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Abstract: In this work, we studied the complex behaviors of the fractional‑order financial chaotic
system, consisting of a simple, relatively chaotic system with two quadratic nonlinearities (QN) and
a sextic nonlinearity (SN). We completed and enriched the results presented in the study of Subar‑
tini et al. (2021). As a result of this, our study focused more on the fractional order and adaptive
finite‑time sliding mode control in the financial risk chaotic system. The dynamical behaviors of the
financial chaotic system (FCS) with two QN and an SN were analyzed, and the stability was investi‑
gated via the Cardano method. The stability analysis showed that the real part of all the roots was
negative, which confirmed the stability of the new system under the typical parameters. By using
the MATLAB simulation, these properties were characterized, including the phase portraits, 0‑1 test,
Poincarémap, bifurcation diagram, and Lyapunov exponent. The analysis showed that the financial
risk chaotic system of fractional order was able to exhibit chaotic behavior and periodical behavior.
In spite of external perturbations and uncertainty, an adaptive finite‑time sliding mode control strat‑
egy was devised to guide the states of the financial chaotic system to the origin in a finite amount of
time. MATLAB phase plots were employed in this study to illustrate all the main results.

Keywords: chaos; fractional‑order system; bifurcation; financial chaotic system (FCS);
adaptive control

MSC: 65P20; 26A33; 34A34; 65L07; 65L06; 93C40

1. Introduction
In many complex systems in several domains, chaos is a complex, nonlinear, dy‑

namic process, such as inmagnetic levitation [1], aerodynamicmodels of wind turbines [2],
radar communication systems [3], encryption [4], electronic circuits [5], quarter‑car vehicle
models [6], ground vehicle oscillating systems with passengers [7], bimolecular chemical
reaction–diffusion models [8], Aihara neuron networks [9], Field‑Programmable Gate Ar‑
rays [10], mobile robots [11], financial models [12], and psychological stress [13]. In recent
years, various applications of chaotic systems in the financial system have intensively been
studied, such as the IS‑LM model with distributed tax collection lags [14], the business
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cycle model by Kaldor [15], New Keynesian macroeconomics [16], US inflation, and com‑
modity prices [17]. This phenomenon makes it possible to determine the chaotic behavior
of changes in interest rates, investment demands, and the prices of goods [18]. Specifically,
market environment uncertainties interfere with the financial system. As a result, using a
dynamical complex to describe the financial chaos model is more practical.

One of the greatest differences between fractional‑order and integer‑order models is
that fractional‑order models depend on the history of the system, that is, they possess
memory [19]. Financial variables, such as exchange rates, gross domestic product, interest
rates, production, and stock prices, can have very long memory, that is, our past economic
behavior can affect our present and future behaviors. This means that all the fluctuations
in the financial variables correlate with all the future fluctuations. Thus, the fact that the
economic variables possess long memory makes fractional calculus suitable for studying
dynamic behaviors in economic systems.

