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Abstract: House price prediction is an important problem for individuals, companies, organizations,
and governments. With a vast amount of diversified and multimodal data available about houses,
the predictive models built should seek to make the best use of these data. This leads to the
complex problem of how to effectively use multimodal data for house price prediction. Moreover,
this is also a context suffering from class imbalance, an issue that cannot be disregarded. In this
paper, we propose a new algorithm for addressing these problems: the imbalanced multimodal
attention-based system (IMAS). The IMAS makes use of an oversampling strategy that operates on
multimodal data, namely using text, numeric, categorical, and boolean data types. A self-attention
mechanism is embedded to leverage the usage of neighboring information that can benefit the
model’s performance. Moreover, the self-attention mechanism allows for the determination of
the features that are the most relevant and adapts the weights used according to that information
when performing inference. Our experimental results show the clear advantage of the IMAS, which
outperforms all the competitors tested. The analysis of the weights obtained through the self-attention
mechanism provides insights into the features’ relevance and also supports the importance of using
this mechanism in the predictive model.

Keywords: imbalance; multimodal; attention; house price prediction

MSC: 68T01; 68T07; 68T50

1. Introduction

The problem of predicting house prices is relevant, and solving it has the potential
to benefit both individuals buying homes and house sellers. Traditional models for house
price prediction use exclusively numerical attributes. These attributes contain important
information for predictive models, including the number of rooms or the number of floors.
However, they usually disregard other information that is nowadays more frequently
available in house descriptions. In this paper, we tackle a multiclass house prediction
problem by developing a solution that uses multiple modes of data.

The first key characteristic of the problem we are tackling is related to the use of
multimodal data. Thus, in the first stage, we need to determine how to extract and use
all the different modes of the features. Moreover, we also need to determine if all features
are equally important and useful and should be considered in the model’s development.
Many companies and sellers provide short descriptions of houses, making them available
through advertising platforms. This text contains potentially important information that
can be used together with other types of data to obtain a better prediction of the house
price. As far as we know, multimodal house price prediction [1] is limited to using satellite
images and numerical data as two modalities for price prediction. However, in most cases,
satellite image data are unavailable, and concatenating heterogeneous numerical types
of data as the same modality fails to capture the inherent structural information of the
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different numerical data types. We propose a multimodal attention mechanism to explore
the underlying structural information of the text data and heterogeneous numerical data,
introducing a “microscopic” multimodal learning paradigm in this way.

A second important characteristic of our problem concerns the imbalance typically
present in this setting. We expect that the majority of houses will have a price that is
closer to the average value, with a very small number having a price that is very high
or low. This imbalance in the distribution of the classes may cause severe issues for the
learning algorithm, especially if our goal is to be more accurate in predicting the most or
least expensive house prices. We take into consideration this challenge that is naturally
present in this domain and propose an oversampling strategy that is applied to all the
data modalities.

Our main goal is to solve a multiclass prediction problem with an imbalance in the
target class through a multimodal attention-based framework. To achieve this, we pro-
pose the IMAS, a solution that is able to address the class imbalance problem while using
multimodal data and embedding an attention mechanism to ensure the best adaptation
to the multiple features used. Multiple developments have emerged with the appearance
of the self-attention mechanism in the transformer architecture. In particular, important
multimodal applications have appeared in the fields of vision and language (e.g., [2,3])
and vision and audio (e.g., [4,5]). However, these applications do not focus on a “mi-
croscopic multimodal view”, where not only the usage of text data and heterogeneous
numeric data is considered but also numeric heterogeneous data are envisioned as different
modalities. Moreover, these solutions have not yet been applied in a house price prediction
context. Through an extensive experimental comparison, we compare the IMAS with
several alternative solutions and show the clear advantage of our proposed system.

1.1. Problem Definition

We tackle the problem of house price prediction by using multiple feature modes,
including numeric, boolean, categorical, and textual attributes. Let each one of these feature
modes be represented by X = {Xtext, Xbool , Xcate, Xnum}, where X represents the aggregated
set of all features, Xtext represents the features to be extracted from the house description
text, and the remaining Xbool , Xcate, and Xnum represent the sets of the boolean, numeric,
and categorical features extracted from the houses, respectively. We consider the house
price, the problem’s target variable, as a multiclass variable containing six different classes
that correspond to six different ranges of house prices. We represent the target variable by Y.
Our goal is to approximate an unknown function Y = f (Xtext, Xbool , Xcate, Xnum) based on
a training dataset {〈xi, yi〉}n

i=1. The house prices are represented by six different classes, i.e.,
yi ∈ {class1, class2, · · · , class6}, which means we face a multiclass problem with six classes.
Moreover, the class distribution is not balanced, i.e., some classes are well represented by
many examples in the available data, whereas others are scarcely represented and have a
much smaller number of examples.

1.2. Intuition for our Solution

By integrating multiple features into the construction of a model, we need to take into
account the fact that we may be using irrelevant features and that some features may be
more important than others. Thus, to effectively use all the available information, we must
focus our attention on the most relevant characteristics of the data. To achieve this, we use
the self-attention mechanism.

Being the current de facto method for building associations between data, the self-
attention mechanism [6] can effectively analyze long-term sequential or structural in-
formation and dynamically assign weights from a global perspective to different data
representations based on downstream task information. Accordingly, self-attention has also
demonstrated advantages in more complex multimodal domains, especially in perceptual
problems combining vision and text [7,8]. However, in some practical numerical analysis
tasks, such as house price prediction, most prior works [1,9] only concatenate various
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numerical values as a “modal” to produce attention computations with other modals such
as text and images and thus might not be able to capture all meaningful relationships
between different types of numerical values. In addition, different numeric data types,
such as boolean, discrete, and continuous variables, are inherently heterogeneous and
permutation invariant. Simply concatenating different types of numerical values cannot
capture the underlying structural information.

