp) = i / G(tt, t)ug(xp —tt)dT —

—+o00
1 1 up(xo)
T 1+ 12

—00 —00

—+o0

= 2i / [tG(tT,t)uo(Xo —t1) — 2;3_(3_;%)}611'

—00

A 00

[«]+]

1

def
= =1 I I; 4. (34
o LAt hatBa (34)

Using the inequality (2) and the equality arctg x = arccos(1/v/'1 + x2), we write the
functions (15) as follows:

G1(8) = p(&) sinp(2) = p(3) L:g?@&
_p(©) bsin (he) 1/2
= W [1 — cos <arctga2€2 T heos (h@)ﬂ
1/2
_e@) |, |a%¢% + beos (h¢)|
v2 \/ (4282 + beos (hE))? + b2 sin® (h¢)

mav%a—%?—Mmm@T“_1
P*(8) V2
1

1/2
= 7 [\/ 474 1 202bE2 cos (hE) + b2 — a?E — beos (h(;‘)] , (35)

[2(2) — 8 ~ beos ()]
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and

G2(&) = p(&) cos @(&) = p(£) HC"Zﬂ

|a2¢% + b cos (h¢)| v ) {p2(§) + 28 4 beos (hg)} 1/2
V(@222 + beos (hZ))? + 12 sin? (k) V2 20

1 1/2
v [\/a4§4 + 2a2b¢2 cos (h¢) + b2 + a*E + bcos (hg)] . (36)

Obviously, the resulting radical expressions in (35) and (36) are always non-negative.
Then,

1/2
tG1(¢) = [\/a4t4§4 + 2a2bt4E2 cos (h&) + b2t4 — a*t2F2 — bt? cos (hé)} ,

1
V2
1 1/2
tGy (&) = 7 [\/a4t4§4 +2a2bt4¢2 cos (h&) + b2t4 4 a#2F2 + bt? cos (h(f)} ,
tG

and the function t G(tt,t) can be written as

~+o00

Gtt, 1) = t / [A sin th(g) + ¢() + t7¢) L A(E) sin (t Go(&) — @(&) — tTé‘)]
0

) —tG1(§) p(g)etcl(g) 46

A(&) sin (k {\/a4t4g;‘4 + 2a2bt*¢2 cos (hE) + b2t4 + a?t2E2 + bt? cos (hg)} 2 +¢(8) + tr§>

=1t 1/2

o\g

-1 {\/ﬂ4t4§4+2u2bt4§2 cos (h¢)+b2t4—a22g2—bt2 cos (hr:)]

p(gle v2

1/2

A(g) sin (\% [\/a4t4§4 + 2a2bt*¢2 cos (hE) + b2t* + a®12¢2 + bt? cos (h(f)]

—¢() - tTé) ,

+ z.

172
a4 t4&44-2a2bt4 22 cos (hE)+b2t4 —a2t2¢2—bt2 cos (h@')]

p(é‘)ef [V

After the substitution t = z, from the latter equality we obtain

A(z/t)

0 p(z/t)e*% [ /a2 202bi222 cos (hz/ 1) +0213—a222—bi2 cos (hz/1) |

1/2

V2

+

1/2
X sin ( L [\/a4z4 +2a2bt222 cos (hz/t) + b2t* + a°z* + bt* cos (hz/t)] + ¢(z/t) + TZ>

A(z/t)

/@424 120261222 cos (hz /1) +b2t4—a222—bi2 cos (hz/t)}

1/2

p(z/t)e%[

1/2
sin (\}E {\/a‘lz‘1 +2a2bt222 cos (hz/t) + b2t4 4 a®z* + bt* cos (hz/t)} —@(z/t) — TZ) 1 dz.