Many fractional‑order chaotic models for the financial chaotic system have been stud‑
ied to investigate the complex behavior in the literature. Wang et al. [20] developed a novel
finite‑time process that controls and synchronizes a 4D fractional‑order system with mar‑
ket assurance. Chen [21] investigated the financial system of fractional order with two
quadratic nonlinearities; in addition, he demonstrated several dynamic behaviors of inter‑
est, including chaotic motion, periodic motion, and fixed points. In [22], a complete and
finite‑time synchronization technique for the stabilization of fractional‑order fuzzy neu‑
ral network systems using the nonlinear feedback control approach was proposed. With‑
out transforming the quaternion‑valued neural networks into equivalent complex‑valued
systems, the global synchronization of fractional‑order quaternion‑valued neural network
systems were studied in [23]. The complexity of a financial system of fractional order
with a time delay has been examined by Wang et al. [24]. It was discovered that chaos
and many other states might be observed with various parameters. In order to reduce
the risk and unpredictable nature of financial decisions, Pan et al. [25] investigated the
efficacy of adopting fuzzy control methods of fractional order for chaos suppression in a
financial systemwith two QNs. A novel fractional‑order finance systemwith negative val‑
ues for the system’s parameters was presented by Tacha et al. [26]. They demonstrated
how these findings may be relevant to the study of economies that are negatively im‑
pacted, such as those that experience dissaving during a financial crisis. Hajipour and
Tavakoli [27] introduced another chaotic system of fractional order with one quadratic
nonlinearity and one absolute nonlinearity. They illustrated the system’s chaotic behav‑
iors by assuming lower values for the savings amount or cost per investment variable, or
higher values for the elasticity of demand of commercial markets. Yousri andMirjalili [28]
defined a method to examine the corresponding parameters of fractional‑order chaotic dy‑
namical behavior for a hyperchaotic financial system. Cao [29] investigated the coupled
synchronous control method with the aim of synchronizing a fractionally ordered chaotic
financial system, while Wang [30] identified and predicted the symmetric chaotic finan‑
cial systems’ nonlinear fractional order via neural networks, Gaussian process regression,
and the Differential Evolution algorithm. To the best of our knowledge, there is no study
available on the fractional‑order financial chaotic system with two quadratic nonlineari‑
ties and a sextic nonlinearity based on the aforementioned literature. Motivated by the
above discussion, chaos in the financial system presented by Subartini et al. [31] is inves‑
tigated in the present study. The adaptive sliding mode control (ASMC) technique is a
common robust control approach that has been used for the stabilization/synchronization
of various chaotic systems, such as chaotic chain systems [32], fractional‑order chaotic
systems [33], chaotic gyros [34], the Genesio–Tesi chaotic system [35], fractional hyper‑
chaotic systems [36], drive–response chaotic systems [37], memristor‑based systems [38],
the chaotic non‑smooth‑air‑gap permanent magnet synchronous motor [39], time‑delay
chaotic systems [40], and power systems’ chaotic oscillations [41], etc. The ASMC tech‑
nique is designed based on slidingmode control (SMC) and adaptive switching gains. The
adaptive switching gains are employed to regulate the robust gains of SMC online. This
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approach not only reduces the chattering phenomenon effects, but it also deals with the
time‑varying exterior disturbances of the control system. In this work, we performed a
stability and dynamical analysis for the fractional‑order financial chaotic system using the
phase portraits, 0‑1 test, Poincaré map, Lyapunov exponent, and bifurcation diagram. Fi‑
nally, the chaos in this fractional‑order financial system was controlled by a finite‑time
sliding mode control law, which can operate with or without external disturbances and
uncertainties.

The remaining part of the research is organized as follows: Section 2 deals with the
mathematical models and dynamical analysis of the financial chaotic system. Section 3
elaborates upon the dynamical behavior and mathematical model of the financial chaotic
system in fractional order. In Section 4, a numerical simulation of the finite‑time SMC law
is described, and the conclusion is presented in Section 5.

2. Mathematical Models of the Financial Chaotic System
In 2021, Subartini et al. [31] defined a new financial chaotic system as follows:

.
x = z + (y − a)x
.
y = 1 − b(y + x2)− cx6
.
z = −x − z

(1)

Based on the above system, this study will show that for the following parameter
values:

a = 7.6, b = 0.1, c = 0.2 (2)

the system (1) will exhibit a chaotic attractor.
The following initial conditions will be considered in numerical simulations:

x (0) = 0.4, y (0) = 0.2, and z (0) = 0.5 (3)

Using the linear approximation method on the proposed system, the characteristic
equation becomes:

λ3 + (ab + 1)︸︷︷︸
C1

λ2 + (a + b + ab + 1)︸︷︷︸
C2

λ+ b(a + 1)︸︷︷︸
C3

= 0 (4)

According to Cardano’s Formula [42–44], the discriminant (∆) for the above general
cubic can be obtained as follows:

∆ = −27C3
2 − 4C2

3 + 18 C1C2C3 + C1
2C2

2 − 4C1
3C3 (5)

The sign of the discriminant (∆) is very significant in determining the type of root;
the potential cases of the roots with the variety discriminant are given by:

roots =


λ1, λ2,3 = ai ± bii ; i f ∆ > 0
λ1, λ2 = λ3 ; i f ∆ = 0
λ1 ̸= λ2 ̸= λ3 ; i f ∆ < 0

(6)

whereas the corresponding roots for each discriminant are given in Formulas (7)–(9), re‑
spectively, as:

λ1 = −2 3

√
h
2
− C1

3
, λ2,3 =

3

√
h
2
− C1

3
(7)

λn+1 = 6
√

16(h2 − ∆)cos
cos−1 −h√

h2−∆
+ 2πn

3
− C1

3
n = 0, 1, 2. (8)
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λ1 =

3
√

−h−
√

∆
2 +

3
√

−h+
√

∆
2 − C1

3

λ2,3 = − 1
2

(
3
√

−h−
√

∆
2 +

3
√

−h+
√

∆
2

)
− C1

3 ± i
√

3
2

(
3
√

−h−
√

∆
2 − 3

√
−h+

√
∆

2

) (9)

in which h = C3 − 1
3 C1C2 +

2
27 C1

3.
In order to simplify our results, we chose the parameter to be (a, b, c) = (7.6, 0.1, 0.2),

and relying on Cardano’s formula, we obtained ∆ = −88.0026852 and h = 22.204, and the
values given in Table 1 are the corresponding roots.

