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Abstract: Maintenance decision-making is essential to achieve safe and reliable operation with high
performance for equipment. To avoid unexpected shutdown and increase machine life as well as
system efficiency, it is fundamental to design an effective maintenance decision-making scheme for
equipment. In this paper, we propose a novel maintenance decision-making method for equipment
based on Long Short-Term Memory (LSTM) and Markov decision process, which can provide specific
maintenance strategies in different degradation stages of the system. Specifically, the LSTM model
is firstly applied to predict the remaining service life of equipment to distinguish its health state
quantitatively. Then, based on the bearing residual life prediction curve, the degradation process
model is constructed, and the corresponding parameters of the model are identified. Finally, the
bearing degradation curve is obtained by the degradation process model, based on which the Markov
decision process model is constructed to provide accurate maintenance strategies for different health
conditions of system. To demonstrate the effectiveness of the proposed method, an experimental
study with the full life cycle data set of rolling bearings is carried out. The experimental results show
that the proposed method can achieve efficient maintenance decisions for bearings under different
health states, which provides a feasible solution for the maintenance of bearing systems.

Keywords: Markov decision process; maintenance decision-making; rolling bearing; LSTM
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1. Introduction

With the continuous improvement in modern industrialization, as well as the progress
of society and the rapid development of science and technology, mechanical equipment is
becoming more intelligent, systematic and modular. The functions of mechanical equip-
ment have become increasingly diversified to meet the growing requirements of industrial
production. In the process of long-term operation, mechanical equipment will be gradu-
ally aging, along with gradually declining operating performance and remaining life, the
possibility of failure will increase. Once the failure occurs, it may cause costly industrial
downtime, casualties or even serious social impact. Therefore, how to design effective
maintenance decision-making scheme, in order to ensure the long-term safe and stable
operation of the mechanical equipment is an urgent problem to be solved.

To ensure the reliable and safe operation of equipment, the existing research paid a lot
of attention to fault detection and diagnosis for different equipment via various means [1-4].
Actually, further study on effective maintenance decision-making method is also of great
importance. Due to the crucial role in mechanical equipment, maintenance decisions
for bearings have drawn increasing attention of many scholars [5,6]. The maintenance
decision-making scheme for the bearing system is also our focus in this paper.

To attain safe and reliable operation with high performance of equipment and achieve
the lowest possible maintenance costs at the same time, a novel maintenance decision-
making method for equipment based on LSTM and Markov decision process is proposed in
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this paper. To this end, the prediction curve of the bearing remaining life is firstly obtained
by applying the LSTM model. Then, the degradation process model is constructed, and the
corresponding parameters are estimated based on the bearing remaining life prediction
curve. Finally, based on the bearing degradation curve acquired by the degradation process
model, the Markov decision process model is applied to provide optimal maintenance
strategies for different health conditions of the system. The main contributions of this paper
are given as follows.

(1) A novel maintenance decision-making method is developed for rotating mechani-
cal system.

(2)  An LSTM model is adopted to predict the remaining life of system, and the remaining
life prediction data are used as the input of the following degradation process model
to identify the model parameters.

(3) A maintenance decision-making model is constructed based on Markov decision
process to provide an effective maintenance solution for equipment. Furthermore, the
revenue of maintenance decisions under different health conditions is designed for the
instruction of maintenance strategies. Moreover, the maintenance decision-making
model is tested on the experimental platform of rolling bearings, and the effectiveness
of the proposed method has been validated.

The remainder of this paper is organized as follows. In Section 2, the related work
is reviewed, which summarizes the main research progress in the field of maintenance
decision-making. Section 3 presents the framework of the proposed method in detail,
including the prediction of remaining life based on LSTM and maintenance decision-
making model for bearings. The effectiveness of the proposed method is verified by the
experimental study in Section 4. Finally, the conclusions of this paper are summarized
in Section 5.

2. Literature Review

With the development of science and technology, as well as increasing demand for
economic and healthy operation of equipment, autonomous decision-making and equip-
ment maintenance decision-making has drawn increasing attention from the academy [7-9].
In the past decades, the research topic of maintenance decision-making has been widely
studied [10]. The existing methods can be mainly divided into two categories: time-based
maintenance (TBM) and condition-based maintenance (CBM).

