

Article Chatterjea and Čirič-Type Fixed-Point Theorems Using $(\alpha - \psi)$ Contraction on C*-Algebra-Valued Metric Space

Ibtisam Masmali^{1,*} and Saleh Omran²

- ¹ Department of Mathematics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
- ² Department of Mathematics, South Valley University, Qena 83523, Egypt; saleh.omran@sci.svu.edu.eg
- * Correspondence: iamasmali@jazanu.edu.sa

Abstract: In the present paper, we provide and verify several results obtained by using the Chatterjea and Čirič fixed-point theorems by using $(\alpha - \psi)$ -contractive mapping in *C**-algebra-valued metric space. We provide some examples and an application to illustrate our results. Our study extends and generalizes the results of several studies in the literature.

Keywords: C^* -algebra-valued metric space; fixed-point theorem; $(\alpha - \psi)$ -contractive mapping

MSC: 47H10; 46L07

1. Introduction

The Banach contraction principle [1] is one of the most important tools of analysis and has many significant applications in various fields of science. It has been improved in many ways and generalized by many researchers. A map $T : \Omega \to \Omega$, where (Ω, d) is a complete metric space, is said to be a contraction map if there exists $\lambda \in (0, 1)$, such that for all $\mu, \nu \in \Omega$

$$d(T\mu, T\nu) \le \lambda d(\mu, \nu). \tag{1}$$

This result was introduced by Banach in 1922. Kannan [2] in 1968 proved that, if (Ω, d) is a complete metric space and $T : \Omega \to \Omega$ is a map satisfying

$$d(T\mu, T\nu) \le \lambda(d(T\mu, \mu) + d(T\nu, \nu)), \tag{2}$$

where $\lambda \in (0, \frac{1}{2})$ for all $\mu, \nu \in \Omega$, then there is a unique fixed point on *T*. Later, in 1972, Chatterjea [3] proved that if (Ω, d) is a complete metric space and $T : \Omega \to \Omega$ is a mapping that exists $\lambda \in (0, \frac{1}{2})$, such that $\mu, \nu \in \Omega$, the inequality

$$d(T\mu, T\nu) \le \lambda(d(T\mu, \nu) + d(T\nu, \mu))$$
(3)

is satisfied; thus, T has a unique fixed point.

Ciric [4] in 1974 introduced an interesting general contraction condition. If there exists $\lambda \in (0, 1)$, such that for all $\mu, \nu \in \Omega$, and $T : \Omega \to \Omega$ is a map satisfying

$$d(T\mu, T\nu) \le \lambda \cdot max\{d(\mu, \nu), d(T\mu, \mu)d(T\nu, \nu), d(T\mu, \nu), d(T\nu, \mu)\},\tag{4}$$

then *T* has a unique fixed point.

On the other hand, Samet et al. [5,6] studied α - ψ -contractive mappings in metric spaces. Many researchers have established related studies to α -admissible and $\alpha - \psi$ -contractive mappings and related fixed-point theorems (see [7–15]).

Recently, Ma et al. [10] introduced the more generalized notion 0f a C^* -algebra-valued metric space by replacing real numbers with the positive cone of C^* -algebra. This line of

Citation: Masmali, I.; Omran, S. Chatterjea and Čirič-Type Fixed-Point Theorems Using $(\alpha - \psi)$ Contraction on *C**-Algebra-Valued Metric Space. *Mathematics* **2022**, *10*, 1615. https://doi.org/10.3390/ math10091615

Received: 12 March 2022 Accepted: 6 May 2022 Published: 9 May 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). research was continued in [16–22], where several other fixed-point results were obtained in the framework of C^* -algebra-valued metric space.