Table 1. The roots of the proposed system obtained via Cardano’s formula.

Iteration λ1 λ2 λ3

n = 0 −0.1
n = 1 −7.4448
n = 2 −1.1552

Clearly, from Table 1, the real part of the roots are negative, whichmeans that the new
system is stable under the typical parameters. The signal plots of the financial system (1)
with initial stateY (0) = (0.4, 0.2, 0.5) and constant parameters (a, b, c) = (7.6, 0.1, 0.2) (chaotic
case) are simulated in Figure 1.
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Figure 1. Output MATLAB simulation of the financial chaotic system (1) with Y (0) = (0.4, 0.2, 0.5)
and (a, b, c) = (7.6, 0.1, 0.2): (a) x‑y plane, (b) y‑z plane, and (c) x‑z plane.

The 0‑1 test is an effective tool to determinewhether the system is in a chaotic state [45].
The regular graph on the p‑s plane indicates that the system is in a periodic or quasiperi‑
odic state. Conversely, irregular graphics indicate that the system is in a state of chaos.
However, if the system diverges, there will be no graphics on the p‑s plane. Figure 2a
displays the results of the 0‑1 test with irregular graphics. Thus, in this case, the system
shows chaotic behavior.

The Poincaré map is used to analyzed the motion characteristics of the multivariable
autonomous system [45]. The phase diagram of the Poincaré map well characterizes the
reciprocating non‑periodic characteristics of chaos. If the Poincaré map is neither a finite
set nor a closed curve, then the corresponding system’s motion is in a chaotic motion state.
More specifically, if the system does not experience external noise disturbance and there
is certain damping, then the Poincaré map will be a point set with a detailed structure.
Moreover, if the Poincaré map is a finite set of a point, then the corresponding system
motion is periodic. The Poincaré map of system (1) in Figure 2b likewise exhibits chaotic
characteristics.
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3. Mathematical Model of Fractional‑Order Financial Chaotic System
Utilizing the Caputo definition, we have:

Dq f = 1
Γ(n−q)

t∫
0
(t − τ)n−q−1 f (n)(τ)dτ (m − 1 < q < m)

Dq f = dn

dtn f (t) (q = n)
(10)

where Γ is the gamma function, andm is the lowest integer less than q, with q denoting the
order of fractional derivatives. Here,

Γ(x) =
∞∫

0

tx−1e−tdt (11)

The equivalent fractional‑ordermodel for system (1) can bemathematically described
as follows: 

∗Dq
t0

x = z + (y − a)x
∗Dq

t0
y = 1 − b(y + x2)− cx6

∗Dq
t0

z = −x − z
(12)

with a, b, and c denoting the system parameters, q (0 < q ≤ 1) is the order of the fractional‑
order differential equation, and the state variables are denoted by x, y, and z.

In Figure 3, we present the phase portrait for financial system (12) of commensurate
fractional‑order q. Obviously, the fractional‑order financial chaotic system (12) can gener‑
ate chaotic attractors for q = 0.98. Moreover, Figure 4 show the phase portrait’s periodic
behavior for the financial system with q = 0.90.
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(a) x‑y plane, (b) y‑z plane, and (c) x‑z plane.
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In this work, the special‑order q of the fractional financial chaotic system (12) has
been used as a parameter to control the bifurcations and develop additional sophisticated
dynamics. In this study, the Lyapunov exponent analysis was validated using the Wolf
algorithm [46]. We set (a, b, c) = (7.6, 0.1, 0.2), with x (0) = 0.4, y (0) = 0.2, and z (0) = 0.5. It
is obvious from Figure 5 that the Lyapunov exponent spectrum coincides with the bifurca‑
tion diagram. Obviously, the fractional financial system (12) is able to display periodical
and chaotic states.
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4. Finite‑Time Fast Synchronization
In this section, in order to transfer secure communication, we describe chaos control

and finite‑time fast synchronization.
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4.1. Problem Formulation
Consider the new chaotic system (12). In order to achieve synchronization, wedivided

the new chaos system into two master–slave subsystems.
.
xm = zm + (ym − a)xm.
ym = 1 − b(ym + x2

m)− cx6
m.

zm = −xm − zm

Master subsystem

.
xs = zs + (ys − a)xs + D1 + u1.
ys = 1 − b(ys + x2

s )− cx6
s + D2 + u2.

zs = −xs − zs + D3 + u3

Slave subsystem

(13)

where υ = [u1 u2 u3]
T and D = [D1 D2 D3]

T are the control input and bounded uncertain‑
ties, respectively.

