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Abstract: Numerous three-step methods of high convergence order have been developed to produce
sequences approximating solutions of equations usually defined on the Euclidean space with a finite
dimension. The local convergence order is determined by Taylor expansions requiring the existence
of derivatives that are not present on the methods. The more interesting semi-local convergence
analysis for these methods has not been considered before. The semi-local is also provided based on
generalized ω-continuity conditions on the derivative of the operator involved and the majorizing
sequences, thus limiting their usage to only solving equations with operators that are many times
differentiable. However, these methods may convergence to a solution of the equation even if these
high-order derivatives do not exist. That is why a methodology is utilized on two sixth convergence
order methods and in the more general setting of a Banach space. This time, the convergence depends
only on the operators and the first derivative on the method. Therefore, by this methodology the
applicability of the methods is in the extended area. Although this methodology is demonstrated on
two competing and efficient methods, it can also be utilized for the same reasons on other methods
involving inverses of operators that are linear. This is the motivation and novelty of the paper. The
numerical applications further validate the theoretical results both in the local as well as the semi-local
convergence case.

Keywords: three-step method; banach space; convergence order
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1. Introduction

In this paper, we are concerned with the problem of approximating a solution x∗ of
the nonlinear equation

F(x) = 0. (1)

Here, F : Ω ⊂ B0 → B stands for a differentiable operator in the Fréchet sense, B0
and B denote Banach spaces, and Ω 6= φ is a convex and open set. The analytical form
of the solution x∗ is possible only in some special cases. That is why researchers resort
to the development of iterative methods generating a sequence convergent to x∗ under
some conditions on the initial data. A popular example of one such method is Newton’s
method [1–5]. However, the convergence order of this method is two. In order to increase
the order of convergence of Newton’s method, a plethora of single and multi-step methods
have been developed [6–11].

In particular, we study the three-step methods of convergence order six proposed by
Sharma and Parhi [9] and Behl et al. [12], which are given below, respectively:
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yn = xn − F′(xn)
−1F(xn)

zn = xn − 2
(

F′(xn) + F′(yn)
)−1

F(xn)

xn+1 = zn −
(

7
2

I − 4F′(xn)
−1F′(yn) +

3
2

(
F′(xn)

−1F′(yn)
)2
)

F′(xn)
−1F(zn),

(2)

yn = xn −
2
3

F′(xn)
−1F(xn)

zn = xn −
(

5
8

I +
3
8

(
F′(yn)

−1F′(xn)
)2
)

F′(xn)
−1F(xn),

xn+1 = zn − 2a−1
n

(
F′(xn) + αF′(yn)

)
F′(xn)

−1F(zn),

(3)

where
an = −3(1 + α)F′(xn) + (5α + 3)F′(yn), α ∈ R.

Notice that both methods (2) and (3) are adopting the same number of functional
evaluations, e.g. two functions, two first derivatives, and two linear operator inversions.
The motivation for writing this paper: the convergence order was shown in [12] using the
seventh-order derivatives that do not appear in the method, thus limiting the applicability
in the special case when B0 = B = Rm.

As a motivational and simple example, define the function F on B0 = B = R,
Ω = [− 1

π , 2
π ] by

F(τ) =
{

2τ5 − 3τ4 + 6τ3 log t, τ 6= 0
0, x = 0

.

Then, the first three derivatives are

F′(τ) = 10τ4 − 12τ3 + 6τ2 + 18τ2 log(τ),

F′′(τ) = 40τ3 − 36τ2 + 30τ + 36τ log(τ),

and

F′′′(τ) = 120τ2 − 72τ + 36 log(τ) + 66.

Then, one can easily find that the function F′′′(τ) is unbounded on Ω at the point τ = 0.
Hence, the local convergence results in [12] cannot show the convergence of methods (2)
and (3) or their special cases utilizing hypotheses on the seventh derivative of function F
or higher. However, these derivatives are not on the methods (2) and (3). There are other
problems with the study of these methods. As an example, there are no computable error
estimates on the distances ‖x∗ − xn‖ that can be determined. Moreover, there are no results
concerning the uniqueness of the solution ball. Notice that, in-particular, there is a plethora
of iterative methods for approximating the solutions of nonlinear equations [13–17], which
cause the same concerns.

The novelty of the paper: we address these concerns in the more general setting of
Banach spaces. In particular, the applicability of methods (2) and (3) is extended using only
the first derivative, which appears on these methods. Moreover, the computational order
of convergence (COC) [6] or approximate computational order of convergence (ACOC) [6]
are used for the derivation of the convergence order. These computational orders are found
using only the operator F′, which only appears on the methods. Furthermore, the upper
bounds on the distances are provided based on ω-continuity conditions. The uniqueness of
the solution ball is also determined.

Our technique can be utilized to extend the usage of other methods of linear operators
analogously [18–22]. That will be the topic of future research.

We present the local convergence analysis in Sections 2 and 3. The application in
Section 4 validates the theoretical study. The conclusions can be seen in the concluding
Section 5.
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2. Local Analysis

In this section, the local convergence analysis utilizes real parameters and functions.
Set A = [0, ∞).

Suppose equation
∆0(τ)− 1 = 0 (4)

has a minimal solution R0 ∈ A− {0} for some non-decreasing and continuous function
∆0 : A→ A. Set A0 = [0, R0).

Suppose equation
g1(τ)− 1 = 0 (5)

has a minimal solution ρ1 ∈ A0 − {0} for some non-decreasing and continuous functions
∆ : A0 → A, where g1 : A0 → A is defined by

g1(τ) =

∫ 1
0 ∆
(
(1− θ)τ

)
dθ

1− ∆0(τ)
.