Many scholars have made in-depth research on TBM strategy optimization. Buchholz,
Peter et al. [11] proposed a general model of partially observable states and non-exponential
fault, maintenance and repair time based on phase distribution. D.E. Ighravwe et al. [12]
proposed a fuzzy objective programming model and used it to establish a single objective
function of maintenance optimization considering random constraints, so as to generate
reliable information for fault maintenance plan. Considering the time-based preventive
maintenance scheduling problem under the uncertainty of unit life distribution, De Jonge
et al. [13] evaluated the long-term benefits of initially delaying preventive maintenance and
made the benefits maximization through the numerical research. Yiming Chen et al. [14]
proposed two optimization problems by taking the static availability or expected perfor-
mance capacity of the system as the goal.

The condition-based maintenance (CBM) is based on the methods of integrating cur-
rent state prediction, plan diagnosis and future state prediction. These methods can be
classified into physical model-based methods, data-driven methods and hybrid methods.
Guang Zou [15] developed a probabilistic maintenance optimization method using in-
formation value (VOI) calculation and Bayesian decision optimization. The VOI based
approach explicitly quantifies the added value of future inspections and gives the best
decision by directly modeling decision alternatives and evaluating their expected results.

In the field of CBM, more and more scholars use the Markov decision process to study
the degradation process of equipment. Paté-Cornell et al. [16] applied Markov chains with
four states to simulate the degradation process of production system, where time-based
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maintenance and three condition-based maintenance strategies are considered. The latter is
based on product inspection, machine signals and signals provided by product in service.
Minou C.A. Olde Keizer et al. [17] constructed a parallel system, which is subject to both
fault dependence and economic dependence by maintenance cost through load sharing. The
system is formulated as a Markov decision process, where the optimal replacement decision
is obtained to minimize the long-term average cost per unit time. Yaqiong Lv and Qianwen
Zhou et al. [9] proposed an intelligent predictive maintenance system for production
equipment multi granularity fault based on BP neural network and fuzzy decision-making,
which successfully realized the automatic predictive maintenance decision-making. Renny
Arismendi et al. [18] explored the application of piecewise deterministic Markov process
(PDMP) to cover different modeling assumptions, such as non-ignorable maintenance delay
and inspection-based status monitoring.

In addition, some researchers consider the combination of the two types of methods
in applications. Mckone and Weiss [19] combined CBM with TBM methods. The available
status information is limited to potential fault signals that may be received before the actual
fault. Therefore, the performance of CBM depends on the prediction accuracy. In some
cases, TBM or the combination of CBM and TBM is preferred.

From the state of art and development of the study on equipment maintenance
decision-making, existing research has been demonstrated by relatively ideal research
results in some respects. However, in the field of equipment maintenance decision-making,
less efforts have been reported to systematically map out the specific maintenance strategies
in different degradation stages of the system, which is worthy to be further explored. Due to
the superior ability to find a strategic solution with maximum return and broad application
prospects in automatic control and recommendation systems, the Markov decision process
has great potential in the field of equipment maintenance decision-making. Motivated by
the aforementioned studies, this paper develops a novel maintenance decision-making
scheme based on LSTM and Markov decision process, which can provide effective mainte-
nance strategies in different degradation stages of the equipment.

3. Methodology

The framework of the maintenance decision-making method proposed in this paper is
shown in Figure 1. Specifically, the LSTM model is applied to predict the remaining life
curve of the equipment. Then, based on the bearing remaining life prediction curve, the
degradation process model is constructed, and the parameters of the model are identified.
Finally, the bearing degradation curve is obtained by the degradation process model,
based on which the Markov decision process model is constructed to provide accurate
maintenance strategies for different health conditions of system.

3.1. Prediction of Remaining Life Based on LSTM

LSTM is a special type of Recurrent Neural Network (RNN) that can learn long-
term dependent information, which has been demonstrated by many successful applica-
tions [20,21].

