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Abstract: Catastrophic losses induced by natural disasters are receiving growing attention because of
the severe increases in their magnitude and frequency. We first investigated the extreme tail behavior
of flood-caused economic losses and maximum point precipitation based on the peaks-over-threshold
method and point process (PP) model and its extreme tail dependence. We found that both maximum
point precipitation and direct economic losses are well-modeled by the PP approach with certain tail
dependence. These findings were further utilized to design a layered compensation insurance scheme
using estimated value-at-risk (VaR) and conditional VaR (CVaR) among all stakeholders. To diversify
the higher level of losses due to extreme precipitation, we designed a coupon paying catastrophe bond
triggered by hierarchical maximum point precipitation level, based on the mild assumption on the
independence between flood-caused risk and financial risk. The pricing sensitivity was quantitatively
analyzed in terms of the tail risk of the flood disaster and the distortion magnitude and the market
risk in Wang’s transform. Our trigger process was carefully designed using a compound Poisson
process, modeling both the frequency and the layered intensity of flood disasters. Lastly, regulations
and practical suggestions are provided regarding the flood risk prevention and warning.

Keywords: extreme value theory; peaks-over-threshold; CAT bond; point process; Vasicek model;
tail dependence; distortion measure; floods
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1. Introduction

Extreme weather events threaten human lives and cause huge financial losses. Un-
der the changing climate conditions, natural disasters might simultaneously occur, placing
a heavy burden on the healthcare system and necessitating economic reconstruction [1].
In the Asian monsoon season, the rain usually triggers floods, especially in the basin of
the largest river in China [2,3]. The historic large floods in China have caused over RMB
200 billion in losses per decade. The latest one occurred in 2021, in Zhengzhou, China,
during which 457.5 mm of precipitation fell within 24 h and caused severe flooding, and
resulting in RMB 53.2 billion in economic losses and more than RMB 6.4 billion in insurance
claims caused by damage to more than 4× 105 cars. Such severe disasters occur frequently
all over the world [2]. Despite the many advances in science and technology regarding
transferring disaster risks, extreme weather still causes great losses. To establish risk warn-
ing systems and risk diversification, it is crucial to accurately model such extreme risks
because unexpected disaster risks might cause breakdowns of healthcare systems due to
insufficient risk warning systems.

In this study, our aim was discover the extreme dependence between the severity of
floods and their direct economic losses in the framework of extreme value theory, which is
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widely applied in financial and environmental fields, see, e.g., [4–8] for application in the
study of financial crises, the super-spreading of COVID-19, and severe rainstorms. This is
implemented in two stages: the study of marginal tail performance and the investigation
of the extreme comovement through typical bivariate models. The former is conducted
through the univariate extreme value theory with the competitive point process approach
for the threshold excesses, compared with the peaks-over-threshold based generalized
Pareto models in [9]. The tail analysis of floods can assist in furthering the quantitative
analyses of risk measures and risk vulnerability ranking [10]. The tail dependence is
measured by both the upper tail dependence coefficient (UTDC) and tail quotient correla-
tion coefficient (TQCC), which confirmed the comovement of extreme precipitation and
economic losses, see, e.g., [11,12] for the study of UTDC and TQCC.

As an application of the extreme tail behavior of maximum point precipitation and direct
economic losses in Section 2, we designed a layered compensation insurance scheme following
the workflow in Figure 1 according to the estimated value-at-risk (VaR) and conditional VaR
(CVaR) in Table 3. Essentially, we extrapolated the tail behavior of the generalized Pareto
distributed economic losses to obtain the estimates of VaR and CVaR at three extreme risk
levels of α = 90%, 95%, and 97.5%. The pricing mechanism of a flooding catastrophe bond
is described in Section 3 using homogeneous compound Poisson processes. Given climate
changes and financial volatility as well as economic uncertainty [1,9,13,14], the sensitivity
of this CAT bond was analyzed via the tail index (shape parameter) of precipitation and
financial market distortion, shown in Figure 6. We provide policy makers in Section 4
with constructive suggestions for allocating abundant monetary support and flood risk
prevention among investors, reinsurers, and insurers.

Figure 1. Workflow of flooding risk management.

The remainder of this paper is organized as follows. Section 2 shows the extreme fea-
tures of maximum point precipitation and the resulting flooding economic losses. Section 3
is provides the main results and is followed by Section 4, which outlines our conclusions.
We end this paper with Appendices A and B describing all methodologies involved.