Denote the functions

1/2
21(z,t) = \1@ [\/a4z4 + 2a2bt222 cos (hz /t) + b2t4 — a®z% — bt? cos (hz/t)] , (37)
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and
1 1/2
9(z,t) == 7 [\/a4z4 + 2a2bt222 cos (hz /t) + b2t4 + a?z? + bt? cos (hz/t)] . (38)
Using this notation, we can write
Gltr,b) = / [ (z/t)sin (g2(z,t) + @(z/t) + 12) n A(z/t)sin (ga(z, t) — @(z/t) — TZ)]dz. (39)
, z/t)e g1(zt) p(z/t)egl(zxt)
2. Let us now prove that the limit relation
lim tG(tt,t) = 2 (40)
t—0+ 1412

is satisfied uniformly with respect to T € (—oo, +0c0). To do this, it suffices to show that for
any arbitrarily small number ¢ > 0 there is a number 0 < § < T such that for any ¢ € (0, )

and T € (—oo, +00) holds the inequality

tG(tt, t) — <e

1+ 12

(41)

Represent the function in the form 2/(1 + 72) = f % cos (tz)dz and consider

the difference

2

tG(tT, t) - m

_ / [ (z/t)sin(g2(z,t) + @(z/t) + 12) . A(z/t)sin (g2(z,t) — @(z/t) _TZ)}dz

Z/i’)e‘ g1(zt) p(z/t)egl(zrt)

—+o0
—2 [ e *cos(tz)dz
/
A(z/t)es1(zt)
pz/t)

sin (g2(z,t) + ¢(z/t) + 12) — e * cos (TZ)] dz

A(z/t)e 81D
pz/t)

sin (g2(z,t) — ¢(z/t) — 1z) — e * cos (TZ)‘| dz

W?Zj;g”” in (2(2,1) + @(z/1)) — 1] cos (1z)dz

+o0
A(z/t)es1(zt)
" / p(z/t)

cos (2(z,t) + ¢(z/t)) sin (1z)dz
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+oo
+ / e ?
0

A(z/t)er=81(zh)
pz/t)

sin (g2(z,t) — ¢(z/t)) — 11 cos (tz)dz
e z 1(zt)
- / (/E)Z/Scos (g2(z,t) — @(z/t)) sin (t2)dz
—+o00
- / e
0
+o0
+ / e *
0

—+00
+ / A(z/t)esi =) <1—Zsin2 g2(z,1)

P 1(zt)
(Z/t()z/:)g sin (g2(z,t) + @(z/t)) — 1] cos (Tz)dz

z—81(zt)
A G (azt) — g(z/1)) - 1] cos (12)dz

p(z/t)
+ q)(z/t)) sin (1z)dz

o(z/t) 2
(z,t) —
/ A(z/t e &1 (1 _ 9gin? 82(%t) (P(Z/t)> sin (1z)dz
p(z/t) 2

(Z/t) z+g1(z,t)
o(z/1)

sin (g2(z,t) + ¢(z/t)) — 11 cos (1z)dz

2 /$)er—81(zt)
2 W sin (g2(z,t) — @(z/t)) — 1] cos (1z)dz

+

O\-é— O\+

sin (1z)dz

> / Z/t egl Zt) lnz g2(Z,t) +(P(Z/t)
o(z/t) 2

sin (1z)dz

(z/)e81ED 5 ga(z,t) — g(z/1)
+2/ 0(z/D) sin 5

400
—81(zt)
i / 1‘% (e2g1 (zt) _ 1) sin (1z)dz.

We use the formulas for the sine of the sum and difference in the third and fourth
integrals in the last expression. Taking into account their squaring and the formula for the
sine of a double angle, we obtain

~+o0

tG(tT, £) — 2 / e ”

1+ 72
+/ e

A(z/t)e z+g81(zt)
p(z/t)

sin (g2(z,t) + ¢(z/t)) — 1] cos (1z)dz

A(z/t)er=81(zh)
z/t)

sin (g2(z,t) — @(z/t)) — 1] cos (1z)dz
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2 82(2,t) . 5 @(z/t)
5 5 ~+ cos > sin >