Suppose equation
p(τ)− 1 = 0 (6)

has a minimal solution R1 ∈ A0 − {0}, where p : A0 → A is defined by

p(τ) =
1
2

[
∆0(τ) + ∆0

(
g1(τ)τ

)]
.

Set R2 = min{R0, R1} and A1 = [0, R2).
Suppose equation

g2(τ)− 1 = 0 (7)

has a minimal solution ρ2 ∈ A1 − {0}, where g2 : A1 → A is defined by

g2(τ) = g1(τ) +

(
∆0(τ) + ∆0

(
g1(τ)τ

)) ∫ 1
0 ∆1(θτ)dθ

2
(

1− ∆0(τ)
)(

1− p(τ)
) .

Suppose equation

∆0

(
g2(τ)τ

)
− 1 = 0 (8)

has a minimal solution R3 ∈ A1 − {0}.
Set R = min{R2, R3} and A2 = [0, R).
Suppose equation

g3(τ)− 1 = 0 (9)

has minimal solution ρ3 ∈ A2 − {0}, where
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g3(τ) =

g1(g2(τ)τ) +

(
∆0(τ) + ∆0

(
g2(τ)τ

)) ∫ 1
0 ∆1(θg2(τ)τ)dθ(

1− ∆0(τ)
)(

1− ∆0(g2(τ)τ)
)

+
1
2

3

∆0(τ) + ∆0

(
g1(τ)τ

)
1− ∆0(τ)


2

+

∆0(τ) + ∆0

(
g1(τ)τ

)
1− ∆0(τ)




×

∫ 1
0 ∆1

(
θg2(τ)τ

)
dθ

1− ∆0(τ)

g2(τ).

Next, we prove
ρ = min{ρi}, i = 1, 2, 3, (10)

is a possible convergence radius of method (2).
Set T = [0, ρ). It follows by (10) that for each τ ∈ T,

0 ≤ ∆0(τ) < 1, (11)

0 ≤ ∆0(g1(τ)τ) < 1, (12)

0 ≤ ∆0(g2(τ)τ) < 1, (13)

0 ≤ p(τ) < 1 (14)

and
0 ≤ gi(τ) < 1. (15)

We shall use the notations U(x∗, δ), Ū(x∗, δ) for the open ball in and its closure, respectively.
The main local result uses conditions (H) with the “w” functions as previously defined.

Assume:

(H1) F : Ω → B is differentiable and x∗ is a solution of the Equation (1), such that
F′(x∗)−1 ∈ `(B,B0).

(H2)
∥∥∥F′(x∗)−1

(
F′(x)− F′(x∗)

)∥∥∥ ≤ ∆0(‖x− x∗‖) for each x ∈ Ω. Set Ω0 = Ω∩U(x∗, R0).

(H3)
∥∥∥F′(x∗)−1

(
F′(x)− F′(y)

)∥∥∥ ≤ ∆(‖x− y‖) and
∥∥F′(x∗)−1F′(x)

∥∥ ≤ ∆1(‖x− x∗‖) for
each x, y ∈ Ω0.

(H4) Ū(x∗, ρ) ⊂ Ω for some ρ∗ to be determined and
(H5) β ≥ ρ exist, satisfying ∫ 1

0
∆0(θβ)dθ < 1.

Set Ω1 = Ω ∩ Ū(x∗, β).
The main local convergence result follows next using the preceding notations with the

conditions (H).

Theorem 1. Under the conditions (H1)–(H5) for ρ∗ = ρ, further pick the starting point x0 ∈
U(x∗, ρ)− {x∗}. Then, the following hold for method (2):

{xn} ⊂ U(x∗, ρ), lim
n→∞

xn = x∗, (16)

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ, (17)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (18)

‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (19)
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with the radius ρ defined by (10) and function gi as defined previously. Moreover, the only solution
of Equation (1) in the set Ω1 is x∗.

Proof. Estimations (16)–(19) are shown by induction on integer k. By (H1), (H2), (10), (11),
and c ∈ U(x∗, ρ) ∥∥∥F′(x∗)−1

(
F′(c)− F(x∗)

)∥∥∥ ≤∆0(‖c− x∗‖)

≤∆0(ρ) < 1.
(20)

Using (20) and the lemma due to Banach on linear invertible operators [2,4,13], we
deduce F′(c)−1F′(x∗) ∈ `(B,B0), and∥∥∥F′(c)−1F(x∗)

∥∥∥ ≤ 1
∆0(‖c− x∗‖)

. (21)

We also have by (21) (for c = x0) and method (2) for n = 0 that y0 exists, and we
can write

y0 − x∗ =x0 − x∗ − F′(x0)
−1F(x0)

=
(

F′(x0)
−1F′(x∗)

)[∫ 1

0
F′(x0)

−1
(

F′(x∗ + θ(x0 − x∗))− F′(x0)
)

dθ(x0 − x∗)
] (22)

Using (10), (15) (for i = 1), (21) (for c = x0), (H3), and (22), we obtain

‖y0 − x∗‖ =

∫ 1
0 ∆
(
(1− θ)‖x0 − x∗‖

)
dθ‖x0 − x∗‖

1− ∆0(‖x0 − x∗‖)
≤g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ,

(23)

proving that the iterate y0 ∈ U(x∗, ρ) and (17) for n = 0. The linear operator
(

F′(x0) +

F′(y0)
)−1
∈ `(B,B0).