2. Data Preprocessing of Flooding Economic Losses and Precipitations

In order to study the catastrophe losses caused by flooding in various regions in
China, we collected 369 recorded provincial direct economic losses (DELs) of main flooding
events distributed throughout 31 major provinces in China from 2004 to 2019 from http:
//www.mwr.gov.cn/sj/ accessed on 1 January 2020, the official website of the Ministry
of Water Resources of the People’s Republic of China. Accordingly, 99 maximum point
precipitation values (the maximum accumulated precipitation in a particular site within
exactly 24 h) were recorded for the main rainstorms because most provincial DELs were
recorded along with the alternative precipitation indices, e.g., cumulative precipitation

http://www.mwr.gov.cn/sj/
http://www.mwr.gov.cn/sj/
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or average precipitation. Only major events were considered as the events with minor
effects were already filtered by the officials. Therefore, in the following, all risk analysis
was performed based on the data available from 2004 to 2019 after being adjusted based on
the consumer price index (CPI) of 2019.

We see from Table 1 that the average economic loss produced by the main flooding
events in China from 2004 to 2019 was RMB 2.47 billion, with a large range from RMB
0.004 billion to 54.324 billion. Figure 2 shows that both direct economic loss and maximum
point precipitation seem roughly right skewed with a certain positive association for the
bulk of the data. Precipitation, one of the major drivers of floods that might concur with
typhoons and rainstorms, is not affected by humans. This, together with the marginal tail
behavior and the tail dependence, motivated our trigger design of precipitation level for
the catastrophe bond in Section 3.2. In particular, the 85%, 90%, 95%, and 99% quantile
precipitations were 803.4, 844, 970.89, and 1247.25, respectively.

Table 1. Descriptive analysis of direct economic loss (DEL) in billion yuan and maximum point
precipitation (MPP) in millimeters.

Variable Size Min Median Mean Max Skewness Kurtosis

DEL 369 0.004 0.795 2.47 54.324 5.45 41.79
MPP 99 75 476 525.27 1426 0.79 3.63

Source: http://www.mwr.gov.cn/sj/ (accessed on 1 January 2020), the Ministry of Water Resources of China.

(a) (b)

(c)

Figure 2. Histogram of (a) economic loss and (b) maximum point precipitation, and (c) scatter plot of
economic loss in billion yuan on log scale against maximum point precipitation in millimeters.

In summary, the economic loss caused by severe floods is highly associated with
extreme precipitation. We established extreme models to conduct flooding risk management
through insurance and reinsurance companies as well as financial markets.

http://www.mwr.gov.cn/sj/
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3. Main Results

In risk management, of importance is designing a layered compensation system among
all stakeholders and thus diversify potential risk in insurance, reinsurance, and financial
markets. This section presents our main results from analyzing the extreme behavior of
flooding economic losses and precipitation in Section 3.1, and the latter was applied to
determine the natural disaster risk in the pricing of flooding catastrophe bonds, as described
in Section 3.2.

3.1. Extreme Analysis of Flooding Economic Losses and Precipitations

We applied extreme value theory (EVT) to analyze the tail distribution law of the
economic loss caused by severe floods. Given the limited datasets, we considered the
compound Poisson process of excess loss specified below. Let SN(t) be the total excess loss
since 2004, given by

SN(t) =
N(t)

∑
i=1

Xiu, t ≥ 0,

where Xiu is the ith excess loss over a proper threshold u in the following t years, and
N(t), t ≥ 0 denotes the number of excess losses caused by severe floods in the following t
years. The independence between the frequency of excess loss N(t) and excess loss Xiu is
acceptable according to Fisher’s exact test with p = 0.2597. Thus, the expected total excess
loss is obtained by

E
{

SN(t)

}
= E{N(t)}E{{Xu}. (1)

In this study, the economic loss threshold u, which helps to identify the GP-distributed
excess losses Xu := (X − u)|X > u, was set to 1.879, following the rule of thumb pro-
posed by [15], i.e., the threshold was selected to ensure the number of exceedances
k = n2/3/ log(log n) out of n observations, adjusted by the graphical diagnosis in Figure 3,
namely, the mean residual and threshold stability plots [16,17]. The linear pattern of the
sample mean excess probably indicates a power-decaying tail behavior of large economic
losses. The result of the Kolmogorov–Smirnov test of the GP-distributed excess showed
p = 0.8422, confirming its appropriateness.