+o00

—i—% sing>(z, t) sin go(z/t)) sin (1z)dz

2 2(z,t) . 5 @(z/t)
5 5 —+ cos 5 sin 2

—+00
2 f A(Z; Z)ZE/;“Z'” (sz z1) 29/t

—% sin g»(z, t) sin (p(z/t)> sin (1z)dz

+00
—g1(zt)
o [ AEESED (o) 1) s (e

p(z/t)
oo (Z/t) z+g1(zt)
= [ e W in(g2(z,t) + ¢(z/t)) — 1] cos (1z)dz
0

s A(z/t)ez_gl (zt)
p(z/t)

sin (g2(z,t) — ¢(z/t)) — 1] cos (1z)dz

e

o270 sings(z, t) sin ¢(z/t) sin (1z)dz

g1(zt)
_ / Z/tze/t : sings(z, t) sin ¢(z/t) sin (1z)dz

+ A(z/ e 81 (zt) (EZgl(z,t) — 1) .2 9(z,t) 5 e(z/t)

-’ p(z/t) SIn” === C0s” ——sIn (tz)dz
+°°A (z/t)e 81 zt)( 261 (1) _ 1)
- 282(z,1) . 5 (z/t) .
2 o(z/t) cos 5 s 5 sin (tz)dz

+ / Z/tz/t ( e21(zt) 1) sin (tz)dz.

In the resulting expression, we expand the sine of the sum in the integrand in the first
integral, which we then group with the third integral, and write the sine of the difference
in the second integral and group it with the fourth integral as follows:

+o0
[
0

A(z/t)ext81Eh)
p(z/1)

singy(z, t) cos ¢(z/t) — 1] cos (1z)dz



Mathematics 2023, 11, 130 17 of 24

b [ Al

0(z/1) [cos g2(z,t) cos (Tz) — sin gy (z, t) sin (1z)] sin @(z/t)dz

T [A@/e s
/ Sy sings(z,t) cos ¢(z/t) — 1| cos (tz)dz
0

e - (Zrt)
- / A(ZZ,?Ze/:[COSgZ(ZJ) cos (Tz) +singy(z, t) sin (1z)] sin ¢(z/t)dz
0

28t o e(z/t)

p(z/t) STy 2

2

T A(z/t)e81(24) (e2gl<z,t) . 1)
0

T A(z/t)e81(21) (e2g1(z,t) _ 1)
sin (1z)dz
0

2 82(z,t) . 5 (z/t)
p(z/t) oS Ty sm Ty

2

sin (1z)dz

+o0
—81(zt)
o AL 1)

eZt81(zt)
(Z/t()z/ﬂgl singy(z, t) cos ¢(z/t) — 1] cos (1z)dz

+o0
:/e

0

—+o00
+/e’z

0

g (z,t)
+/ Z/tzjtl Cos(gz(z,t)+TZ)sir1(p(Z/t)dZ

z—g1(zt)
% sings(z, t) cos ¢(z/t) — 1] cos (1z)dz

81(z.t)

B / Z/tze/t 1 cos (g2(z,t) — 1z) sin ¢(z/t)dz
TRA(z/t)e &1 Zf)( 281(zt) _ 1) ; It
sin? gz(Z, ) cos> (P(Z )

w2 o(z/t) 2 )

sin (1z)dz

+oo 1) (o281(2) _
Alz/t)e 81 )( $1(zt) 1) o2 82028 2 9(z/1)

o(z/t) 2 2

g Zt
+/ (z/t)e=$1 (2g1(z/f)71) sin (1z)dz

z/t
—/

-2

sin (1z)dz

Z/t eZt81(zt)
o=/t

singy(z, t) cos ¢(z/t) — 1] cos (1z)dz
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s A(z/t)e*= 81 (zt)
/ e ” singy(z,t) cos ¢(z/t) — 1| cos (1z)dz
, z/t)
g1(z.t) —g1(zt)
/ (2/He81E) cos (g3 z, t>+rz>(z/t)<z/t> 1) cos (ga(z,) = T2)
0
T A(z/t)e 1 zt)( 281(z,t) _ 1)
_ 2 82(%t) o2 (z/t)
2 REr) sin” S=57= cos” “———=sin (tz)dz
PACHICS(ED ) e
-2 o@/D cos? 22’ sin? 5 sin (tz)dz

+ / Z/tz/t ( 2=t 1) sin (1z)dz

d_ef L(T,t) + b(T,t) + I3(1,t) — 2L4(T, t) — 2I5(T, £) + Is(T, 1).