The specific structure of LSTM is shown in Figure 2, where Xt is the input of cell state
at time t and Ht is the output of cell state at time t. LSTM realizes information protection
and control through three gate unit structures, including input gate, forgetting gate and
output gate.

(1) Forgetting gate

The first step in LSTM is to decide what information will be discarded from the cellular
state. The decision is made through the forgetting gate. The gate will read the output of the
hidden layer at the last moment and the input of the current cell, and then output a value
between 0 and 1, where 1 means “completely preserved”, 0 means “completely discarded”.

(2) Input gate
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The next step is to decide how much new information will be added to the cellular
state. To this end, there are two steps to be performed: first, the input gate determines
which information needs to be updated. A tanh layer generates a vector, which is the
alternative content for updating. In the second step, the two parts are combined to update
the cell state.

(3) Output gate

Finally, we need to determine the output value. This output will be based on the cell
state. Firstly, we run a sigmoid layer to determine which part of the cell state will be output.
Then, we deal with the cell state through tanh (get a value between —1 and 1) and multiply
it with the output of the sigmoid gate. Finally, we just output the part of the output we
determined.
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Figure 2. LSTM Structure.




Mathematics 2023, 11, 109

50f13

Through the above three gating units, LSTM realizes the selective retention and output
of information, and meanwhile solves the problem of gradient disappearance of RNN.

The remaining life prediction based on LSTM can integrate the original learning
samples with the new learning mode to realize the re-training of samples. It can not only
improve the accuracy of remaining life prediction, but also has the characteristics of fast
convergence and high stability. Due to the great advantages in the processing of serial data,
LSTM is applied for remaining life prediction of bearings by making use of the vibration
signals in operation, which also have serial characteristics.

In what follows, the remaining life prediction data obtained by LSTM model will be
used to quantify the health status of the bearing.

3.2. Degradation Process Model

The bearing degradation curve in ideal conditions is shown in Figure 3. According to
the curve, the trend of the bearing degradation has the following characteristics [22]:

(1)  The normal operation time of bearing is long, accounting for 80-90% of the whole life
cycle of the bearing.

(2) When a small crack appears on the surface of the bearing rolling elements or raceways,
the bearing begins to enter the degradation stage.

(3) When the degree of bearing degradation accumulates to a certain extent, the probabil-
ity of bearing damage and equipment failure will increase significantly

Degree Health damage
of wear

] -
Time

Figure 3. Bearing degradation curve.

The degradation quantity of rolling bearing in a certain period At is expressed as
Z(At), including both continuous degradation quantity and sudden degradation quantity
in the process of bearing degradation. The degradation process of bearing follows the
Gauss-Poisson process:

Z(At) = X(At) + BY (At) (1)

where X(At) denotes the continuous degradation of bearings, and X(At)~N(u,02). Y(At)
represents the quantity of degradation due to sudden factors, and Y (At)~Poisson(A). p is
the average degradation amount generated by each sudden degradation.

In order to evaluate the health state of the system, the health score is introduced in
the construction of degradation process model. The initial health score of the bearing is
set to be 1. After operation time f, the normal continuous degradation of the bearing is
denoted by X(t), and the quantity of sudden degradation is Y (t), then the health score of
the bearing is given by:

t

Ht=1-) (X(t) + BY(t)) )

t=0

The parameters of the health state degradation process can be identified by the histori-
cal health score degradation data, which is discussed in the following.
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After obtaining the remaining life prediction data, the bearing health score degradation
data can be obtained from the following formula:

Hi(n) = H(t)— H(t+1) (3)

Assume that Hy(n)(n=1, 2,3, ..., N) is a group of historical degradation data of health
score, where n represents the state number. According to the health score degradation data
Hy (n), the parameters in Equation (2) are estimated by calculating the central moments of
each order of Hy(n). The estimation of parameters is given as follows:

E(HN)=pu+AB 4)
D(Hy) = 0 + AB? @)
E(Hy — E(Hy))> = g°A (6)