(a) (b)

Figure 3. (a) Sample mean excess for economic loss in billion yuan with grey dash line representing
95% confidence interval. (b) Variation plots of location, scale, and shape (from top to bottom) against
threshold u ∈ (1.5, 5).

To discern the power tail feature from the double exponential behavior (i.e., ξ = 0
for the exponential decay tail of the threshold excess) and the short tail (i.e., ξ < 0 using
the generalized Pareto model (GP)), we apply the excess models given in Appendix A.
Namely, we fit the excess losses by the point process, and compared the result with that of
the GP and exponential models (i.e., the reduced model of GP with ξ = 0). The obtained
estimates of the parameters are shown in Table 2. We see that the point process model was
the best, having a minimum AIC and BIC when fitting the excess losses, and the power
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tail feature was confirmed by both GP and PP models because the 95% confidence interval
extended well above zero. We obtained the maximum-likelihood estimate of the location,
scale, and shape parameters as (µ̂, σ̂, ξ̂) = (57.33, 34.02, 0.57), respectively, by maximizing
Equation (A6).

Table 2. AIC, BIC, and estimates of the location, scale, and shape parameters with standard errors
(s.e.) in parentheses when fitting economic excess losses by point -process (PP), generalized Pareto
(GP), and exponential (Exp.) models. Here, the threshold u = 1.879.

Model
Location Parameter (µ) Scale Parameter (σ) Shape Parameter (ξ)

AIC BIC
Estimates (s.e.) 95% CI Estimate (s.e.) 95% CI Estimate (s.e.) 95% CI

PP 57.33 (15.60) (26.76, 87.91) 34.02 (13.82) (6.92, 61.11) 0.57 (0.10) (0.38, 0.77) −273.544 −265.416
GP - - 2.30 (0.41) (1.49, 3.11) 0.61 (0.16) (0.29, 0.93) 545.641 551.060
Exp - - 4.91 (0.47) (3.99, 5.82) - - 577.059 579.769

To determine the expected total annual excess loss, it remained to check if the frequency
of excess loss followed Poisson distribution. We employed the KS test and obtained a p-
value equal to 0.7132, which suggested the annual frequency of excess economic loss
followed a Poisson distribution with an annual mean λ̂ = 6.94. Consequently, the total
annual excess economic loss was estimated as RMB 6.94 × 5.89 = 38.94 billion using
Equations (1) and (A4).

Note that VaR and CVaR are two common risk measures applied to evaluate extreme
risks with good mathematical properties and are practically meaningful in the insurance
and finance fields. Applying the extrapolation approach (c.f. Equations (A3) and (A5)),
Table 3 shows the estimates of VaR and CVaR at different confidence levels, formalizing the
compensation system.

In particular, we specified three loss levels for the compensation mechanism using the
VaR and CVaR values, which could be covered among all stakeholders, including the local
government, reinsurers, and government funds such as catastrophe bonds. For higher loss
levels, insurance companies may generally transfer the higher risk to reinsurers as well as
the financial markets in terms of various financial securities [3]. Thus, in Section 3.2, we
describe the price of a flooding catastrophe bond.

Table 3. Design of compensation mechanism according to VaR and CVaR of individual economic loss.

Confidence
Level VaR CVaR Loss Level Loss Amount (Billion RMB) Loss Taker

97.5% 13.37 34.22 Third level >22.28 Government
(CAT bond)

95.0% 8.24 22.28 Second level 14.24–22.28 Re-insurance
90.0% 4.78 14.24 First level 4.78–14.24 CRFCIF 1

1 Cross-Regional Flooding Catastrophe Insurance Fund.

3.2. Design of Flooding Catastrophic Bonds

Trigger selection is of prime importance in the design of CAT bonds. In general,
indemnity and nonindemnity triggers constitute the trigger classification. The bases of how
they are triggered are the sponsor’s actual loss caused in specified catastrophic occurrences
and other quantities for reflecting or approaching the actual loss, e.g., 2015 Acorn Re
earthquake CAT bond. This bond was also adopted as the guide for our analysis of
the CAT bond triggered by large maximum point precipitation levels. To reconfirm that
the maximum point precipitation was a proper trigger choice, we adopted upper tail
dependence coefficient (UTDC) and tail quotient correlation coefficient (TQCC) between
the maximum point precipitation and economic loss to assist in our discussion. In our
calculations, the assumption of the identical and independent distributions of the maximum
point precipitation Xi (direct economic losses Yi) was confirmed by a Ljung–Box test with a
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p-value of 0.8177 (0.2829). Therefore, the subsequent empirical tail dependence analyses
could then be conducted. The empirical u-level tail dependence index is represented as:

χn(u) := 1− logP{Fn1(Xi) < u, Fn2(Yi) < u}
log u

,

where Fn1 and Fn2 are the empirical marginal distributions of (Xi, Yi). We see from Figure 4a
that χn(u) remains constant for a moderate quantile level. This indicates that large eco-
nomic losses are likely to occur along with large maximum point precipitation. The tail
dependence index χ, as the limit of χ(u), was estimated as 2− 20.6734 = 0.405, applying a
bivariate logistic model for the 90% quantile excess [11]. Meanwhile, we analyzed the rela-
tive extremes of the corresponding threshold exceedances with the tail quotient correlation
coefficient (TQCC), see, e.g., [12]. Namely,

q(u) =
max1≤i≤m

(
max(X̃i ,tu)
max(Ỹi ,tu)

− 1
)
+ max1≤i≤m

(
max(Ỹi ,tu)
max(X̃i ,tu)

− 1
)

max1≤i≤m
max(X̃i ,tu)
max(Ỹi ,tu)

×max1≤i≤m
max(Ỹi ,tu)
max(X̃i ,tu)

− 1
, tu = −1/ log u, u ∈ (0, 1),

where (X̃i, Ỹi) is the unit Fréchet distributed threshold exceedances based on the marginal
analysis in Section 2, i.e.,

X̃i = −
(

log

{
1− ζx

[
1 + ξ̂X

Xi − ux

σ̂X

]−1/ξX
})−1

, Ỹi = −
(

log

{
1− ζY

[
1 + ξ̂Y

Yi − uY
σ̂Y

]−1/ξY
})−1

,

where ζX = 1− FX(uX) and ζY = 1− FY(uY). We see from Figure 4b that TQCC shows an
increasing trend with values apparently larger than 0.1. Therefore, large maximum point
precipitation may indicate large economic losses [18]. The naturally arising question for
insurers and reinsurers is how to hedge large risk.

(a) (b)

Figure 4. The empirical tail dependence measures (a) the Chi plot χn(u) and (b) the tail quotient
correlation coefficient q(u). The solid lines and dotted lines show the estimate and 95% pointwise
confidence intervals, respectively. The estimate of the tail dependence index χ̂ = 2− 20.6734 = 0.405
is indicated by the horizontal line using the bivariate logistic extreme value model.

The bond market is a logical choice because investors are looking for arbitrage oppor-
tunities and can mitigate the loss of insurance products. Collateralized special purpose
vehicles (SPVs) issue the CAT bond, which is usually issued and established by sponsors
who are insurers and reinsurers. For SPVs, the premium is paid by the sponsor, and rein-
surance is used as a return. The incentive premium is usually paid to investors as part of
the coupon payment, including the oscillation part related to the national reference interest
rate. For example, the London Interbank Offered Rate (LIBOR) and Shanghai Inter-bank
Offered Rate (Shibor) can reflect the return from the trust account where the principal is
deposited. The principal and coupon payments are reduced whenever a specific triggering
event happens. Additionally, sponsors can receive some funds as a repayment for the
claims. Here, we followed the product pricing scheme proposed by [3], together with a
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compound Poisson trigger process similar to the 2015 Acorn Re earthquake CAT bond. The
detailed workflow is presented in Figure 5.

Figure 5. Operation mechanism for catastrophe bonds.

Here, we considered a payoff function Π(·) and wiped out time τ defined by

Π(y) = max{1− y, 0}, y ≥ 0, τ = inf{t ≥ 0 : Π(Yt) = 0}.

Here, the trigger process {Yt, t ≥ 0} was supposed as a compound Poisson trigger
process given as

Yt =
Nt
∑

j=1
(0.005× I

(
Xj ∈ (803.4, 844]

)
+ 0.01× I

(
Xj ∈ (844, 970.89]

)
+0.015× I

(
Xj ∈ (970.89, 1247.25]

)
+ 0.05× I

(
Xj ∈ (1247.25, ∞]

)
),

where Xj denotes the severity of the flooding driver (here, maximum point precipitation),
and Nt denotes the number of large maximum point precipitation events up to time t. The
four maximum point precipitation levels of 803.4, 844, 970.89, and 1247.25 accounts for
the 0.85, 0.9, 0.95, and 0.99 quantiles, respectively, which means when severity is above a
certain level of threshold, a fraction 0.5%, 1%, 1.5%, 5% of the principal will be wiped off.