To overcome the limitations of the existing house price prediction pipeline, we propose
the IMAS with multimodal attention, which introduces numerical-oriented multimodal
learning that aims to explore the underlying structural information and produce a weighted
fusion of different numerical values in an end-to-end fashion. In addition, we also provide
a corresponding multimodal data augmentation technique that generates corresponding
multimodal data based on house prices.

1.3. Main Contributions

The key aspect of our proposed IMAS is its adaptability to multimodal learning from
both a macro perspective (text and numerical data) and a micro perspective (numerical,
categorical, and boolean data), which are inherently heterogeneous and play different roles
in house price prediction. The main contributions of this paper are as follows:

• we propose the IMAS, a new system to tackle the problem of multiclass house price
prediction that is capable of handling multimodal data (textual, numerical, categorical,
and boolean) while dealing with the class imbalance problem;

• we provide an extensive set of experiments, where we compare our proposed system
with several alternative ways of dealing with the multimodal data;

• we show the advantage of the proposed system on a recent and large dataset that we
collected and preprocessed;

• we provide an analysis of the IMAS in terms of the impact on the results of the different
modes of features;

• we provide the code for reproducing our experiments to the research community at
the following repository: https://github.com/Jackline97/Multimodal_House_Price.
(accessed on 1 December 2022).

1.4. Organization

This paper is organized as follows. Section 2 presents an overview of the most relevant
literature for house price prediction, covering the classical statistical-based hedonic models,
standard machine learning models, deep learning-based models, and also models using
more advanced Natural Language Processing (NLP) techniques. In Section 3, we describe
our proposed IMAS system, providing details of its different components. Section 4
provides the experimental settings and describes the dataset used and Section 5 analyzes
and discusses the results of our experiments. Finally, Section 6 concludes the paper.

2. Literature Review

This section provides an extensive overview of the three core topics related to our
work: the statistical-based hedonic price models, machine learning models, and models
that specifically make use of natural language processing techniques to tackle the house
price prediction problem.

2.1. Statistical-Based Hedonic Models

Research on house prices has been an important topic since the 1970s, a time when
the approaches used were based on traditional statistical methods originating from the
economics field. In 1974, Rosen [10] presented the Hedonic Price Theory, a statistical
method that has since become well known and widely used. This popular theory uses
a set of attributes that can explain the house price for representing a house [11]. These
attributes, such as the number of bedrooms or the number of bathrooms, are not equally
important for determining the house price. Instead, they are ranked depending on their

https://github.com/Jackline97/Multimodal_House_Price


Mathematics 2023, 11, 113 4 of 18

impact on the utility function of a house. This model assumes that the house’s sale price
is achieved through a market balance between home buyers’ and sellers’ utilities, given
that both aim to maximize the house’s utility function. The initial hedonic model took
into account only the house’s characteristics, disregarding other external factors [10]. Still,
the hedonic model changed and evolved, and further external factors were included in
the model for representing the house price. This was motivated by the confirmation that
considering solely the initial characteristics proposed was insufficient for representing the
house price. In effect, other external properties, such as the house’s location, also affect
the property value. Thus, given the strong relationship between the house price and its
location, the hedonic price model was updated to also include the house’s location as an
attribute [12].

However, the development of a hedonic regression model has multiple constraints,
which can lead to a diversity of relevant drawbacks. For instance, it requires a team of
experts to manually study the data to develop a mathematical model. However, this is
a time-consuming and expensive process. Moreover, this model is not able to handle
nonlinearity [11] well and it does not allow for the use of unstructured textual information
such as description texts.

More recently, the extraction of visual features and their usage as a complementary
source of information for the models have also been considered. Some research works have
shown that using visual information to represent the scenic characteristics of a house and
its neighborhood has great potential for estimating the house price (e.g., [13–15]).

2.2. Standard Machine Learning Models

Many standard machine learning algorithms, ranging from the popular random forest
algorithm to the boosting solution algorithm and support vector machine (SVM), to name a
few, have been explored for predicting house prices. The majority of the proposed solutions
use exclusively numerical house attributes.

SVMs were applied in the context of house price prediction for a large city in China [16].
Both a default SVM and an SVM using particle swarm optimization (PSO) to determine
the best SVM parameters were tested, with the latter producing the best overall results for
the predictive task. Random forest models were compared with the hedonic model and
ordinary least squares (OLS) [17]. This comparison was carried out with house data from
South Korea and showed a clear advantage of the random forest models for this task, which
were able to better capture the nonlinearity of the house price prediction problem. House
data from Karachi, a city in Pakistan, were used in a different study [18] that assessed the
performance of a boosting algorithm to address the house price prediction task. In this
case, the extreme gradient boosting (XGBoost) algorithm provided good results. Another
study [19] compared multiple regression techniques for predicting house prices, including
multiple linear regression, ridge regression, LASSO, elastic net, gradient boosting, and
AdaBoost regression, on a public dataset (https://geodacenter.github.io/data-and-lab/
KingCounty-HouseSales2015/ (accessed on 28 November 2022)) containing house sale
prices from King County, USA. It was found that the gradient boosting algorithm provided
the best solution.

However, the development of models for house price prediction has not been con-
strained by standard machine learning models. Moreover, other sources of data beyond
numerical data have been explored and used to solve this task. The following sections
discuss both the other models and the data sources that have been used in this domain.

2.3. Models Using Deep Learning Techniques

With the increasing volume of data, deep learning models have become a popular
solution, typically displaying good results. Several deep learning solutions have been
tested for tackling house price prediction.