Indeed, using (10), (14), (H2), and (23), we have in turn that∥∥∥∥(2F′(x∗)
)−1[(

F′(x0)− F′(x∗)
)
+
(

F′(y0)− F′(x∗)
)]∥∥∥∥

≤ 1
2

[∥∥∥F′(x∗)−1
(

F′(x0)− F′(x∗)
)∥∥∥+ ∥∥∥F′(x∗)−1

(
F′(y0)− F′(x∗)

)∥∥∥]
≤ p(‖x0 − x∗‖) ≤ p(ρ) < 1.

(24)

Thus, we obtain∥∥∥∥(F′(x0) + F′(y0)
)−1

F′(x∗)
∥∥∥∥ ≤ 1

2
(

1− p(‖x0 − x∗‖)
) . (25)

Then, the iterate z0 exists, and we can write

z0 − x∗ =x0 − x∗ − F′(x0)
−1F(x0) +

[
F′(x0)

−1 − 2
(

F′(x0) + F′(y0)
)−1]

F(x0)

= x0 − x∗ − F′(x0)
−1F(x0)

+ F′(x0)
−1
(

F′(y0)− F′(x0)
)(

F′(x0) + F′(y0)
)−1

F(x0).

(26)
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Using (10), (15) (for i = 2 ), (21) (for c = x0), (23), (25) and (26), we have

‖z0 − x∗‖ ≤

g1(‖x0 − x∗‖) +

(
∆0(‖x0 − x∗‖) + ∆0(‖y0 − x∗‖)

) ∫ 1
0 ∆1

(
θ‖x0 − x∗‖

)
dθ

2
(

1− ∆0(‖x0 − x∗‖)
)(

1− p(‖x0 − x∗‖)
)

‖x0 − x∗‖

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖,

(27)

proving that the iterate z0 ∈ U(x∗, ρ) and (18) for n = 0.
Notice that x1 is well defined by the third substep of the method (2), and F′(z0)

−1 ∈
`(B,B0) by (21) for c = z0.

Moreover, the third substep of the method (2) gives

x1 − x∗ = z0 − x∗ − F′(z0)
−1F(z0) +

(
F′(z0)

−1 − F′(x0)
−1
)

F(z0)

− 1
2

[
5I − 8F′(x0)

−1F′(y0) + 3
(

F′(x0)
−1F′(y0)

)2
]

F′(x0)
−1F(z0)

= z0 − x∗ − F′(z0)
−1F(z0) + F′(z0)

−1
(

F′(x0)− F′(z0)
)

F′(x0)
−1F(z0)

− 1
2

[
3
(

F′(x0)
−1
(

F′(y0)− F′(x0)
))2
− 2F′(x0)

−1
(

F′(y0)− F′(x0)
)]

F′(x0)
−1F(z0).

(28)

In view of (10), (15) (for i = 3), (21) (for c = x0, z0), (23), (27) and (28), we obtain

‖x1 − x∗‖ =
[

g1(‖z0 − x∗‖) +

(
∆0(‖z0 − x∗‖) + ∆0(‖x0 − x∗‖)

) ∫ 1
0 ∆1(θ‖z0 − x∗‖)dθ(

1− ∆0(‖z0 − x∗‖)
)(

1− ∆0(‖x0 − x∗‖)
)

+
1
2

(
3
(

∆0(‖x0 − x∗‖) + ∆0(‖y0 − x∗‖)
1− ∆0(‖x0 − x∗‖)

)2

+2
(

∆0(‖x0 − x∗‖) + ∆0(‖y0 − x∗‖)
1− ∆0(‖x0 − x∗‖)

))
×

∫ 1
0 ∆1

(
θ‖z0 − x∗‖

)
dθ

1− ∆0(‖x0 − x∗‖)

‖z0 − x∗‖

≤g3(‖x0 − x∗‖)‖x0 − x∗‖‖x0 − x∗‖ ≤ ‖x0 − x∗‖,

(29)

proving that the iterate x1 ∈ U(x∗, ρ) and (19) for n = 0.
Simply, switch xk, yk, zk, xk+1 with x0, y0, z0, x1 in the preceding calculations; we termi-

nate the induction for estimations (16)–(19). It then follows by the calculation

‖xk+1 − x∗‖ ≤ ξ‖xk − x∗‖ < ρ, (30)

where c = g3(‖x0 − x∗‖) ∈ [0, 1) that xk+1 ∈ U(x∗, ρ), and lim
k→∞

xk = x∗. Set

M =
∫ 1

0 F′
(

x∗ + θ(v− x∗)
)

dθ. Then, by (H2) and (H5)

∥∥∥F′(x∗)−1
(

M− F′(x∗)
)∥∥∥ ≤ ∫ 1

0
∆0

(
θ‖v− x∗‖

)
dθ

≤
∫ 1

0
∆0(θβ)dθ < 1.

Therefore, it follows that v = x∗ is concluded from the identity 0 = F(v) = F(x∗) =
M(v− x∗) and the invertability of linear operator M.
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Remark 1. Next, the local convergence analysis is developed for method (3) in an analogous way.
This time, the functions ḡi are defined (for α 6= −1), respectively, by

ḡ1(τ) =

∫ 1
0 ∆
(
(1− θ)τ

)
dθ + 1

3

∫ 1
0 ∆1(θτ)dθ

1− ∆0(τ)
,

ḡ2(τ) =g1(τ) +
3
8

(
∆0(ḡ1(τ)τ) + ∆0(τ)

)(
2 + ∆0(τ) + ∆0(ḡ1(τ)τ)

) ∫ 1
0 ∆1(θτ)dθ(

1− ∆0(ḡ1(τ)τ)
)2(

1− ∆0(τ)
) ,

ḡ3(τ) =g1

(
ḡ2(τ)