E(Hy — E(Hy))*

7
:30'2+3‘B4)L2+‘B4A+60'2‘32/\ ( )

where y, o, A, B are the parameters of rolling bearing degradation process. The central
moments of each order of the group of data are calculated by the health score degradation
data, which can be recorded as Hy, Hy, H3, ..., H,. The obtained central moments are
expressed as a1, ay, a3, a4 respectively, which can be calculated as follows:

a1 = E(Hy) = % Y Hy ®)
N-1
a, = D(Hy) = % Y (Hy—ay)? )
N-1
03 = E(Hy — E(Hy)* =+ Y (Hy — )’ (10)
N-1
0y = E(Hy — E(Hy)) = 1 Y (Hy —a))* a
N-1

Based on the above equations, each parameter of the Gauss—Poisson process model is
given by:

4
A= B (12)
(a4 — 311%)
2
a
o= lay— ” _3% (13)
3
p=ay - —3 (14)
(a4 — 3(1%)
— 342
S I - %2 (15)

According to the above discussions, the parameters of the bearing degradation process
are completely identified.

3.3. Maintenance Decision-Making Model
3.3.1. Markov Decision Process Model
The health score (0-1) of the system can be obtained in Section 3.2. Higher health score

indicates better system health state. Health score 1 means that the system is completely
healthy, and health score 0 indicates that the system is failed.
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The health score can effectively represent the deterioration of the system, motivating
us to use to evaluate the health status of the system. The health score is divided into four
intervals: [1, 0.8), [0.8, 0.6), [0.6, 0.4) and [0.4, 0], corresponding to four different health
states of the bearing;:

Healthy (that is, the bearing is under a completely healthy state with only slight degra-
dation),

Good (the bearing begins to deteriorate but is not obvious),

Sub-health (the bearing has been seriously degraded and its performance has been
obviously reduced),

Damaged (the bearing is completely damaged and cannot be used).

Their health states are recorded as 1, 2, 3, 4 respectively. Therefore, the health state set
of rolling bearing can be defined as S = {1, 2, 3, 4}, which is a continuous Markov process.
Since the bearing degradation process is continuous, the rolling bearing must be in a certain
state (health, good, sub-health, damage) at any time in its full life cycle [23]. The health
state transition process of rolling bearing is shown in Figure 4, where each circle represents
different health states, and the value in the circle represents the benefit of remaining in
each state.

Figure 4. State transition process model.

3.3.2. Transition Probability

In this paper, the Monte Carlo method is used to calculate the transition probability of
the Markov process [24]. The transition probability can be calculated as follows:

b M )
where P;; is the transition probability of state from i to j; M;; is the number of samples
transferring from state 7 at the last moment to state j at the next moment, and M, is the total
number of samples in state i.

3.3.3. Maintenance Effect

According to the impact of different maintenance modes on bearing service life, the
maintenance effect of different maintenance modes can be represented, as well as the impact
of different maintenance modes on the health status of the bearing.

In this paper, the effect of different maintenance modes in this paper is given as
follows. Simple maintenance applied to rolling bearings can prolong the bearing service
life by 10% on average. If the bearings are repaired by complete maintenance, the health
score can directly change to 1. If we apply state maintenance to repair rolling bearings,
the bearing service life can be extended by 40% on average. The health states transition
probability matrix under different maintenance states can be obtained through the health
score represented by the life extension.

3.3.4. Cost Analysis

Different maintenance modes of bearings under different health conditions brings
different cost, which has significant impact on the decision-making process. The cost
includes three parts:
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(1) Maintenance costs (the maintenance costs incurred by various maintenance activities);

(2) Continuous maintenance costs (the costs incurred from continuous care and mainte-
nance of rolling bearings to keep them healthy and effective);

(3) Signal detection costs (the costs caused by the vibration signal detection of the bearing
to identify the current health status).

At present, there is no uniform standard for the maintenance mode and cost of me-
chanical equipment, and the maintenance mode setting in this paper is only to verify the
effectiveness of this method. Therefore, this paper formulates the maintenance cost based
on some maintenance experience. To sum up, the costs of each simple maintenance, state
maintenance and complete maintenance are 15, 40 and 300, respectively, where the relative
value is selected to facilitate the calculation of the total reward.