Some of the proposed deep learning solutions involve using image data as a com-
plementary source of features for the models. For instance, Zhao et al. [20] developed a

https://geodacenter.github.io/data-and-lab/KingCounty-HouseSales2015/
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new model that combines a convolutional neural network (CNN) and an XGBoost model.
This was accomplished by replacing the CNN’s last layer with the XGBoost model. The
CNN extracts features from the images and the XGBoost algorithm predicts the house price
using all the processed features (from images and numerical data). The proposed solution
outperformed the multilayer perceptron and k-nearest neighbor models [20]. The system
presented by Wang et al. [1] used three sources of data (satellite images, house transaction
data, and public facility data) to extract house features, which were then processed by an
attention mechanism to provide a price prediction.

Some proposed systems rely on a combination of standard machine learning algo-
rithms and neural networks. This is the case for the work proposed by Varma et al. [21],
where linear regression, random forest, and neural networks were incorporated for house
price prediction. This was achieved by feeding the outputs of the linear regression and ran-
dom forest models into the neural network as the input features. Other solutions exist that
apply other neural networks, such as recurrent neural networks (RNNs) or long short-term
memory (LSTM). For instance, Chen et al. [22] collected numerical features from four large
cities in China, which were then used to train RNN and LSTM models. The results showed
that the RNN and stacked LSTM outperformed the well-known autoregressive integrated
moving average (ARIMA) model.

In the field of deep learning, other authors have sought to address the imbalance
problem through specialized neural networks. For instance, in [23], a probabilistic neural
network model was proposed that took into account the unbalanced representation of the
problem classes to address the small sample and class imbalance problems in a medical
data context. Another solution was presented in [24] involving classification through
the use of neural-like structures in the geometric transformations model. This proposal
also addressed the problem of class imbalance via a specialized model based on neural
structures. Still, these methods were not applied to the house price prediction problem, nor
did they consider the use of multiple modalities of data.

Although some advancements have been made in the particular domain of house price
prediction, this is still an application area where research is in its infancy, especially with
regard to the use of more advanced models and the use of other sources of data besides
traditional numerical data. In this respect, in the next section, we discuss the research
carried out in this domain that uses the textual information of houses.

2.4. Models Using Natural Language Processing Techniques

Besides traditional models and models using deep learning and processing images,
there is another source of information that may help in the prediction of house prices. This
alternative source of information is text and it can be found on multiple platforms, such
as websites advertising houses for sale. Some researchers have started to explore house
price prediction by applying text mining to house description data. An example is the work
of Stevens [25] where multiple naïve Bayes, SVM, gradient boosting, and other methods
were employed to solve the task of house price prediction. This researcher processed house
description data using text mining techniques, including the term frequency-inverse docu-
ment frequency (TF-IDF) and bag-of-words models. The results indicated a positive impact
of using the information obtained from house description data, showing the potential of
also using textual data for this problem.

Abdallah et al. [26] studied house price prediction by applying text mining to the ti-
tles and descriptions in real estate classifieds. A two-stage model was proposed using the
structured numerical features in the first stage and the features obtained from the titles and
descriptions in the second stage. Keywords were extracted using the TF-IDF technique and
the authors showed that adding this information had a positive impact on the house price
prediction model. This work confirmed the potential for considering the descriptive texts
associated with houses to predict their prices. Two years later, Abdallah [27] extended the
previous work by developing a system that identified the most influential keywords in real
estate classifieds. Continuing the described trend of identifying relevant words for house price
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prediction, in 2020, Guo et al. [28] highlighted and ranked 29 Chinese keywords as critical
data that could have a great influence on house prices. Three standard learning models (the
generalized linear regression model, the elastic net model, and the random forest model) were
evaluated. This work confirmed previous findings related to the importance of extracting
relevant keywords from unstructured text data that can have a positive impact on the perfor-
mance of the model. Still, alternative frameworks such as BERT were not included in any of
the described research works.

Recently, text classification using deep learning has exhibited significant growth, with
the newly developed solutions surpassing standard machine learning algorithms [29].
However, even though the new techniques have shown great potential, there is still a
research gap concerning the study of these techniques in the particular application domain
of house price prediction. This paper targets this gap by providing a study on alternative
solutions for house price prediction that use both the more traditional numerical features
and the description texts of houses. Instead of focusing on extracting relevant keywords,
we seek to use the entirety of the description data from which features are extracted. Our
goal is to show which techniques work better in this setting while taking into account the
specificity of the domain, which includes imbalance domains.

2.5. Models Using Multimodal Data and Self-Attention

As human perception is inherently based on the multimodal environment, multimodal
learning has been a fundamental step toward building comprehensive perceptual-cognitive
abilities, thus contributing to more practical applications in our daily lives. Thanks to
the exponential development of computation resources and over-parameterized deep
learning models, the transformer established together with the self-attention mechanism
has demonstrated tremendous potential in the multimodal learning domain, such as
VideoBERT [2], VisualBERT [3], ImageBERT [30], and CLIP [8] in the vision and language
field and AV-HuBERT [5] and LiRA [4] in the vision and audio field. These prior works
introduced scalable multimodal fusion and translation paradigms that can robustly connect
heterogeneous multimodal information based on downstream task supervision signals.
To interpret the robustness of transformer architecture in multimodal learning, recent
studies in the graph representation learning field [31,32] have shown that self-attention is
intuitively a graph-style modeling, which can model arbitrary input sequences (multimodal
information) as a fully-connected graph, thus helping transformers to adapt to a modality
agnostic pipeline that is compatible with various modalities.