Assumption 1. In general, the synchronization of subsystems (13) is as follows:

(asi − ami) (χsi − χmi) = a′ iei
}

i = 1, 2, 3 (14)

Assumption 2. We will obtain fast finite‑time synchronization between subsystems (13) if

lim
T→τ

∥e(T)∥, ∥e(T)∥ = 0 with T ≥ τ, where τ = τ(e(0))>0, e(T) =[(ei)]
T for i = 1, 2, 3

(15)

Assumption 3. With χsi = χmi , i = 1, 2, 3, the result is:

limei(T)
T→∞

}
i = 1, 2, 3 (16)

The fast finite‑time synchronization errors, due to Assumptions 1–3 and subsystems
(13), are as follows:

.
xs −

.
xm = zs − zm + (ys − as)xs − (ym + am)xm + D1 + B1u1.

ys −
.
ym = 1 − bs(ys + x2

s ) + bm(ym + x2
m)− cx6

s + cx6
m + D2 + B2u2.

zs −
.
zm = −xs + xm − zs + zm + D3 + B3u3

(asi−ami)(χsi−χmi)=a′ iei}→



.
xs −

.
xm︸︷︷︸

.
e1

= (−as + am)︸︷︷︸
−a′

(xs − xm)︸︷︷︸
e1

+ (zs − zm)︸︷︷︸
e3

+ (ysxs − ymxm)︸︷︷︸
f1

+ D1 + B1u1

.
ys −

.
ym︸︷︷︸

.
e2

= (−bs + bm)︸︷︷︸
−b′

(ys − ym)︸︷︷︸
e2

+ (bsx2
s − bmx2

m) + (−csx6
s + cmx6

m)︸︷︷︸
f2

+ D2 + B2u2

.
zs −

.
zm︸︷︷︸

.
e3

= (−xs + xm)︸︷︷︸
−e1

+ (−zs + zm)︸︷︷︸
−e3

+ D3 + B3u3

(17)

In the matrix form,

 .
e1.
e2.
e3


︸︷︷︸

.
ei

=

−a′ 0 1
0 −b’ 0
−1 0 −1


︸︷︷︸

χi

 e1
e2
e3


︸︷︷︸

ei

+

 f1
f2
f3


︸︷︷︸

fi

+ [B1 B2 B3]︸︷︷︸
Bi

 u1
u2
u3


︸︷︷︸

υi

+ [℘1 ℘2 ℘3]︸︷︷︸
℘i

 D1
D2
D3


︸︷︷︸

Di


i = 1, 2, 3 (18)
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where ei is the error matrix, χi is the coefficient matrix, fi is the nonlinear matrix, Bi is the
controller coefficient, and ℘i is the uncertainty coefficient.

4.2. Adaptive Finite‑Time Fast Terminal Sliding Mode Control Approach
According to system (18), the results are as follows:

.
ei = χiei + fi + Biυi + ℘iDi

}
i = 1, 2, 3 (19)

In system (19), the sliding surface is defined as follows:

l = ξe (20)

where ξ = [ξ1 ξ2 ξ3] is the sliding manifold velocity vector. The fast finite‑time sliding
surface is given as:

δ = e + βδ1 + lµ1/µ2

.
δ1 = e + γlη1/η2

}
f ast f inite − time sliding sur f ace (21)

where δ1(0) = −β−1δ(0), β, γ>0 are positive constants. µ1/µ2 > η1/η2 are odd integers and
1 < µ1/µ2 < 2. With δ = 0, we obtain:

.
δ1 =

(
−βδ1 − lµ1/µ2

)
+ γ

(
−βδ1 − lµ1/µ2

)η1/η2

(22)

We define KΓ = βδ1 + lµ1/µ2 . Then, we obtain:
.
δ1 = −KΓ −Kη1/η2 γ Γη1/η2 (23)

Based on Euler–Bernoulli, we have:

δ1 = −K−1e−KT
(
−γeK(1−η1/η2)T + β1−η1/η2 δ1−η1/η2(0) + γ

) 1
1−η1/η2 (24)

According to Equation (24), finite‑time fast convergence is equal to:

Ts =
1

K(1 − η1/η2)
ln
K1−η1/η2 |δ1(0)|1−

η1/η2 + γ

γ
=

1
K(1 − η1/η2)

ln
|e(0)|1−η1/η2 + γ

γ
(25)

Theorem 1. Consider the nonlinear system (19). With sliding surface (21), we define the control
input as follows:

.
υ = B−1

i

{
(χiei + fi − sign(δi)∥℘i∥Dmi) +

(
−βei − βγeη1/η2

i − µ1/µ2l1−µ1/µ2 ei

)
− λ

δi
∥δi∥

}
(26)

where Dmi, i = 1, 2, 3 are the upper bounds of uncertainty and λ is the positive definite
(pd) matrix and it is constant. By properly selecting the parameters defined in the newly
designed controller, we will achieve fast finite‑time convergence.