3. Consider first the integral I4(7,t). Using the definition (37) and inequality (4),

transform the expression

2¢3(z,t) = \/u4z4 +2a2b 1222 cos (hz/t) + b2t* — a*2> — bt? cos (hz/t)
B b2 t* — b?t* cos? (hz/t)
Vatz4 4+ 2a2b 1222 cos (hz/t) + b2t + a222 + bt2 cos (hz/t)
_ b2t*sin® (hz/t)
Va4z% + 2a2b 1222 cos (hz/t) + b2t + 12 (a2f—§ +b cos (hz/t))

Taking into account that \/a%z* + 2a2b 1222 cos (hz/t) + b2t* > 0 and the inequality

(4), from the last expression, we obtain

b2t4 sin? (hz/t) - b2t4 sin? (hz/t) - vt b2
Va4z4 + 2a2b 1222 cos (hz/t) + b2t + 2 (azi—i + b cos (hz/t)) B bt? bt '
whence,
0<gi(zt) < \/Ef- (42)

Using the inequalities (22) and (42), we estimate the integral I¢(7, f):

+
a1(zt)
|Is(T,1)| /T z/tze/t : ( eX(zt) 1) sin (1z)

+00A Z/t 2glzt)_1>
z/t es1 (zt)

dz

o

1 +°°A(z/t)<\ﬁt )d

. < ‘
|'sin (12)|dz < 7 e z
0

Since the asymptotic representation of the function eVt — 14 \/2bt + o(t) is valid
for t — 0+, the latter integral for t — 0+ can be bounded as
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+o0 +o0 +o0
L / A(Z/t)(@t+o(t))dz = V2t / Alz/H0 +0(1))512 < const - V2t / Alz/t) dz.
\/E . egl(z/t) egl(z/t) . €g1(Z,t)
0 0 0
After the reverse change of the variable according to the formula t = z, we finally obtain
+o00 +00
A(z/t) 2 A(¢)
< . = .
|I6(T,t)| < const \th/ e dz = const - V2t / etcl(é)dg.
0 0

Since the resulting integral on the right-hand side is a convergent integral from the
series (18), the last inequality for t — 0+ implies the estimate

[Is(T,8)| < . (43)

4. Similarly, we estimate the integrals I4(7, t) and I5(7, t) for t — 0+.

dz

sin cos sin (7z)

o4 A(z/t)e 810 (62gl (zh) _ 1)
2 82(zt) 5 9(z/t)
|Is(T,t)| < /T ET) - :

0

+°°A(z/t)( Vbt _ ) +oo oo

1 _ A(z/t)(1+0(1)) s [ AG) .

< ﬁ J en) dz = /2t 0/ en) dz < const V2t 0/ FC0 dg;
and

+ z/t)e s1(zt) (p281(21) _ 1
|I5(T,t)] < O/l] p(z/(t) ) cos® gz(ZZ,t) sin? (p(zz/t) sin (1z) |dz
TAM(E™ 1) T Ao A
L _ 2 ¢)
\f 0/ egl ) dz =2t O/ eRen) dz < const- V2t 0/ G0 dc.

From the last two expressions for t — 0+, we can deduce

(T, 1)] < % (T, 1) < = (44)

12
for any arbitrarily small fixed number & > 0.

5. Let us now estimate the integral I3(7, t). Taking into account the inequalities (22)
and (42), we obtain

+
g1(zt) -81(zt) —
(7, )| /T (z/1)e81) cos (g2(z, t) + T2) — A(z/t)e=813 cos (g2(z, t) — T2) |sin @(z/1)|dz

t
" p(z/t)
Too - foo (=) (21(z1)
e81(zt) 4 p—81(2t) e 81 (e +1>
< =
O/A(z P O/A(z/t) NeI iz
< 70A(z/t)egl(z,t) (=2 +1) 4o 1 7‘4(2/”1& ! t/ d(’:
- p(z/t) - Vb e1zt) Ty etcl
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Since the resulting integral converges as the partial case of (18), the latter chain of
inequalities for t — 04 implies the estimate

(T8 < ¢ 45)

for any arbitrarily small number ¢ > 0.