An area of research that is related to our application is the field of affective computing
and sentiment analysis [33], where emotional information is detected, which is critical
for many application domains. In the case of house price prediction, the presence of
emotions in the text can lead to advancements, for instance, in the personalization of
recommendations or the profiling of sellers or buyers. Still, we could not find any works
in the particular context of house price prediction that carried out sentiment analysis.
Some works exist, such as the “sentic blending” approach [34], which seeks to interpret
the conceptual and affective information in natural language using different modalities.
The authors proposed a scalable methodology for fusing multiple data modalities using a
multidimensional vector space. The MuSe-Toolbox [35] is another interesting work where
a Python toolkit is presented that creates multiple continuous and discrete emotion gold
standards. In this sense, this research direction is also connected with our work.

However, multimodal learning has yet to be sufficiently explored in the house price
prediction domain. To the best of our knowledge, only Wang et al. [1] have utilized
the self-attention mechanism to produce multimodal learning on house price prediction.
Nevertheless, their multimodal learning is based on abundant data resources from house
satellite images and fails to capture the underlying structural information of the numerical
data, which requires significant time and resources to collect data. In this work, we propose
a generalizable multimodal attention framework to adapt the most common numerical-
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type data in house price prediction and provide the corresponding data augmentation
techniques as a general framework for tackling house price prediction.

3. Our Proposed Solution: The IMAS Framework

In this section, we present our solution for multimodal house price prediction, the
IMAS framework. We discuss the key components of the system, but first, we begin with
the introduction of some of the notations we use.

Let {(X1, y1), ..., (XN , yN)} be a set of N samples with multimodal properties, where
Xn refers to the n-th sample and yn refers to the corresponding house price properties or
labels. We consider the existence of four different modes in our data (text, boolean, categor-
ical, and numerical) and denote by Xn = {Xtext, Xbool , Xcate, Xnum} the n-th sample of size
M = [l, k, j, d] with Xtext = {t1, ...tl}, where ti ∈ V, Xbool = {b1, ...bk}, where bi ∈ {0, 1},
Xcate = {c1, ...cj}, where ci ∈ Z+ and Xnum ∈ Rd, respectively. We first introduce the en-
coder for each modality and then present the proposed multimodal self-attention learning-
based method and corresponding data augmentation techniques for dealing with the
imbalance classes.

3.1. Data Representation Extraction

The multilayer perceptron (MLP) [36] algorithm is widely adopted to encode continu-
ous or discrete features into an informative representation through a linear or nonlinear
transformation. Given a sample Xn = {Xtext, Xbool , Xcate, Xnum}, we construct MLPbool ,
MLPcate, and MLPnum to independently extract boolean embedding X′bool ∈ Rc, categorical
embedding X′cate ∈ Rc, and numerical embedding X′num ∈ Rc. As for the textual data,
we leverage one of the most canonical pre-trained language models (PLM) BERT fPLM as
our text encoder to extract the sequence embedding X′text ∈ Rc. Finally, our information
sequence X′n can be represented by

X′n = {X′text, X′bool , X′cate, X′num} (1)

We can observe this first step in the bottom left in Figure 1.

3.2. Multimodal Self-Attention Learning

After having the encoded sequences for each modality, we apply the self-attention step.
One could simply concatenate all the multimodal features to obtain a fixed multimodal
representation [37,38]. However, we take this representation a step further by using a
multihead attention. As shown in Figure 1, we propose to model the dependencies between
different types of modals with a self-attention mechanism [6]. This way, we can leverage
the importance of different modalities of data contributing to the results. Specifically, given
a set of information sequences X′n, we would construct Wq, Wk, Wv ∈ Rc×cm to separately
parameterize each attention headi and project inputs X′n to Q ∈ Rn×cm , K ∈ Rn×cm , and
V ∈ Rn×cm . Finally, our classification head hCLS is obtained through the following process:

headi(Q, K, V) = softmax(
QK>√

cm
)V (2)

h′n = LayerNorm(Concat(head1, ..., headh) + X′n) (3)

hCLS = softmax(Mean(h′n)Wo) (4)

where Wo ∈ Rn×c, c represents the model dimension, h is the number of heads, and cm is
typically set to c

h , which indicates that each head is parameterized on a lower-dimensional
space. h′n is produced through a residual block followed by layer normalization [39]. Finally,
our objective function is described by Equation (5).

Ltask = −
|Y|

∑
i=1

yi log hCLS, (5)



Mathematics 2023, 11, 113 8 of 18

Multi-Head
Attention

Numerical Data

Categorical Data

Boolean Data

Num. Encoder

Cat. Encoder

Bool. Encoder

Text Data Bert Encoder

Numerical Token

Categorical Token

Boolean Token

Text Token

Information
Sequence

Add& Norm

Pooling

Linear Softmax

GPT-2 
Model

Numerical Data

Categorical Data

Boolean Data
SMOTE

Generated 
Numerical Data

Generated 
Categorical Data

Generated 
Boolean Data

Output
Probabilities

Oversampling

Multimodal Attention-based House Price Prediction

Label

Luxury villa with large
private yard

Prompt "villa is a large 4 bedroom detached villa situated
in a prime location on the outskirts of Catalkoy
village with far reaching views overlooking the
northern cyprus coastline and kyrenia harbour.
There are stunning mountain views to the rear

including bellapais abbey."

[Floor: 4, Area:120,.....

[BuildingType: 3,.....

[ContainYard: 1,.....
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Figure 1. The proposed IMAS framework for house price prediction. Top: oversampling strategy
applied to all types of features. Bottom: IMAS.

3.3. Data Augmentation for Imbalanced Class

To generate authentic multimodal data for an imbalanced class, we construct a genera-
tor for each modality of the data. This means that the synthetic text instances generated
and the numerical, boolean, and categorical synthetic cases generated are implemented
using two different strategies.