)
+

(
∆0(τ) + ∆0(ḡ2(τ)τ)

) ∫ 1
0 ∆1

(
θ ḡ2(τ)τ

)
dθ(

1− ∆0(τ)
)(

1− ∆0(ḡ2(τ)τ)
)

+

3|1 + α|
(

∆0(τ) + ∆0

(
ḡ2(τ)τ

)) ∫ 1
0 ∆1

(
θ ḡ2(τ)τ

)
dθ

2|1 + α|
(

1− q(τ)
)(

1− ∆0(τ)
) ,

where q(τ) = 1
2|1+α|

[
|1+ 3α|∆0(τ)+ |5α+ 3|∆0

(
ḡ1(τ)τ

)]
and ρ̄i are the least positive solutions

of the equations (assuming that they exist),

ḡi(τ)− 1 = 0.

Set ρ = min{ρ̄i}. We need the estimates

y0 − x∗ = x0 − x∗ − F′(x0)
−1F(x0) +

1
3

F′(x0)
−1F(x0),

so

‖y0 − x∗‖ =

[∫ 1
0 ∆
(
(1− θ)‖x0 − x∗‖

)
dθ + 1

3

∫ 1
0 ∆1(θ‖x0 − x∗‖)dθ

]
‖x0 − x∗‖

1− ∆0(‖x0 − x∗‖)
≤ḡ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ρ̄,

z0 − x∗ =x0 − x∗ − F′(x0)
−1F(x0)−

[
−3

8
I +

(
F′(y0)

−1F′(x0)
)2
]

F′(x0)
−1F(x0)

= x0 − x∗ − F′(x0)
−1F(x0)

+
3
8

(
I − F′(y0)

−1F′(x0)
)(

I + F′(y0)
−1F′(x0)

)
F′(x0)

−1F(x0)

= x0 − x∗ − F′(x0)
−1F(x0)

+
3
8

F′(y0)
−1
(

F′(y0)− F′(x0)
)

F′(y0)
−1

[(
F′(y0)− F′(x∗)

)
+
(

F′(x0)− F′(x∗)
)
+ 2F′(x∗)

]
F′(x0)

−1F(x0).

Hence, we attain
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‖z0 − x∗‖ =
[

g1(‖x0 − x∗‖)

+
3
8

(
∆0(‖y0 − x∗‖) + ∆0(‖x0 − x∗‖)

)(
2 + ∆0(‖x0 − x∗‖) + ∆0(‖y0 − x∗‖)

)
(

1− ∆0(‖y0 − x∗‖)
)2(

1− ∆0(‖x0 − x∗‖)
)

×
∫ 1

0
∆1(θ‖x0 − x∗‖)dθ

]
‖x0 − x∗‖,

≤ḡ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖,

and

x1 − x∗ =z0 − x∗ − F′(z0)
−1F(z0) +

(
F′(z0)

−1 − F′(x0)
−1
)

F(z0)

+
[

I − 2a−1
0

(
F′(x0) + αF′(y0)

)]
F′(x0)

−1F(z0)

=
(

z0 − x∗ − F′(z0)
−1F(z0)

)
+ F′(z0)

−1
(

F′(x0)− F′(z0)
)

F′(x0)
−1F(z0)

+ a−1
0

[
a0 − 2

(
F′(x0) + αF′(y0)

)]
F′(x0)

−1F(z0),

which further yields

‖x1 − x∗‖ =
[

g1(‖z0 − x∗‖)

+

(
∆0(‖x0 − x∗‖) + ∆0(‖z0 − x∗‖)

) ∫ 1
0 ∆1

(
θ‖z0 − x∗‖

)
dθ(

1− ∆0(‖x0 − x∗‖)
)(

1− ∆0(‖z0 − x∗‖)
)

+

(
|4 + 3α|∆0(‖x0 − x∗‖) + |4α + 3|∆0(‖y0 − x∗‖) + 7|1 + α|

)
2|α|

(
1− q(‖x0 − x∗‖)

)(
1− ∆0(‖x0 − x∗‖)

)
×
∫ 1

0
∆1

(
θ‖z0 − x∗‖

)
dθ

]
‖z0 − x∗‖,

≤ ḡ3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖,

where we also used∥∥∥∥(2(1 + α)F′(x∗)
)−1(

a0 − 2(1 + α)F′(x∗)
)∥∥∥∥ =

1
2|1 + α|

[
|1 + 3α|

∥∥∥F′(x∗)−1
(

F′(x0)− F′(x∗)
)∥∥∥

+ |5α + 3|
∥∥∥F′(x∗)−1

(
F′(y0)− F′(x∗)

)∥∥∥]
≤q(‖x0 − x∗‖) < q(ρ̄) < 1,

Therefore, we obtain∥∥∥a−1
0 F′(x∗)

∥∥∥ ≤ 1

2|1 + α|
(

1− q(‖x0 − x∗‖)
) .

Hence, we arrived at the corresponding local result for method (3).