For example, we issue a bond with a face value of 1000 (denoted by K), a maturity of 3
(denoted by T), and a coupon period of 1/4 year (denoted by ∆). The bonds will be paid at
s∆, where s = 1, . . . , 4T. It follows from Equation (A8) that the price at time t becomes

Pt =
K
4 E

Q1

[
b4τc∧4T

∑
s=btc+1

EQ2

t

[
D(t, s∆)(R + is∆)Π(Y(s−1)∆)

]]
+ KQ1(τ > T)EQ2

[D(t, T)Π(YT)]

+K
4 E

Q1
[
(τ − bτc∆)I(τ ≤ T)Π(Ybτc)EQ2

[D(t, τ)(R + iτ) | τ]
]
.

(2)

Note that the pricing scheme can only be realized by Monte Carlo simulation. To
achieve this, we modeled the maximum point precipitation excess by generalized Pareto
distribution GPξ,β following a similar procedure to that used for direct economic losses in
Section 3. All the estimates of parameters involved were given in Table 4. We modeled the
annual number of maximum point precipitation excess events as a Poisson distribution
and obtained an intensity λ of 6.94. Furthermore, we implemented Wang’s distortion of
disaster risk X [19], i.e.,

X̃ =
[
(1−Φ(Φ−1(U) + κ))−ξ − 1

]
× β

ξ
+ u.
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Additionally, the financial interest risk (rt, `t) in Equation (A9) was fitted by the 4
years and 3 months China treasury bond rates and 4 years and 3 months Shanghai inter-
bank offered rate (Shibor). Estimated parameters were put into the pricing measure that
combined a distorted pricing measure representing catastrophe insurance risk and a risk-
neutral pricing measure for the arbitrage financial market. The bond price was given by a
simulation of 105 paths, each with distorted generalized Pareto distributed interarrival time.

Table 4. Parameters of interest rate and precipitation modeling.

Panel A: Vasicek models (under Q2)

Risk-free rate Shibor Correlation

ar br σr r0 a` b` σ` `0 ρ
1.52 4.12% 1.40% 2.28% 0.04 2.02% 4.00% 2.43% 0.89

Panel B: Maximum point precipitation distribution

Under P1 Under Q1

P{X > u} = 10% Q1(X ≤ x) = Φ(Φ−1(P1(X ≤ x))− κ)
X− u|(X > u) ∼ GPξ,β κ = 1.24

ξ = −0.0558, β = 186.6225
u = 844

Maximum magnitude: 4187

Figure 6a shows the price variations in the financial market risk in terms of the
distortion parameter κ ∈ (0, 1.5) of Wang’s transform. A larger value of κ means that
investors are exposed to higher risk, so a higher premium will be required, as well as,
eventually, a lower bond price. In addition, the practical value of κ = 1.24 was determined
when we set the par value K = 1000 to be equal to the bond price. Furthermore, the
sensitivity anylsis was conducted for its shape parameter, presented in Figure 6b. At this
time, the ratio of scale (β) to shape (ξ) was −3342.863, which means the maximum (the
right endpoint) keeps unchanged at 4186.863. We found that the bond price increased
with decreasing shape parameter, which is reasonable in reality as investors are exposed to
higher risk and require lower costs/higher returns at this time.

(a) (b)

Figure 6. The empirical price at t = 0 varies with (a) the distortion parameter κ and (b) the shape
parameter ξ with β/ξ= −3342, κ = 1.24. Here, the empirical price is given by Equation (2) and a
simulation of 105 samples of the threshold excess of maximum point precipitation from GPξ,β, with
all other parameters specified in Table 4.

4. Conclusions and Extension Discussions

We determined the marginal tail behaviors of maximum point precipitation events
reflecting both the severity of floods in a 24 h rainstorm and its resulting vulnerability risk
via the direct economic losses. These findings suggest a compensation mechanism among
local, state, and national governments as well as financial markets. Market regulators and
investors can utilize our findings for pricing flooding CAT bonds to either mitigate the risk
or gain arbitrage according to their real information, e.g., past economic loss, catastrophe
frequency, magnitude, and past interest rate. Moreover, they can adjust the price according
to their risk attitude or risk tolerance. For instance, pessimistic investors tend to increase the
distortion parameter κ and increase the absolute value of the shape parameter to mitigate
their risk. Otherwise, they may lower these parameters to be actively involved in this
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market to gain arbitrage. When a market regulator is highly optimistic about the decrease in
severity and frequency of a catastrophic event, then the distortion parameter and absolute
value of the shape parameter could be lowered and vice versa. Moreover, this pricing
framework and implementation of EVT can be adapted to various kinds of catastrophe
events including hurricanes, earthquakes, and typhoons [20].