6. Consider now the integral (7, ). Let the function A(z/t) be such that for z €
[1, +00) the integrand in the integral I»(7, t) is majorized (in absolute value) by the function
|Const + 1|e~ %, where Const > 0 is a real constant. Therefore, you can choose such a large
enough number B > 0 such that the inequality

—+o0

[
5

will be satisfied.
Fix the number B > 0 and evaluate for 0 < z < B the expression

A(z/t)ez_gl (zt)

o(z/1) singy(z,t) cos ¢(z/t) — 1| cos (tz)dz| < —

12

z—g1(z,t)
A(Z/;()Ze/t)gl sing»(z, t) cos ¢(z/t).

Let at t = 0 the value of the function

A(z/t)e 8@
pz/t)

be equal to one for any z. Let us show that the function defined in this way tends to unity
att — 0+ uniformly with respect to z € [0, B].

Suppose the contrary, that is, there is such a number ¢y > 0 that for any positive
number ¢ there are t(5) € (0,6) and z(d) € [0, B] such that the inequality

21(z,t) = sin g»(z, t) cos ¢(z/t) (46)

A(z/t)ez_gl (z,t)

p(z/t) singz(z,t) cos p(z/t) > 1+¢o

is satisfied.
Consider the sequence 6, = 1/n, n = 1,2,.... There exist the sequences {t,} C
(0,1/n) and {z,} C [0, B] for which the inequality

holds for any n € N. Without loss of generality, we can assume that the sequence {(z,, t,)}
of elements (z,, t,) € R? converges, and we denote its limit as (zo, to). Obviously, zg € [0, B]
and fy = 0; hence, |31(29,0)| > 1+ ¢p, which contradicts the definition of the function
21(z,t) on the axis t = 0. Thus, we have proved the inequality

/o

Z/t z—g81(z/t) €
- o(z/t) S1

singo(z,t) cos p(z/t) — 1] cos (1z)dz
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So, we have proved the estimate
B A(Z/t)ezfgl (zt)
|L(T,t)] < /efz ———————singy(z,t)cos ¢(z/t) — 1| cos (1z)dz
J p(z/1)
[ o[ A/t t £ —1 d W
B/ ST T singy(z,t) cos ¢(z/t) — 1| cos (tz)dz| < ﬂ+ﬂ P (47)
7. Similarly, it can be shown that if, for t = 0, the value of the function
Z+81 (Z/t)
(z,t) = A(zg()ze/t) sin g»(z, t) cos ¢(z/t) (48)
is equal to one for any z, then the following inequality holds:
B A(Z/t)eZJrgl (zt)
|L(T,8)] < /e*Z ———————singy(z,t)cos ¢(z/t) — 1| cos (1z)dz
/ o(z/1)
+o00 (Z/t) eZt8 (z,t) . , /s . p € 19
+ B/e (Z—/t)smgz(z,)cowp(z )—1| cos(tz)dz <E+E P (49)

Estimates (43)—(45), (47), and (49) prove the fulfillment of inequality (41), which implies
the validity of relation (40).

8. Let us now estimate the expression (34). From the inequality (32), it follows that for
x #0and t € (0, T] the inequality

Ct
G0l < 5

is satisfied, where C > 0 is a constant. Hence, for T # 0 and t € (0, T], the estimate

holds. This means that the integrand in the integral I3 4 is majorized by the function
2Csup |ug|/ T2, that s, for any A > 0, the inequality

C sup |uy|

I <
bl < =2F

is satisfied. Choose the number A > 0 sufficiently large so that we obtain the estimate
|I3’ A | <e/ 3,

for any arbitrarily small number ¢ > 0.
The integral I; 4 is estimated in a similar way:

|11,A| < e/3.