Regarding the text feature Xtext, we utilize the auto-regressive-based model GPT2 [40]
as a text generator ftext to generate the house description text. Specifically, we prepend a
sequence of prompts P = {p1, ..., pl} according to the house price ranges as the initial word
sequence and factorize the joint probabilities of the generated text through

p(w1:T |P) =
T

∏
t=1

(wt|w1:t−1, P) (6)

where l is the length of the prompt and length T is generally determined on the fly until the
<EOS> token is generated from ftext.

The new synthetic cases with the numerical, boolean, and categorical features are
generated using the well-known SMOTE [41] method. This data preprocessing solution
is capable of generating new cases by interpolating two cases from a given minority class
and, thereby, expanding the decision border of that class. This is one of the most popular
methods used for dealing with the class imbalance, mitigating the important issues of
other, simpler methods such as random oversampling or random undersampling. SMOTE
uses a seed example from the class of interest (a minority class) and one of its k-nearest
neighbors is randomly selected. These two examples are then used to generate a new
synthetic case by generating new feature values that are interpolated from the two cases’
features. Equation (7) shows for a given feature a, the calculation of the difference between
the values of that feature in the seed case and the selected neighbor, represented by case
and neig, respectively. In Equation (8), the new feature for the new case (represented by
new) is generated using the feature value of case and the di f f value obtained in Equation (7)
to which a random value between 0 and 1 is added.

di f f = case[a]− neig[a] (7)

new[a] = case[a] + random(0, 1)× di f f (8)

For each new case, both synthetic data generation methods are used in parallel to
obtain the complete information of the new case.
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4. Materials and Methods

This section presents the dataset collected and used in this paper, descriptions of
the different baselines considered, and all the experimental settings of the experiments
carried out.

4.1. House Price Dataset

In this paper, we used a large amount of real estate data that we extracted and pro-
cessed from the website of one of Canada’s most popular real estate companies. This
allowed us access to a large volume of houses containing the diversified information
we needed. We selected the following five major Canadian cities: Ottawa, Toronto, Mis-
sissauga, Brampton, and Hamilton. The latter four cities are localized in the Greater
Golden Horseshoe Region, a densely populated and industrialized region in Canada,
containing over 20% of the Canadian population and over 54% of the population of On-
tario (https://www12.statcan.gc.ca/census-recensement/index-eng.cfm, (accessed on 29
November 2022)). All five cities we selected for this study were in the top 10 Canadian
municipalities with the largest populations in 2021.

This dataset includes (i) standard numerical features such as the number of rooms and
number of bathrooms; (ii) categorical features such as the type of outdoor area (balcony,
skylight, etc.); (iii) boolean features such as the indication of the existence or not of a
parking garage; and (iv) text describing each property. The data collection was carried out
through a web crawler that we implemented for this purpose. For each house listed on
the real estate website, we collected different types of attributes. This allowed us to use a
recent dataset with a vast number of examples and with all the information we required for
our task.

We collected the advertised house selling prices, which we then categorized into six
price ranges and used as our target variable. All types of houses were considered in the five
locations selected including new dwellings and second-hand houses. The web scraping
was carried out on a Windows 10 laptop with a Jupyter Notebook and Python 3. All the
house information was extracted between May and June of 2021.

The raw data collected was cleaned and preprocessed into categorical, numerical,
boolean, and text features. Let us first discuss how the categorical, numerical, and boolean
features were treated. We applied multiple cleaning and preprocessing steps to this set of
features. The most important steps included removing features with more than 50% of
missing values or errors in the data collected, merging features with the same informa-
tion, simplifying categorical features into more consistent classes, handling synonyms in
categorical features, and uniforming numeric units. After these steps, we obtained a total
of 85 features, excluding the text data. These 85 attributes were decomposed as follows
regarding their type: 10 were numerical, 58 were boolean, and 17 were categorical.

Regarding the textual data extracted, we converted all abbreviations, acronyms, and
their full word forms to one single format and fixed all typos and misspellings. Figure 2
shows an example of a textual description obtained for a house.

Figure 2. An example of the textual description found on a real estate website for a given house.

Finally, we categorized the target variable into six distinct classes. Table 1 shows the
ranges and distributions of the house price classes we considered.

https://www12.statcan.gc.ca/census-recensement/index-eng.cfm
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Table 1. Ranges and distributions of house price classes.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Price Range 0–5×105 5× 105–15× 105 15× 105–25× 105 25× 105–35× 105 35× 105–85× 105 ≥85 ×105

Frequency 994 6397 1058 389 297 83
Classes

Percentage 10.8% 69.4% 11.5% 4.2% 3.2% 0.9%

4.2. Experimental Settings

This section provides an overview of our experiments, focusing on the settings. We
tested the IMAS algorithm with and without oversampling and provide the parameters
used in Section 4.2.1. Section 4.2.2 presents the parameters of the augmentation strategy
embedded in the IMAS. In Section 4.2.3, we present the details of the hardware and
optimizer used in our experiments. Finally, the description of the four baselines considered,
as well as the details of the different learning algorithms that each one used, are provided
in Section 4.2.4, where we also discuss the performance assessment metrics evaluated.

4.2.1. Parameters of the IMAS Models

We begin by describing the IMAS parameter settings. The remaining baselines consid-
ered, as well as their respective parameter configurations, are described in Section 4.2.4.
For testing the IMAS, we set up three independent MLPs with ReLU nonlinear activation
functions as the boolean, categorical, and numerical encoders. Each output layer of these
MLPs had the same number of channels (c = 36). As for the text encoder, we leveraged the
BERT-based model (with 12 layers in total), with a learnable pooling layer and the tanh
activation function targeting each batch’s first <CLS> token to extract and downsample
the text embeddings to the same dimension as the other features, i.e., c = 36. Finally, we
prepend our text, boolean, categorical, and numerical features together as the final house
information sequence. As for the multihead attention layer, we set the number of heads
to 12 (h = 12) and the hidden dimension as cm = c

h . The overall dropout rate in the BERT
model and multihead attention layer was set to 0.3.