For a Markov decision process, Gt is defined as the cumulative reward of the system,
which can be expressed as:

Gi=Ri1+Ri2+Riys+-- =Y Y Ripps 17)
k=0

where y represents the discount factor, which is set as 1. Rt denotes the income at time t.

4. Experiment Analysis
4.1. Bearing Data Acquisition

The data used in this paper are the life cycle experimental data of bearings from
Xi’an Jiaotong University [25]. The experimental platform is shown in Figure 5 [26]. The
accelerated life tests for various types of bearings (including rolling bearings and sliding
bearings) under different working conditions can be carried out on the experimental
platform, where the life cycle data of the test bearings can be collected. The main bearing
operating parameters, including the radial force and the rotating speed, which can be
adjusted by the test-bed. The test bearing type is LDK UER204 rolling bearing, whose
parameters are shown in Table 1.

Digital force

Acceleration sensor
displa et

| Test bearing

| | Motor speed controller I

AC motor

Figure 5. Bearing acceleration experimental platform [26].
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Table 1. LDK UER204 Bearing parameters.

Parameters Numerical Value
Diameter of inner race/mm 29.30
Outer ring raceway diameter/mm 39.80
Bearing pitch diameter/mm 34.55
Basic dynamic load rating/N 12,820
Ball diameter/mm 7.92
Number of balls 8
Contact angle/(°) 0
Basic static load rating/kN 6.65

4.2. Prediction of the Remaining Useful Life of Bearings

The aforementioned data are used for the verification of the proposed method. Several
groups of data samples are selected as the training set from the bearing life cycle data
of Xi'an Jiaotong University, including Bearing 1_1, earingl 2 and Bearingl_4. While
Bearingl_5 is selected as the test set. (Operating condition: speed 2100 r/min, radial force
12 kN, sampling frequency 25.6 kHz, sampling interval 1 min, sampling duration 1.28 s).

The actual remaining life of the bearing is used as the training and testing label value y.
The process of label construction is discussed as follows. label 1 represents the bearing state
that it is in good condition, and label 0 means that the bearing is in complete failure. For
example, Bearing1-2 dataset has a total of 2496 groups of data, which means the total life
of the bearing is 2496 min. If the current sample is the 1000th datum, then the remaining
life of the bearing is 1496 min, and the value of the corresponding label y under the sample
is 1496/2496 = 0.599358. According to the remaining life of the rolling bearing, the data
samples, are labeled in the same manner.

The LSTM model is designed based on the Python open-source deep learning frame-
work. In the experiment, the Adam optimizer is selected to optimize the training loss
of LSTM model. Adam is a popular optimizer in the current architecture. Compared
with other optimizers, it can learn parameters adaptively, which has the advantages of
fast convergence, small memory requirements, and better processing of noise samples.
The obtained life prediction curve of Bearingl_5 is shown in Figure 6, and the prediction
accuracy rate is 96.7%.

1.0

0.8

0.6

=

0.4

0.2

0.0 — T T T T T T T T T 1T

0 200 400 600 800 1000 1200 1400 1600

Time
Figure 6. Bearing life prediction curve.
To illustrate, the status of bearing is provided. As shown in Figure 7, at time point

400, the bearing status is shown as the left bearing, while at time point 1400, the bearing
status is shown as the right bearing. It can be seen that the left bearing is in good condition,
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while the right bearing has been severely worn, which is consistent with the life prediction
results by the LSTM model. Therefore, the method in this paper can fit well with the whole
life degrading trend of the bearing so as to predict the remaining life of it.

Figure 7. Bearings in two different states.

4.3. Parameters Estimation

At present, we have obtained the predicted value of the remaining life of the bearing.
Based on this, we subtract the predicted value of the remaining life of the bearing at adjacent
time points to obtain the deterioration of the bearing health score (Hy (1)), then we can
calculate the relevant parameters of the model.

Based on the health score of bearing life prediction curve obtained in Figure 6, which
represents the degradation quantity of bearings, the parameters of the bearing degradation
process model are identified as follows:

u = 0.000243, 0 = 0.0208 g = 0.000596, A = 0.400

According to the obtained bearing degradation process model, we can estimate the
bearing degradation curve as shown in Figure 8.