This study lays a foundation for further studies on compound disaster modeling and
systemic risk management strategy. In practice, multiple disasters may simultaneously
occur or in a chain, e.g., wildfire and air pollution and morbidity from lung-related dis-
eases [21]. Additionally, the regional vulnerability to different natural disasters might be
further considered in the future provided that spatial–temporal hydrology data with high
enough is available, see, e.g., [22,23] for related studies on spatial modeling of extreme
precipitations and grey relational analysis. Given that fine pixel data are available on
certain spatial and temporal scales, alternative models of the occurrences of disasters may
be applied, including log-Gaussian Cox processes [24] and nonhomogeneous compound
Poisson process of the total excess economic losses involved, possibly explained by growing
climate change, seasonal clustering factors, as well as different weather types [9]. Finally,
the single-trigger CAT bond in this study lays the foundation for multiple-event trigger
CAT bonds using the Copula–EVT framework and multiple financial risks including in-
flation risk (i.e., randomized CPI) and interest risks reflecting economic uncertainty as
well [13,25,26].
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Appendix A. Extreme Value Theory

Extreme value theory is a natural tool used to model severe floods and their resulting
huge economic loss because a few extreme precipitation events result in more than 90%
of the annual economic losses. Flood risk management institutions should focus on the
maxima and tail exposures instead of the expected average outcome of compartmental
models.

Block maxima (BM) and peaks-over-threshold (POT) are two common approaches
used for extracting extreme data, which can be fitted by generalized extreme distribution
(GEV) and generalized Pareto distribution under certain conditions, respectively [4,27].
Both methods face a common challenge in overcoming model uncertainty. Both can be
interpreted in terms of Poisson point processes with certain relationships of the parameters
involved. Given a high threshold u, suppose that the threshold excess of X is well fitted by
a generalized Pareto (GP) distribution GP(y; σ̃, ξ). Then, the exceedance probability of X
over larger x can be represented as (note F(u) = 1− F(u))

1− F(x) = F(u)P{X > x|X > u} ≈ F(u)GP(x− u; σ̃, ξ), x > u. (A1)

http://www.mwr.gov.cn/sj/
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Here, u is a proper threshold so that an amount of excesses (xi − u) of n samples asymp-
totically follows GP distribution, which further leads to a maximum likelihood estimate
of ξ and σ̃(u) = σ + ξ(u− µ). The triple (µ, σ, ξ) consists of the location, scale, and shape
parameters involved in the GEV model, which fits the block maxima Mn of an independent
and identically distributed sample X1, . . . , Xn from parent X ∼ F, i.e.,

P{Mn ≤ x} ≈ G(x; µ, σ, ξ) := exp

(
−
(

1 + ξ
x− µ

σ

)−1/ξ

+

)
. (A2)

The exceedance probability in Equation (A1) provides the information on the amount
of time that a risk is expected to exceed certain performance levels, which is commonly
used to predict extreme events such as floods, hurricanes, and earthquakes. In addition,
we may invert Equation (A1) to obtain a high quantile of the underlying distribution or the
T-year return level stated below.

For T > 1/F(u), we have the T-year return level (i.e., the average time of xT has been
exceeded per T observations, with exceeding probability p = 1/T), defined as,

xT = u +
σ̃

ξ

((
1

TF(u)

)−ξ

− 1

)
.

Thus, the minimum level that a potential risk X is exceeded with small probability
1− q, the so-called value-at-risk (VaR) at level q, denoted by VaRq(X), is given by

VaRq(X) = u +
σ̃

ξ

((
1− q
F(u)

)−ξ

− 1

)
, q > F(u). (A3)

VaR is commonly used as a risk measure to determine the potential capital premium
due to its simplicity and back-testing properties. However, it neither reflect the tail magni-
tude nor satisfy subadditivity in general. Alternatively, conditional value-at-risk (CVaR),
which is defined as the expected value of the exceedance of the VaR, is the unique coherent,
and back-testing risk measure. We have

CVaRp(X) = E
{

X|X > VaRp(X)
}
= VaRp(X) +E

{
X−VaRp(X)|X > VaRp(X)

}
.