4.2.2. Data Augmentation

We used the GPT2-small model with 12 layers in total (h = 12) as the text generator
and fine tuned the GPT2 with the house description and prompt information in Table 2.
During the inference phase, we applied the nucleus sampling to obtain the generated
text with p = 0.7, temperature t = 0.9, and a repetition penalty of 2. As for the boolean,
categorical, and numerical feature generation, we applied the SMOTE method with the
number of nearest neighbors set to the default of 5. SMOTE and GPT2 were applied to the
selected minority classes (Class 3, Class 4, and Class 5). Moreover, it is known that a fully
balanced dataset is not always optimal. Thus, we decided to augment the cases in these
classes but opted to not completely balance all the classes, leaving these three minority
classes still below the frequencies observed in the remaining classes. The intuition behind
this was twofold: (i) a balanced dataset can be non-optimal; and (ii) a vast increase in the
frequency of very scarce classes can result in overfitting. For these reasons, we opted to
only augment the three selected minority classes with 500 more cases, leaving them with a
total of 600 to 900 examples, whereas the other classes had between 1000 and 6000 original
examples. The results of the data augmentation per class are shown in Table 3.
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Table 2. Prompt information for text generation

Class Prompt Info.

Class 1 tiny-sized apartment with shared public infrastructure.
Class 2 bachelor apartment with limited private infrastructure.
Class 3 family-applicable apartments with standard community services and private infrastructure.
Class 4 large and well-furnished apartment in a prosperous district.
Class 5 superior apartment with upscale customization services in the commercial center area.
Class 6 luxury villa with large private yard.

Table 3. Initial distributions of the 6 classes of house prices and their corresponding distributions
after the application of SMOTE for oversampling.

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5

Initial Dist. 994 6397 1058 389 297 83
Dist. after Oversampling 994 6397 1058 889 797 583

4.2.3. Hardware and Optimizer

All of our models were trained with an NVIDIA RTX 2070 GPU. In all the experiments,
we utilized the Adam optimizer and set β1 = 0.9, β2 = 0.999, ε = 1× 10−8. We trained
the GPT2 generator with a learning rate of 5× 10−4 and our multimodal attention-based
model with a learning rate of 5× 10−5. The learning weight decay was explicitly set on a
bias term with a ratio of 0.1. All batch sizes were set to 16, the epochs to 4, and the warm-up
step to 100.

4.2.4. Baselines and Performance Assessment Metrics

We implemented four competitors (B1, B2, B3, and B4), which can use all or part of
the features collected to evaluate the effectiveness of the IMAS. Figure 3 depicts the four
baselines considered. The baselines selected for this study are as follows:

• B1—Standard Machine Learning: We implemented non-parametric supervised learn-
ing methods, including decision tree, SVM, naïve Bayes, random forest, and XGBoost
to directly predict the house price range by concatenating the numerical, categorical,
and boolean data. We set the splitter to “best,” the criterion to Gini, and the minimum
sample split to 2 for the decision tree. As for SVM, we used the radial basis function
as the kernel function with the degree k = 3. We set the number of estimators to 100,
learning rate to 1.0, max depth to 1 for XGBoost, minimum sample split to 2 for the
random forest, lbfgs solver to logistic regression, and variance smoothing factor to 1e-9
for naïve Bayes. The detailed parameter settings of each of these learning algorithms
are described in Appendix A.

• B2—Multimodal Machine Learning: To utilize the text data, we implemented unsu-
pervised learning algorithms (Word2vec) to obtain the word embeddings. Further-
more, we concatenated the word embeddings with the numerical, categorical, and
boolean features and fed them into the classical machine learning models as the initial
multimodal machine learning pipeline. As for the Word2vec model, we adopted the
continuous skip-gram architecture and trained the model with our collected house
description data. The output word embedding dimension for both skip-grams was 300.

• B3—Pretrained Language Model: To fully explore the semantics of the house de-
scription data, we leveraged the pretrained BERT for sequence classification from
Huggingface to directly fine tune our collected description data and infer the house
price range. We applied the Adam optimizer and set the learning rate to 4e-5 and the
epochs to 5 as the training hyperparameters.

• B4—End2End Multimodal Learning: To leverage the multimodal feature and com-
bine it with the pretrained language model, we concatenated the extracted sentence
embedding with the multimodal feature and fed them into a stack of linear layers to
make the final prediction. The training regime was identical to the BERT model.
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Regarding the performance assessment, we observed the overall accuracy and the F1
score calculated through macro averaging. The macro averaging version of the F1 score
allows for a correct evaluation of the performance of multiclass classification problems in
an imbalanced scenario [42]. Moreover, we also observed the accuracy to determine if an
increase in the F1 would negatively impact the overall performance of the models.

Classical Machine Learning 
Model 

Numerical Data

Categorical Data

Boolean Data

Numerical Data

Categorical Data

Boolean Data

Text EmbeddingText Data

Classical Machine Learning 
Model 

Numerical Data

Categorical Data

Boolean Data

Text Data

Pre-trained Language Model 

Word2Vec
Text Data

Pre-trained Language Model 

Sentence
Embedding+

Prediction

Prediction

Prediction

Linear Layers 

Prediction

Standard Machine Learning

B2 B3

Multimodal Machine Learning
Model based on 

Natrual Language Processing 
End2End Multimodal Learning 

B1 B4

Figure 3. Four baseline alternatives for predicting house prices that incorporate multimodal features.

5. Analysis and Discussion of Results

This section presents and discusses the main results. We also provide an analysis of
the impact of the attention mechanism and present an error analysis of our model.