Theorem 2. Under the conditions (H) for ρ∗ = ρ̄, further pick the starting point x0 ∈ U(x∗, ρ)−
{x∗}. Then, the conclusions of Theorem 1 hold with ρ̄ and ḡi being replaced by ρ and gi, respectively.
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3. Semi-Local Analysis

The idea of a majorizing sequence is applied to first show the convergence of the
method (2). Let d ≥ 0 be a given parameter. Define the sequences {an}, {bn}, and {cn} as
follows for each n = 0, 1, 2, . . . , a0, b0 = d,

cn =bn +
∆̄n(bn − an)

2(1− p(an))
,

an+1 =cn +
1
2

[
6
(

∆̄n

1− ∆0(an)

)2

+
4∆̄n

1− ∆0(an)
+ 5

]
δn

1− ∆0(an)
,

bn+1 =an+1 +
δ1

n+1
1− ∆0(an+1)

,

(31)

where p(an) =
1
2

(
∆0(an) + ∆0(bn)

)
,

∆̄n =


∆0(an) + ∆0(bn)

or

∆(bn − an),

δn =
(

1 +
∫ 1

0
∆0

(
θ(cn − an)

))
(cn − an) +

(
1 + ∆0(an)

)
(bn − an)

and

δ1
n+1 =

∫ 1

0
∆0

(
(1− θ)(an+1 − a)

)
(an+1 − an) +

(
1 + ∆0(an)

)
(an+1 − bn),

where the functions “w” have the same properties as the “∆” functions in the semi-local. A
general sufficient convergence result is useful.

Lemma 1. Suppose that for each n = 0, 1, 2, . . . ,

p(an) < 1, ∆0(an) < 1 and an ≤ β, (32)

for some parameter β ≥ 0. Then, the sequence {an} produced by the formula (31) is non-decreasingly
convergent to some a∗ ∈ [0, β].

Proof. The definition (31) and the conditions (32) imply the conclusion. In particular, a∗ is
the least upper bound of the sequence {an}, which is unique.

A relationship is provided between the scalar function and operator F′.
Suppose:

(E1) That an element x0 ∈ Ω and a parameter d ≥ exist so that F′(x0)
−1 ∈ `(B,B0) and∥∥F′(x0)

−1F(x0)
∥∥ ≤ d.

(E2)
∥∥∥F′(x0)

−1
(

F′(y)− F′(x0)
)∥∥∥ ≤ ∆0(‖y− x0‖) for each y ∈ Ω.

(E3) The equation ∆0(t) − 1 = 0 has a minimal positive solution denoted by h. Set
Ω2 = U(x0, h) ∩Ω.

(E4)
∥∥∥F′(x0)

−1
(

F′(y)− F′(ȳ)
)∥∥∥ ≤ ∆(‖y− ȳ‖) for each y, ȳ ∈ Ω2.

(E5) Condition (32) holds,
and

(E6) U(x0, a∗) ⊂ Ω for some parameter t̄∗ with 0 ≤ t̄∗ ≤ h.

Some Ostrowski-like representations for method (2) are useful.
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Lemma 2. Suppose that the iterates of the method (2) exist for each n = 0, 1, 2, · · · . Then, the
following items hold:

zn − yn =
(

F′(xn) + F′(yn)
)−1(

F′(yn)− F′(xn)
)
(yn − xn), (33)

xn+1 − zn =
1
2

[(
I − F′(xn)

−1F′(yn)
)2
− 4(I − F′(xn)

−1F′(yn)
)
+ 5I

]
F′(xn)

−1F(zn), (34)

F(zn) =
∫ 1

0
F′
(

xn + θ(zn − xn)
)

dθ(zn − xn)− F′(xn)(yn − xn) (35)

and

F(zn) =
∫ 1

0

(
F′
(

xn + θ(xn+1 − xn)
)
− F′(xn)

)
dθ(xn+1 − xn) + F′(xn)(xn+1 − yn). (36)

Proof. In view of the first two substeps of the method (2), we have in turn that

zn − yn =

(
F′(xn)

−1 − 2
(

F′(xn) + F′(yn)
)−1

)
F(xn)

=
(

F′(xn) + F′(yn)
)−1

(
2F′(xn)−

(
F′(xn) + F′(yn)

))
F′(xn)

−1F(xn)

=
(

F′(xn) + F′(yn)
)−1(

F′(yn)− F′(xn)
)
(yn − xn),

proving identity (33). Moreover, item (34) follows from the third substep of method (2).
Furthermore, we can write

F(zn) =F(zn)− F(xn) + F(xn)

=
∫ 1

0
F′
(

xn + θ(zn − xn)
)

dθ(zn − xn)− F′(xn)(yn − xn).

Finally, from the first substep of the method (2), we have

F(xn+1) =F(xn+1)− F(xn)− F′(xn)(yn − xn)

=F(xn+1)− F(xn)− F′(xn)(xn+1 − xn) + F′(xn)(xn+1 − yn)

=
∫ 1

0

(
F′
(

xn + θ(xn+1 − xn)
)

dθ − F′(xn)

)
(xn+1 − xn) + F′(xn)(xn+1 − xn).

This ends the proof.

We can prove the semi-local convergence for method (2), with the assistance of condi-
tions (E1)–(E5) and Lemma 2.

Theorem 3. Suppose that the conditions (E1)–(E5) hold for t̄∗ = a∗. Then, there exists x∗ ∈
U[x0, a∗], which solves the equation F(x) = 0.
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Proof. Condition (E1) and (31) give

‖y0 − x0‖ =
∥∥∥F′(x0)

−1F(x0)
∥∥∥ ≤ d = b0 − a0 = b0 ≤ a∗,

proving that y0 ∈ U[x0, a∗]. As in Theorem 1, we obtain by (E2), (E3), and (33) that

‖zn − yn‖ ≤
∥∥∥∥(F′(xn) + F′(yn)

)−1
F′(x0)

∥∥∥∥∥∥∥F′(x0)
−1
(

F′(yn)− F′(xn)
)∥∥∥‖yn − xn‖

=
∆̄n‖yn − xn‖
2
(

1− p(an)
) ≤ ∆̄n(bn − an)

2
(

1− p(an)
) = cn − bn,

and
‖zn − x0‖ ≤ ‖zn − yn‖+ ‖yn − x0‖ ≤ cn − bn + bn − a0 = cn ≤ a∗.