Note that CVaR is also called the expected shortfall, giving insight into the magnitude
of an extreme loss. Therefore, the bank and insurer may prefer CVaR to VaR in the process
of policy making. Both are widely used in optimal allocations of resources and assets, see,
e.g., [28].

Because the threshold excesses follow an asymptotically generalized Pareto distribu-
tion, we may approximate the tail expectations as

E{X− u|X > u} ≈ σ̃(u)
1− ξ

=
σ + ξ(u− µ)

1− ξ
, ξ < 1. (A4)

Thus,

CVaRp(X) = VaRp(X) +
σ̃(VaRp(X))

1− ξ
=

VaRp(X)

1− ξ
+

σ− ξµ

1− ξ
. (A5)

We can obtain estimates of exceedance probability, VaR, and CVaR defined in
Equations (A1), (A3) and (A5), respectively, with related parameters estimated and empir-
ical survival probability F̂(u) = nu/n provided that nu exceedances over u come from a
sample of size n.

In addition to the aforementioned GEV and GP models, the block maxima, and
threshold excesses, a particularly elegant formulation of characterizing the extreme value
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behavior is derived from the theory of point processes (PP), which considers exceedances
of the threshold as events in time and models thus both the occurrence and intensity of
exceedances. Given a sequence of r.v. Xi with values in a state space A, we define, for any
set A ⊂ A, the r.v. N(A) denotes the number of Xi value in the subset A that can formalize
a point process under certain conditions. The intensity measure of this process is one of the
key summary features, defined as

Λ(A) = E{N(A)}.

This returns the expected number of values in the corresponding subset A. The in-
tensity density function is then defined by its derivative function if this exists with
A = ∏d

i=1[ai, xi], i.e.,

λ(x) =
∂Λ(A)

∂x1 · · · ∂xd
.

For a homogeneous Poisson point process, the parameter λ is a positive constant, such
that for A = [t, s] ∈ T,

N(A) ∼ Poisson(λ(s− t)).

Let X1, . . . , Xn be an independent and identically distributed sequence, which may
consist of the observation of a potential risk X satisfying Equation (A1) or (A2). Then, the
point process of (i/(n + 1), Xi) on A = [t1, t2]× (u, ∞) ⊂ [0, 1]×R, denoted by N(A), is
given as

N(A) := #{i ∈ N, t1 ≤ i/(n + 1) ≤ t2, Xi > u}, A = [t1, t2]× (u, ∞).

Under some weak conditions, we have N(A) ∼ Poisson(Λ(A)) holds asymptotically
with intensity measures given below:

Λ(A) =
∫
(t,x)∈A

λ(t, x)dtdx = (t2 − t1) ·
[

1 + ξ
u− µ

σ

]− 1
ξ

· I(1 + ξ · (u− µ)/σ > 0),

where ξ, µ ∈ R, and σ > 0 represent the shape, location, and scale parameters, respectively.
I(·) is the indicator function, see Theorem 7.1.1 in [16]. Maximum likelihood estimation
was adopted here to estimate the parameters involved in the PP model. PP log-likelihood,
`(·), for a high threshold u, is given as

`(µ, σ, ξ; x1, . . . , xn)

= −nu ln σ−
(

1
ξ + 1

)
∑n

i=1 ln
(

1 + ξ
σ (xi − µ)

)
I(xi > u)−

(
1 + ξ

σ (u− µ)
)− 1

ξ .
(A6)

Though this log-likelihood function considers excesses, the parameterization is based
on the GEV distribution function, and thus is invariant to the threshold. Consequently,
the PP model can be adapted to allow for nonstationary effects to include temporal or
covariates’ effects in the parameters even with time-varying thresholds [27].

Appendix B. A Pricing Scheme of Catastrophe Bonds

The trigger model, payoff function, principal wipe-out function, and accrued coupon
should be determined prior to pricing measurement because coupon payment and principal
redemption might be changed once a catastrophe (CAT) event occurs.

Consider a trigger process {Yt, t ≥ 0} as a component-wise nondecreasing, non-
negative, and right continuous stochastic process:

Yt = f (X1, X2, . . . , XNt), t ≥ 0, (A7)
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where {Xn, n ∈ N} is a sequence of random variables modeling precipitation severity, and
{Nt, t ≥ 0} is a counting process to model the occurrence of floods, and f is a component-
wise nondecreasing function.