5.1. Main Results

We tested the four baselines (B1 and B2 with two different machine learning algo-
rithms) and we included our proposed IMAS with and without oversampling. Our main
results are displayed in Table 4. If we compare the results of baselines B1 and B2, we
observe a clear advantage for baseline B1 for all learning algorithms tested except naïve
Bayes. The difference between B1 and B2 lies in the use of all textual, boolean, numerical,
and categorical features on B2, whereas B1 did not use text data (cf. Figure 3). This shows
a detrimental effect on the performance when using the house description text in these
scenarios. In the case of naïve Bayes, both the results of B1 and B2 were very poor, showing
that this classifier was not well suited for this task.

However, if we compare any of the results of B1 and B2 with the results of B3, we
see that B3 provided more advantages in both accuracy and F1-score. Because B3 only
used textual data, the conclusion is that these textual data might not be useless and should
not be discarded without further consideration. The last baseline B4 used all features in a
multimodal framework using a pretrained language model and all the remaining features.
Overall, B4 provided the best results among the baseline alternatives that we considered in
terms of accuracy and F1 score.

We observed that the IMAS without oversampling provided the best accuracy and F1
score compared to all the variants of the four baselines. However, when using the IMAS
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with oversampling, we obtained even higher accuracy and a higher F1 score, showing that
this method was able to effectively use all the features available.

Table 4. Accuracy and F1 results of our baselines and two variants of the proposed IMAS method
(with and without oversampling).

Baseline Model Type Data Type Accuracy F1 Score

B1 Decision Tree Xnum, Xbool , Xcat 0.69 ± 0.01 0.41 ± 0.01
B2 Xtext, Xnum, Xbool , Xcat 0.65 ± 0.02 0.37 ± 0.01

B1 Random Forest Xnum, Xbool , Xcat 0.73 ± 0.01 0.43 ± 0.01
B2 Xtext, Xnum, Xbool , Xcat 0.69 ± 0.02 0.29 ± 0.02

B1 Logistic Regression Xnum, Xbool , Xcat 0.72 ± 0.01 0.32 ± 0.01
B2 Xtext, Xnum, Xbool , Xcat 0.70 ± 0.01 0.19 ± 0.01

B1 Naïve Bayes Xnum, Xbool , Xcat 0.04 ± 0.02 0.07 ± 0.01
B2 Xtext, Xnum, Xbool , Xcat 0.16 ± 0.02 0.14 ± 0.02

B1 GBoost Xnum, Xbool , Xcat 0.72 ± 0.02 0.37 ± 0.01
B2 Xtext, Xnum, Xbool , Xcat 0.71 ± 0.01 0.36 ± 0.03

B1 SVM Xnum, Xbool , Xcat 0.71 ± 0.02 0.20 ± 0.01
B2 Xtext, Xnum, Xbool , Xcat 0.70 ± 0.01 0.19 ± 0.03

B3 BERT Xtext 0.73 ± 0.01 0.42 ± 0.01

B4 Multimodal Learning
BERT Xtext, Xnum, Xbool , Xcat 0.75 ± 0.01 0.45 ± 0.01

Our solution IMAS without
Oversampling Xtext, Xnum, Xbool , Xcat 0.77 ± 0.01 0.45 ± 0.02

Our solution IMAS with Oversampling Xtext, Xnum, Xbool , Xcat 0.78 ± 0.01 0.50 ± 0.01

F1 score calculated using macro averaging.

5.2. Analysis of the Attention Mechanism and Standard Model’s Insights

We inspected the attention weights obtained to better understand their impact and to
obtain more insights into the IMAS solution. We computed the average attention weight
matrix from the multihead attention layer of the IMAS system for each class and visualized
the attention weights. Figure 4 shows the attention weight results for each of the classes
per type of modal feature. As shown in this figure, we can clearly observe that the IMAS
assigned the highest importance to the categorical embeddings in all cases (the lightest
colored cells), which indicates that the most critical determinants of house prices in our
dataset were derived from the categorical features. We also observed that the attention
weights of the categorical features increased with the increase in the house price, i.e., as we
moved from Class 1 (the least expensive houses) to Class 6 (the most expensive houses), the
categorical features exhibited a higher weight. Moreover, the importance of the other modal
features did not change significantly with the increase in price, which further illustrates the
importance of the categorical features for the “high-priced” houses in our dataset. Finally,
we also observed that the textual features had higher weights on lower-priced houses
(Class 1), shifting slowly to a weight more similar to those of the other features as the house
price increased. This shows that assigning the same importance to all features across the
different house price classes is not a good option. In effect, by observing the attention map,
we can clearly see that different features were more important for predicting houses with
lower prices and this changed for houses with higher prices. This differentiated weighting
of the features was not achieved with the standard models as they did not use the self-
attention mechanism, which highlights the importance of considering this mechanism
when predicting house prices. These results confirm that the attention mechanism is an
important step in our solution. By assigning more attention weights to the most critical
features, we can steer our IMAS system to focus on the most essential modalities, thus
producing class-adapted and improved results.
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Figure 4. Heatmaps of the attention weights for each class’s final layer in the multihead attention
layer. Each row represents one modal from the input information sequence X′. Each column in a row
represents the attention weight assigned to the specific modal. (Note: To better compare the attention
weights across different classes, we removed the softmax activation function while extracting the
attention weights from the multihead attention layers.)