Write the integrand in the integral I 4 in the following form:



Mathematics 2023, 11, 130

22 of 24

EG(tT, Hug(xg — tT) — t G(tT, )ug(xo) + t G(£T, g (x0) — 21”1(?2)
=t G(tt, t)[up(xo — tT) — up(xp)] + 1uo(x0) [tG(tT,t) 1Tl
0 A A
Let us write down |L 4| = | [ + [| < 2|[|. Given Equation (40), there is such
“A 0 0
t; € (0, T] that the inequality
EG(tT,t) — < £
’ 1412 ~ 12Asup |u|

is satisfied for any t € (0,#1) and T € R, and for a chosen sufficiently large number A > 0.
Lete < 12A sup |up/|, then for any t € (0,t;) we obtain the inequalities

2
——+1,

~1<tG(tr,t) <
(tr,1) < 7%

1+12
thatis, |t G(tT,t)| < 3.
Since the function uy(x) is continuous over the real line (together with its first deriva-
tive), there exists tg € (0, 1), such that the inequality

)

|uo(xo — tT) — ug(xo)| < 36A sup |uo)|

is satisfied for any t € (0,ty) and T € [—A, A]. Thus, itis proved that for0 < t <ty < T
the following estimate holds:
|12,A| <e/3.

The resulting estimates |I[; 4| < €/3, |I,a| < ¢/3 and |I3 4| < &/3, by virtue of an
arbitrary choice of ¢ > 0 and xy € (—oo, +00), prove that the first relation in (33) holds.

9. Let us now prove the second relation in (33). Using the definition (15), we
first calculate

TA@
Gi(x,t) = [ Z201G,(
O/ ol

; ) cos (t Go (&) + (&) + x&)et 1)

¢
+G1(&) sin (£ G2 (&) + (&) + x8)e! G1©) + Gy (£) cos (£ Gy (&) — (&) — xg)e !t G1(©)
—~Gi(&)sin ( Ga(8) — 9(2) — x&)e ™ @ D)]dg

—+oco

= [ A©)[[cos 9(&) cos (+ Ga(&) + p(£) +x2) +sin g(¢) sin (¢ () + 9(&) + x2)Je! O
0
+[cos p(&) cos (t Go(&) — p(&) — x¢) = sin (&) sin (£ Ga(&) — (&) — xE))e " @] ag

~+o0

_ /A(g)[cos(tcz(g)+x§)etcl(§)+Cos(tc2(g)—xg)eftcl(@]dg.
0

Let xg € (—o0, +00) be an arbitrary value. Consider the function
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ur(x0,t) = 3 [ Gilxo =1, yuo(n)dy
+oo +oo
_ 1 " A(E) cos (tGa(G) +x08 — 1) | A(G) cos (tGa(8) — x0G +16)
_Ef/ to(17) /( e tGi(0) + G0 g dy-

In the last expression, make the change of variable (xo —77)/t = T and obtain
b
u(y +tt,t) = 7 / Ge(tT, t)ug(xg — tT)dT.
Since the condition
—+o00 —+oo
[ twotldy [ 16, bldy < +oo

+oo _
is satisfied, the function [ G;(tt,t)ug(xo — t7)dT exists in the region D.
—o0
Since, according to the condition of the theorem, the function u¢(x) is integrable over
the real line, it is enough to check the condition G¢(x,t) € L1(R). To do this, taking into

account inequalities (30), we estimate the function

Gi(x, )| < 7(‘“‘5) CO:ffgé()@ +x¢) ’ N ‘A(C) Cosefffé)@ — x§) Ddé
0

+o0 +o00
A(%) A
< —_— .
- / e—1G1(%) dé + / et G1(¢) dg
0 0
The integrals on the right-hand side in the latter expression converge as the partial
case of the integrals (18) for any ¢ € [0, T|. Thus, we have shown that G;(x,t) € L1(R) for
—+o00
any t € [0, T], which means that the function [ G¢(tt, t)ug(xg — t7)dT exists in the area D.

—00

Thus, for t — 0+, the estimate

—+o00
/ Gi(tt, Hug(xg — tT)dt| < €

—00

t
|ue(x0, )| = ‘271
is satisfied for any arbitrarily small number & > 0. This implies the fulfillment of the second

relation in (33). Thus, the theorem is proved.
O
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