1.0

0.8

0.6

HI

0.4

0.2 7

0.0 — T T T T T T T T T T
0 200 400 600 800 1000 1200 1400 1530
Time

Figure 8. Curve of Bearing Degradation Process.

Based on the bearing degradation curve, the transition probability of Markov decision
process can be calculated. According to the maintenance effect in Section 3.3, the impact of
each maintenance mode on the bearing health state transition is discussed as follows:
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The state transition probability matrix after simple maintenance is:

1 0 0 0
064 036 O 0
Al = 0 027 063 O

0 0 009 091

The state transition probability matrix after condition-based maintenance is:

1 0 0 0
1 0 0 0
A2= 014 071 015 O

0 0 029 071
The state transition probability matrix after complete maintenance is:

0
A3

I
O
o O O O
o O O O

0
0
0

According to Equation (16), the health state transition probability matrix of the rolling
bearing can be obtained as:

0977 0023 0 0

0.067 0916 0.017 O
0 0.034 0933 0.033
0 0 0.013 0.987

A4 =

The row of the above matrix represents the original state, and the column is the state
after transition. The value means the probability of transition from the original state to the
new state. Finally, the Markov decision process model of the entire bearing degradation
process is obtained as shown in Figure 9. Each circle of the figure represents the different
health states of the bearing, in which the value represents the benefit of remaining in each
state, and the value on the line of circles represents the transition probability of each state.

Figure 9. Markov Decision Model.

To calculate the value of each maintenance decision on each state, the Bellman equation
is used to iteratively calculate the value function of each state, and the following results
are obtained: Revenue in healthy state R1 = 4631.84, revenue in good state R2 = 4195.92,
revenue in sub-health state R3 = 2141.21, and revenue in damaged state R4 = 0.

The benefits of different maintenance modes under different conditions are obtained
by combining the effects of the above maintenance decisions on different health status, as
shown in Table 2.
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Table 2. Revenue from different maintenance decisions.

Maintenance Modes Health Good Sub-Health Damage
Simple maintenance 4616.84 442991 2466.86 177.71
Condition-based 4591.84 4591.84 3908.72 580.95
maintenance
Complete maintenance 4331.84 4331.84 4331.84 4331.84
4.4. Summary

It can be seen from Table 2 that when the rolling bearing is in healthy state, and
simple maintenance is applied, i.e., routine maintenance, the maximum benefit can be
obtained. While the benefit of condition-based maintenance is only slightly lower than that
of simple maintenance. When the rolling bearing is under good condition, the maximum
benefit can be obtained by carrying out appropriate condition maintenance according to
its condition, and considerable benefit can be gained by carrying out simple maintenance
or complete maintenance under this condition. If the rolling bearing is under sub-health
state, the benefit of complete maintenance, i.e., directly replacing the bearing, is the largest,
which is far greater than that of the other two maintenance modes. However, if the rolling
bearing has been damaged, only when the bearing is completely repaired, that is to say, the
replacement of the bearing can obtain greater benefits.

Our conclusions obtained above are consistent with the historical experience of bear-
ing maintenance, verifying that the proposed maintenance decision-making method can
provide effective guidance for the maintenance strategy of rolling bearings under differ-
ent states.

5. Conclusions

In this paper, a maintenance decision-making scheme for equipment is proposed
based on LSTM and Markov decision process, which can provide effective maintenance
decisions for system under different degradation stages. First, the LSTM model is adopted
to predict the remaining service life to distinguish the health state quantitatively. Then, the
degradation process model is constructed, and the parameters of the model are identified.
With the aid of the degradation curve obtained from the degradation process model, the
maintenance decision-making model is established based on the Markov decision process.
Moreover, to facilitate more appropriate maintenance strategy identification, the revenue of
maintenance decisions under different health conditions is analyzed. Experimental study
with the full life cycle data set of bearings is carried out to demonstrate the effectiveness
of the proposed method. Besides the rotating mechanical systems, the application of the
proposed method can be further extended to other industrial fields.
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