There are various kinds of triggers Y, for instance:

(i) The aggregate amount of loss due to natural disasters, e.g., floods;
(ii) The number of large floods, which considers both magnitude and frequency as below

Yt =
Nt

∑
j=1

I
(
Xj > u

)
, u ≥ 0,

where u is a high threshold and N(t) is the number of exceedances over the threshold
observed in [0, t].

Next, the pay-off function Π(y) : [0, ∞) 7→ [0, 1] is a nonincreasing function linking
the natural disaster risks via the trigger process Yt = f (X1, . . . , XN(t)) and the financial
securities. Especially, the time of principal being wiped out is denoted by

τ = inf{t ≥ 0 : Π(Yt) = 0}.

Next, we introduce the pricing measure as a product of the natural disaster risk and
financial risk. The pricing at time t is essentially the discounted value of future coupon
payments plus the discounted value of the remaining principal.

Pt = KEQ1×Q2

t

[
bτc∧T

∑
s=btc+1

D(t, s)(R + is)Π(Ys−1) + D(t, τ)ϑ1(τ ≤ T) + D(t, T)Π(Ys−1)

]

= KEQ1

t

{
bτc∧T

∑
s=btc+1

Π(Ys−1)EQ2

t [D(t, s)(R + is)]

}
+ KEQ1

t [Π(YT)]EQ2

t [D(t, T)]

+KEQ1

t

{
(τ − bτc)Π(Ybτc)I((τ ≤ T))EQ2

t [D(t, s)(R + iτ)|τ]
}

,

(A8)

where the pricing measure Q1 is the distorted probability measure of the catastrophe

disaster risk X; the EQ1

t [·] terms usually require simulation to evaluate.
The performance of the financial market is reflected by the interest rate process {rt, t ≥

0} and the Shibor process {`t, t ∈ N}, and these two rates are priced by consummate
APT and modeled by a risk-neutral pricing measure Q2 representing the free arbitrage
assumption of investment market. We link the financial market risks with Equation (A8)
through

D(t, T) = exp
(
−
∫ T

t
rtdt

)
, it = e`t − 1.

The process {(rt, `t), t ≥ 0} is modeled with the Vasicek model [29], which is a
bivariate correlated Ornstein–Uhlenbeck (OU) process under the risk-neutral measure Q2,
denoted by {

drt = ar(br − rt)dt + σrdWr,t,
d`t = a`(b` − `t)dt + σ`dW`,t,

(A9)

where a·, b·, and σ· are the mean reversion rate, long run means, and the volatility, respec-
tively, which are all positive. Moreover, Wr,t is standard Brownian motion under Q2. Here,
the two Brownian motion processes are constantly correlated, i.e., for some ρ ∈ (−1, 1),

dW`,tdWr,t = ρdt, t ≥ 0.
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It follows from [3], we have [29]

EQ2

t [D(t, s)] = A(t, s)e−B(t,s)rt , s ≥ t ≥ 0, (A10)

where 
A(t, s) = exp

{
(B(t, s)− (s− t))

(
a2

r br − σ2
r /2

)
a2

r
− σ2

r B(t, s)2

4ar

}
,

B(t, s) =
1− e−ar(s−t)

ar
.

And EQ2

t [D(t, s)is] can be calculated by

EQ2

t [D(t, s)is] = EQ2

t

[
D(t, s)e`s

]
−EQ2

t [D(t, s)] (A11)

= Ã(t, s) exp
{
−B(t, s)rt + B̃(t, s)lt

}
− A(t, s)e−B(t,s)rt , s ≥ t ≥ 0,

where A(·, ·) and B(·, ·) are defined as above, and Ã(·, ·) and B̃(·, ·) are introduced as
below: {

Ã(t, s) = exp{−(C1(t, s) + C2(t, s))},
B̃(t, s) = e−a`(s−t)

with 

C1(t, s) =
(

br −
σ2

r
2ar

)
(s− t) +

3σ2
r

4a2
r
+

ρσrσ`
a`(a` − ar)

+
σ2
`

4a`
+ b` −

br

ar
,

C2(t, s) =
σ2

r
4a2

r
e−2ar(s−t) +

(
br

ar
− σ2

r
a2

r

)
e−ar(s−t) +

(
ρσrσ`
ara`

− b`

)
ea`(s−t)

− ρσrσ`
ar(a` − ar)

e(a`−ar)(s−t) −
σ2
`

4a`
e2a`(s−t).
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