Then, by the third substep of the method (2), (E2), (34), and (35), we have in turn that

‖xn+1 − zn‖ =
1
2

∥∥∥∥[6(I − F′(xn)
−1F′(yn)

)2
− 4
(

I − F′(xn)
−1F′(yn)

)
+ 5I

]∥∥∥∥
×
∥∥∥F′(xn)

−1F(zn)
∥∥∥

≤1
2

[
6
(

∆̄n

1− ∆0(an)

)2

+ 4
(

∆̄n

1− ∆0(an)

)
+ 5

]
δn

1− ∆0(an)

=an+1 − cn,

and

‖xn+1 − x0‖ =‖xn+1 − zn‖+ ‖zn − x0‖ ≤ an+1 − cn + cn − a0 = an+1 ≤ a∗,

where

∆̄n =

{
∆0(an) + ∆0(bn)

w(bn − an).

Then, by (36) and the first substep of the method (2), we obtain

‖yn+1 − xn+1‖ =
∥∥∥F′(xn+1)

−1F′(x0)
∥∥∥∥∥∥F′(x0)

−1F′(xn+1)
∥∥∥

≤

∫ 1
0 ∆
(
(1− θ)‖xn+1 − xn‖

)
dθ‖xn+1 − xn‖+

(
1 + ∆0(‖xn − x0‖)

)
‖xn+1 − yn‖

1− ∆0(‖xn+1 − x0‖)

≤

∫ 1
0 ∆
(
(1− θ)(an+1 − an)

)
dθ(an+1 − an) +

(
1 + ∆0(an)

)
(an+1 − bn)

1− ∆0(an+1)

=bn+1 − an+1,

and
‖yn+1 − x0‖ =‖yn+1 − xn+1‖+ ‖xn+1 − x0‖

≤bn+1 − an+1 + an+1 − a0

=bn+1 ≤ a∗.

Thus, the iterates {xn}, {yn}, and {zn} belong in U[x0, a∗] and are fundamental since
{an} is also fundamental as convergent. It follows that x∗ ∈ U[x0, a∗] exists such that
lim

n→∞
xn = x∗. Finally, if n→ ∞ the calculation

∥∥F′(x0)
−1F(xn+1)

∥∥ ≤ δ1
n+1 gives F(x∗) = 0

(by the continuity of F).

A uniqueness domain for the solution results follows.
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Proposition 1. Suppose:

(i) ρ3 ≥ 0 and y∗ ∈ U[x0, ρ3) exist such that F(y∗) = 0.
(ii) Condition (E2) holds on the ball U[x0, ρ3),

and
(iii) ρ4 ≥ ρ3 exists such that

∫ 1

0
∆0

(
(1− θ)ρ3 + θρ4

)
dθ < 1.

Set Ω3 = U[x0, ρ4] ∩Ω. Then, the equation F(x) = 0 is uniquely solvable by y∗ in the
region Ω3.

Proof. Let y0
∗ ∈ Ω3 with F(y0

∗) = 0. Define the linear operator L by L =
∫ 1

0 F′
(

y∗ + θ(y0
∗ −

y∗)
)

dθ. Then, we obtain by (ii) and (iii)

∥∥∥F′(x0)
−1
(

L− F′(x0)
)∥∥∥ ≤∥∥∥∥∫ 1

0
∆0

(
(1− θ)‖‖y∗ − x0‖+ θ‖‖y0

∗ − x0‖
)

dθ

∥∥∥∥
≤
∫ 1

0
∆0

(
(1− θ)‖ρ3 + θρ4

)
dθ < 1

So, L−1 ∈ `(B,B0) and consequently y0
∗ − y∗.

Remark 2. The conditions (E1)–(E2) are not used in Proposition 1. However, if all of the conditions
(E1)–(E2) are used, one can set y∗ = x∗ and ρ3 = a∗.

The corresponding majorizing sequence for method (3) is defined for each
n = 0, 1, 2, · · · , a0 = 0, b0 = d as

cn =bn +
1
24

[
8 + 9

(
∆̄n

1− ∆0(bn)

)(
2 +

∆̄n

1− ∆0(bn)

)]
(bn − an),

δ2
n =

(
1 +

∫ 1

0
∆0

(
θ(cn − an)

)
dθ

)
(cn − an) +

(
1 + ∆0(an)

)
(bn − an),

an+1 =cn +

(
1 + |α|∆0(an) + |α|∆0(bn)

)
δ2

n(
1− ∆0(an)

)(
1− q̄(an)

) ,

q̄n =
1

2|α + 1|

(
|1 + 3α|∆0(an) + |5α + 3|∆0(bn)

)
,

δ3
n =

(
1 +

∫ 1

0
∆0

(
an + θ(an+1 − an)

)
dθ

)
(an+1 − an) +

3
2

(
1 + ∆0(an)

)
(bn − an)

and

bn+1 =an+1 +
δ3

n+1
1− ∆0(an+1)

.

Lemma 3. Suppose that for each n = 0, 1, 2, · · · , q(an) < 1, ∆0(an) < 1 and an ≤ β for some
β > 0. Then, the sequence {an} is non-decreasingly convergent to its unique least upper bound
a1
∗ ∈ [0, β].