Proof. To validate the controller, let the function of the Lyapunov candidate be defined as
follows:

ν(t) =
(δi

Tδi)

2
(27)
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The sliding surface δ derivative is obtained as follows:
.
δi =

.
ei + β

.
δ1 + µ1/µ2|l|

µ1/µ2−1 .
l (28)

By placing (19) in (28), the result is:

.
δi = (χiei + fi + Biυi + ℘iDi) + β

(
e + γeη1/η2

)
+ µ1/µ2|e|

µ1/µ2−1
e (29)

Substituting the new controller (26) into the derivative of the Lyapunov candidate
function (27), the result is:

.
ν(t) = δi

T(℘iDi − ∥℘i∥sign(δi)Dmi − β
(

e + γeη1/η2

)
− µ1/µ2l1−µ1/µ2 e

−λ δi
∥δi∥

+ β
.
δ1 + µ1/µ2|l|

µ1/µ2−1 .
l
)

= δi
T℘iDi − δi

T∥δi∥sign(δi)Dmi − δi
Tλ δi

∥δi∥

(30)

We obtain: (
δi

T℘iDi − ∥δi∥sign(δi)Dmi
)

=
3
∑

i=1
δi℘iDi −

3
∑

i=1
|δi|℘isign(δi)Dmi

≤
3
∑

i=1
|δi||℘iDi| −

3
∑

i=1
|δi||℘i|Dim ≤ 0

(31)

By extending Equation (30) and according to Equation (31), the results are:

.
ν(t) ≤ −δT

i λ δi
∥δi∥

≤ −σmin(λ)
∥δi∥2

∥δi∥
≤ −

√
2σmin(λ)ν

0.5(t)

(32)

Thus, it can be concluded that the sliding surface converges to the origin within a fast
finite time. Convergence time is equal to:

Ts ≤
ν0.5(δi(t0))

1√
2σmin(λ)

=
∥δi(t0)∥
σmin(λ)

(33)

The proof is complete. □

4.3. Simulation Results of Adaptive Finite‑Time Fast Terminal Sliding Mode Control
In this section, using MATLAB software, a simulation is described between two new

nonlinear systems (13), with the new control system being defined in (26). By synchro‑
nizing these two systems, we achieve the goals of secure communication in a fast, finite
timeframe.

The initial conditions and parameters of systems (13) are as follows:

am = 7.6, bm = 0.1, cm = 0.2
xm(0) = 0.4, ym(0) = 0.2, zm(0) = 0.5

}
master values

as = 7.2, bs = 0.16, cs = 0.18
xs(0) = −1.5, ys(0) = −1.33, zs(0) = −1.78

}
slave values

(34)

The controller parameters’ numerical values are shown in Table 2.
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Table 2. The controller values.

Parameter Value

β 0.24
γ 0.036
µ1 37
µ2 11
η1 21
η2 9
λ diag(0.5   1   1.5)
K diag(0.57   0.29   0.06)
℘i [3.2   0.5   4.8]
Bi [1   1   1]

The disturbances are given as:

Di =

 0.3 + 0.6 sin(ϖt)
0.8 − 0.7 cos(2ϖt)
0.4 − 0.9 sin(1.2ϖt)

 (35)

Under the new controller (26), the complete synchronization and error synchroniza‑
tion of the nonlinear master–slave systems (13) are as presented in Figures 6–8. The con‑
troller input is shown in Figure 9.
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5. Conclusions
In this study, we have presented the complex behaviors of the financial chaotic sys‑

tem in fractional order with two quadratic nonlinearities and a sextic nonlinearity. We
validated the existence of chaos via the phase portraits, 0‑1 test, Poincaré map, bifurcation
diagram, and Lyapunov exponent. The analysis showed that the financial risk chaotic sys‑
tem of fractional order is able to exhibit chaotic behavior and periodical behavior. Finally,
an illustrative example was given, and the terminal adaptive finite‑time SMC technique
was analyzed. The demonstrative examples were discussed to illustrate the efficacy and
applicability of the new finite‑time control strategy.
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