Besides analyzing the attention mechanism, we also investigated the decision tree
model to obtain more insights into the standard baseline models. In Figure 5, we can
observe a decision tree model built with a maximum depth of 4. We did not include here
the fully grown tree developed in this study as it became overly large and was extremely
difficult to understand. For this reason, we opted to represent a decision tree with a
maximum depth of 4. We can see that the features related to the characteristics of the
bathrooms of the house were among the top features used in this model. Moreover, we also
observed that the garage, bedrooms, type of finishing, laundry, city, heating, cooling, and
type of house also appear in the features used in this tree. It is interesting to confirm that
some classes never appeared in this model (Class 3), whereas other classes were represented
in leaf nodes with a very small number of examples. For instance, Class 5, which was
initially represented by 72 examples, ended up being classified on the right-most leaf
node, where only 12 examples of that class were present. This confirms the difficulties of
classifying some classes of our problem. Still, we must highlight that this is not the model
learned in our study but a simplified model with limited depth that enables visualization
of the tree.
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Figure 5. Graphical representation of a decision tree model built with a maximum depth of 4 to allow
the interpretation of the results.

5.3. Error Analysis

We further analyzed the errors made by our model by observing the confusion matrix
results of the IMAS on the test set, as shown in Figure 6. We verified that most of the errors
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mainly originated from Classes 1, 4, and 6, where the model misclassified a large number
of Class 1 cases as Class 2; a large number of Class 4 cases as Class 3; and many Class 6
cases as Classes 5 and 4. We speculated that the problem was caused by the insufficient
sample size and the close price range. However, we also observed that the majority of the
errors were made in neighboring classes and thus huge mistakes, such as misclassifying a
Class 1 case as a Class 6, were very rare. This confusion matrix also showed that further
improvements may be possible and should directly target the fragilities observed in this
matrix. We discuss these future developments in the following section.
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Figure 6. Confusion matrix results obtained for the IMAS with oversampling on the test set.

6. Conclusions

In this paper, we study solutions to deal with the multimodal problem of predicting
house price classes. We implement several baseline alternatives, as well as a new algorithm,
which we named the IMAS, which is able to effectively deal with this predictive problem
while tackling the class imbalance issue. Our proposed solution comprises an oversampling
strategy for multimodal data. Then, it goes a step further with the utilization of the four
available modalities of features by using a self-attention mechanism to weight the different
features, building an adapted solution that uses the features in a more efficient way.

Our results demonstrate that the proposed IMAS solution outperforms all the alter-
natives tested, showing a clear advantage in this context. The IMAS was able to achieve
78% accuracy and an F1 score of 50%, whereas the best alternative method obtained 75%
accuracy and an F1 score of 43%. This shows that the IMAS is able to improve not only the
overall accuracy of the model but also its performance in the more difficult and minority
classes. Frequently, the improvement of the performance of the minority class is achieved
at the cost of degrading the overall performance. Notably, our proposed IMAS is able to
increase both results. This is a very interesting result that was achieved by making more
intelligent use of the available data through the IMAS. Although the simple concatenation
of different modalities is non-optimum, allowing the loss of important information, we
show that the IMAS is able to leverage the most relevant features of the multiple modalities
to obtain the best performance for each of the classes in the problem. We also provide an
analysis of the weights obtained by our self-attention mechanism, showing that it provides
adapted weights to the different classes and features. This is indeed a useful solution
that allows for the consideration of the neighboring information in cases when inference
is performed.
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Using multiple modalities of data provides a useful solution that achieves high perfor-
mance. However, the IMAS has limitations that should be taken into account, namely our
proposed system requires more computational power and time to train. This can represent
a limitation for end users that have lower computational resources. Another important
aspect concerns the potential usage of even more modalities, such as house images, which
we did not consider in this work.

We believe that building multimodal models for house price prediction is a promising
avenue for future work, namely we consider that exploring the use of other oversampling
strategies could bring advantages to the model by making it focus on the classes with
higher misclassification errors. This is relevant because the underlying distribution of our
target, the house price, was not balanced. Thus, exploring special-purpose methods to deal
with this problem is important. Another interesting avenue is related to the decoupling of
the representation and learning phases. Several works have shown that this can provide
good results for long-tailed distributions (e.g., [43]), but so far, no work has studied this
for house price prediction with the type of multimodal data that we used. This direction
can become even more relevant if images are also included in the available data. Finally,
embedding reinforcement learning into the IMAS framework could also be worth trying
as an alternative solution. In effect, some work has been conducted in other application
domains where multimodal data are used and reinforcement learning is able to help in
building an improved model (e.g., [44]). Finally, we will also consider tackling this problem
as a regression problem to observe the impact on the models of the different modalities
and the self-attention mechanism.
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Appendix A

This Appendix provides the complete set of hyperparameters of the baseline models
tested in our experiments, which are provided in Table A1.

Table A1. Hyperparameter settings for baseline models.

Baseline Model Type Parameter Setting

B1 Decision Tree (DT) DT: minimum sample split = 2, criterion = ’gini’, splitter = ’best’
B2 Word2Vec: Skip-gram architecture with a hidden dimension of 300

B1 Random Forest (RF) RF: criterion = ’gini’,min samples split = 2, max_features = ’sqrt’
B2 Word2Vec: Skip-gram architecture with a hidden dimension of 300

B1 Logistic Regression (LR) LR: penalty = ’l2’, tolerance = 1e-4, max_iter = 1000, warm_start = True
B2 Word2Vec: Skip-gram architecture with a hidden dimension of 300

B1 Naïve Bayes (NB) NB: variance smoothing = 1e-9, type = ’Gaussian’
B2 Word2Vec: Skip-gram architecture with a hidden dimension of 300

B1 XGBoost XGBoost: loss = ’multinomial deviance’, learning_rate = 0.1, n_estimators = 100, max_depth = 3
B2 Word2Vec: Skip-gram architecture with a hidden dimension of 300

B1 SVM SVM: penalty = ’l2’, Tolerance = 1e-4, solver = ’lbfgs’, regularization term C = 1
B2 Word2Vec: Skip-gram architecture with a hidden dimension of 300
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