Proof. It follows immediately as in Lemma 1.
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As in the proof of Theorem 1, Lemma 2, and the Theorem 3 by assuming that the
iterates {xn}, {yn}, and {zn} exist, we have in turn by the substeps two, three, and one that

zn − yn =
1
24

[
9
(

I − F′(yn)
−1F′(xn)

)2
− 18

(
F′(yn)

−1F′(xn)− I
)
− 8I

]
F′(xn)

−1F(xn)

xn+1 − yn =− 2
(
− 3(1 + α)F′(xn) + (5α + 3)F′(yn)

)−1(
F′(xn) + αF′(yn)

)
F′(xn)

−1F(zn)

and

F(xn+1) =F(xn+1)− F(xn)−
3
2

F′(xn)(yn − xn)

=
∫ 1

0
F′
(

xn + θ(xn+1 − xn)
)

dθ(xn+1 − xn)−
3
2

F′(xn)(yn − xn).

Thus, we can prove the corresponding semi-local convergence result for method (3).

Theorem 4. Under the conditions (E1)–(E5) for t̄∗ = a1
∗, the conclusions of the Theorem 3 hold

but for the method (3).

Proof. It follows by the preceding identities and the proofs of the method (2) and
Theorem 3 that

‖zn − yn‖ =cn − bn,

‖xn+1 − yn‖ =an+1 − cn,

‖yn+1 − xn+1‖ =bn+1 − an+1

and that all of the iterates belong in the ball U[x0, a1
∗].

The rest follows as in the proof of the Theorem 3.

The uniqueness of the solution x∗ is already given in the Proposition 1.

4. Numerical Examples

Computational results are developed based on the suggested theoretical results in
this work. We select three applied science problems 2 and 4 for the computational re-
sults. The corresponding results are listed in the Tables. Additionally, we obtain the COC
approximated by means of

λ =
ln ‖xm+1−x∗‖

|xm−x∗‖

ln ‖xm−x∗‖
‖xm−1−x∗‖

, for m = 1, 2, . . . (37)

or ACOC [6,7] by:

λ∗ =
ln ‖xm+1−xm‖
‖xm−xm−1‖

ln ‖xm−xm−1‖
‖xm−1−xm−2‖

, for m = 2, 3, . . . (38)

In addition, we adopt ε = 10−100 as the error tolerance and the terminating cri-
teria to the solve nonlinear system or the scalar equations (i) ‖xm+1 − xm‖ < ε, and
(ii) ‖F(xm)‖ < ε .

The computations are performed with the package of Mathematica 11 and multiple
precision arithmetic.

Example 1. Let Ω = U[0, 1] and B0 = B = C[0, 1]. Consider the nonlinear integral equation of
the first kind of Hammerstein operator H, which is defined by

H(v)(x) = v(x)− 7
∫ 1

0
xλv(λ)3dλ.
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The calculation for the derivative gives

H′
(

v(q)
)
(x) = q(x)− 21

∫ 1

0
xλv(λ)2q(λ)dλ,

for q ∈ C[0, 1]. By this value of the operator H′, the conditions (E1)–(E4) are verified so that
we choose

∆0(τ) = 10.5τ, ∆1(τ) = 1 + 10.5τ and ∆(τ) = 21τ.

In Tables 1 and 2, we present radii for methods (2) and (3), respectively, for example (1).

Table 1. Radii of method (2) for example (1).

R0 R1 R3 R ρ1 ρ2 ρ3 ρ

0.095238 0.063492 0.042254 0.042254 0.047619 0.030544 0.023638 0.023638

Table 2. Radii of method (3) for example (1).

α ρ̄1 ρ̄2 ρ̄3 ρ

0.5 0.029304 0.015727 0.018479 0.015727
1 0.029304 0.015727 0.018117 0.015727
3 0.029304 0.015727 0.017548 0.015727

Example 2. Let Ω = U[0, 1] and B0 = B = R3. Then, for w = (w1, w2, w3)
T as

T(w) ==

(
w1, ew2 − 1,

e− 1
2

w2
3 + w3

)T
. (39)

It follows by this definition that the derivative T′ is

F′(u) =

1 0 0
0 ew2 0
0 0 (e− 1)w3 + 1

.

Notice also that x∗ = (0, 0, 0)T . Consequently, F′(x∗) = F′(x∗)−1 = diag{1, 1, 1} = I.
By plugging the values of T′ in the conditions (E1)–(E4), we see that

∆0(τ) = (e− 1)τ, h =
1

e− 1
, Ω2 = U(0, h) ∩U(0, 1) = U(0, h),

∆(τ) = e
1

e−1 τ, and ∆1(τ) = e
1

e−1 .

In Tables 3 and 4, we present radii for methods (2) and (3), respectively, for example (2).
Further, in Table 5, we present a number of iterations and the convergence order of example (1).

Table 3. Radii of method (2) for example (2).

R0 R1 R3 R ρ1 ρ2 ρ3 ρ

0.58198 0.44149 0.270369 0.270369 0.38269 0.19655 0.13665 0.13665

Table 4. Radii of method (3) for example (2).

α ρ̄1 ρ̄2 ρ̄3 ρ

0.5 0.15441 0.053865 0.082356 0.053865
1 0.15441 0.053865 0.081149 0.053865
3 0.15441 0.053865 0.079279 0.053865
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Table 5. Number of iterations and convergence order of example (2).

Cases α x0 itr λ

Method (2) - (0.12, 0.12, 0.12)T 3 5.1238
Method (3) 0.5 (0.05)T 3 6.1292
Method (3) 1 (0.05, 0.05, 0.05)T 3 6.1251
Method (3) 3 (0.05, 0.05, 0.05)T 3 6.0011

Example 3. The kinematic synthesis problem for steering [8] is given as

[Ei(ν2 sin(ηi)− ν3)− Hi(ν2 sin(ϕi)− ν3)]
2 + [Hi(ν2 cos(ϕi) + 1)− Hi(ν2 cos(ηi)− 1)]2

− [ν1(ν2 sin(ηi)− ν3)(ν2 cos(ϕi) + 1)− ν1(ν2 cos(ηi)− ν3)(ν2 sin(ϕi)− ν3)]
2 = 0, for i = 1, 2, 3,

where

Ei = −ν3ν2(sin(ϕi)− sin(ϕ0))− ν1(ν2 sin(ϕi)− ν3) + ν2(cos(ϕi)− cos(ϕ0)), i = 1, 2, 3

and

Hi = −ν3ν2 sin(ηi) + (−ν2) cos(ηi) + (ν3 − ν1)ν2 sin(η0) + ν2 cos(η0) + ν1ν3, i = 1, 2, 3.

In Table 6, we present the values of ηi and ϕi (in radians).

Table 6. Values of ηi and ϕi (in radians) for example (3).

i ηi ϕi

0 1.3954170041747090114 1.7461756494150842271
1 1.7444828545735749268 2.0364691127919609051
2 2.0656234369405315689 2.2390977868265978920
3 2.4600678478912500533 2.4600678409809344550

In Table 7, we present the number of iterations and the convergence order of example (3).

Table 7. Number of iterations and convergence order of example (3).

Cases α x0 itr λ

Method (2) - (0.89, 0.68, 0.64)T 4 5.1006
Method (3) 0.5 (0.89, 0.68, 0.64)T 3 6.0535
Method (3) 1 (0.89, 0.68, 0.64)T 3 6.0091
Method (3) 3 (0.89, 0.68, 0.64)T 3 6.1154

Methods (2) and (3) converge to the approximated root (0.9051 . . . , 0.6977 . . . , 0.6508 . . . )T .

Example 4. Let us consider the Van der Pol equation [23], which is defined as follows:

y′′ − µ(y2 − 1)y′ + y = 0, µ > 0, (40)

which governs the flow of the current in a vacuum tube, with the boundary conditions y(0) = 0, y(2) = 1.
Further, we consider the partition of the given interval [0, 2], which is given by

x0 = 0 < x1 < x2 < x3 < · · · < xn, where xi = x0 + ih, h =
2
n

.

Moreover, we assume that

y0 = y(x0) = 0, y1 = y(x1), . . . , yn−1 = y(xn−1), yn = y(xn) = 1.
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If we discretize the above problem (40) by using the second-order-divided difference for the first
and second derivatives, which are given by

y′k =
yk+1 − yk−1

2h
, y′′k =

yk−1 − 2yk + yk+1

h2 , k = 1, 2, . . . , n− 1,

then, we obtain a (n− 1)× (n− 1) system of nonlinear equations

2h2xk − hµ
(

x2
k − 1

)
(xk+1 − xk−1) + 2(xk−1 + xk+1 − 2xk) = 0, k = 1, 2, . . . , n− 1.

Let us consider µ = 1
2 and n = 6 so that we can obtain a 5× 5 system of nonlinear

equations. The obtained results are depicted in Table 8.

Table 8. Number of iterations and convergence order of example (4).

Cases α x0 itr λ

Method (2) - (0.83, 1.5, 2.2, 3.1, 7.9)T 3 5.1267
Method (3) 0.5 (0.83, 1.5, 2.2, 3.1, 7.9)T 3 6.0281
Method (3) 1 (0.83, 1.5, 2.2, 3.1, 7.9)T 3 6.0404
Method (3) 3 (0.83, 1.5, 2.2, 3.1, 7.9)T 3 5.9843

Methods (2) and (3) converge to the approximated root (0.8243131 . . . , 1.516531 . . . , 2.187958 . . . , 3.123402 . . . ,
7.824242 . . . )T .

Example 5. Let us consider the following nonlinear system of nonlinear equation [19]:{
x2

j xj+1 − 1 = 0, 1 ≤ j ≤ n− 1,

x2
nx1 − 1 = 0.

(41)

In Table 9, we present the number of iterations and the convergence order of example (5) for
n = 100.

Table 9. Number of iterations and convergence order of example (5).

Cases α x0 itr λ

Method (2) - (1.1, 1.1, 1.1,
100· · ·, 1.1)T 3 6.2193

Method (3) 0.5 (1.1, 1.1, 1.1,
100· · ·, 1.1)T 3 6.1665

Method (3) 1 (1.1, 1.1, 1.1,
100· · ·, 1.1)T 3 6.1567

Method (3) 3 (1.1, 1.1, 11,
100· · ·, 1.1)T 3 6.1514

Methods (2) and (3) converge to the approximated root ξ = (1, 1, 1,
100· · ·, 1)T .

5. Conclusions

At the beginning of this paper, we provided the motivation for writing this paper by
looking at the problems that exist with the application of method (2) and method (3) and
consequently of other high convergence-order methods [24–29]. In view of these concerns,
a general methodology is introduced to extend the usage for these two efficient sixth-order
methods and in the more general setting of Banach-space-valued nonlinear equations.
The local convergence is shown under weak w–continuity conditions on the operator F′.
This is in contrast to earlier local convergence results based on at least the seventh-order
assumptions of the operator F. The more interesting semi-local convergence is also given
and based on the concept of a majorizing sequence. Such a result was not presented in [12].
The convergence order six is recovered using the formula COC or the formula ACOC. The
developed methodology does not depend on the studied methods (2) and (3). Therefore, it
can also be employed [24–29] on other single, two-step, or multi-step methods in order to
provide the same benefits. Hence, we revealed the direction of our future research topics.
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