Throughout this paper, we suppose that *A* is a unital *C*^{*}-algebra with a unit *I_A*. We mean that a unital *C*^{*}-algebra is a complex Banach algebra *A* with an involution map $*: A \to A, a \to a^*$, such that $(a^*)^* = a, (ab)^* = a^*b^*, (a+b)^* = a^* + b^*$ and $(\lambda a)^* = \overline{\lambda}a^*$ for $a, b, A, \lambda \in \mathbb{C}$, such that $||a^*a|| = ||a||^2$. Set $A_h = \{a \in A : a = a^*\}$. An element $a \in A$ is a positive element if $a = a^*$ and $\sigma(a) \subset \mathbb{R}^+$, where $\sigma(a)$ is the spectrum of *a*. We define a partial ordering \preceq on *A* as $a \preceq b$ if $0_A \preceq b - a$, where 0_A means the zero element in *A*, and we let A^+ denote the $\{a \in A : a \succeq 0_A\}$ and $|a| = (a^*a)^{\frac{1}{2}}$.

The results described in this article extend some fixed-point theorems in C^* -algebravalued metric spaces. C^* -algebras are considered typical examples of quantum spaces and non-commutative spaces. They play an important role in the non-commutative geometry project introduced by Alain Connes [23]. Thus, the theory of metric space-valued C^* algebras should apply to many problems in quantum spaces, such as matrices and bounded linear operators on Hilbert spaces. Therefore, C^* -algebras and their metric provide a non-commutative version of ordinary metric spaces.

2. Preliminaries

In this section, we introduce some basic notions which will be used in the following work.

Lemma 1. Suppose that A is a unital C*-algebra with unit I_A . The following holds. (1) If $a \in A$, with $||a|| < \frac{1}{2}$, then 1 - a is invertible and $||a(1-a)^{-1}|| < 1$. (2) If $a, b \in A^+$ and ab = ba, then $a.b \succeq 0_A$. (3) Let $a \in A'$. If $b, c \in A$ with $b \succeq c \succeq 0_A$ and $1 - a \in (A')^+$ is an invertible element, then $(I_A - a)^{-1}b \succeq (I_A - a)^{-1}c$, where $A' = \{b \in A : ab = ba \ \forall a \in A\}$. We refer to [24] for more C*algebra details.

Definition 1. [10] Let Ω be a non-empty set. Suppose the mapping $d_A : \Omega \times \Omega \to A$ satisfies: (1) $d_A(\mu, \nu) \succeq 0_A$ for all $\mu, \nu \in \Omega$ and $d_A(\mu, \nu) = 0_A \Leftrightarrow \mu = \nu$. (2) $d_A(\mu, \nu) = d_A(\nu, \mu)$ for all $\mu, \nu \in \Omega$. (3) $d_A(\mu, \xi) \preceq d_A(\mu, \nu) + d_A(\nu, \xi)$ for all $\mu, \nu, \xi \in \Omega$. Then, d_A is called a C*-algebra-valued metric on Ω and (Ω, A, d_A) is called C*-algebra-valued metric space.

Example 1. Let Ω be a Banach space and $d_A : \Omega \times \Omega \to A$ given by $d_A(\mu, \nu) = \|\mu - \nu\| \cdot a$, for all $\mu, \nu \in \Omega$, which should be where $a \in A^+$, $a \succeq 0$. It is easy to verify that (Ω, A, d_A) is a C^{*}-algebra-valued metric space.

Example 2. Let $\Omega = \mathbb{C}$ and $A = M_n(\mathbb{C})$. It is obvious that A is a \mathbb{C}^* -algebra with the matrix norm and the involution given by $*: M_n(\mathbb{C}) \to M_n(\mathbb{C}), (Z_{ij})_{1 \le i,j \le n} \to (Z_{ij})_{1 \le i,j \le n}^* = (\overline{Z_{ji}})_{1 \le i,j \le n}$, where $\overline{Z_{ij}}$ is the conjugate of $Z_{ij}, Z_{ij} \in \mathbb{C}$. Define a mapping $d_A : \Omega \times \Omega \to A$, by:

$$d(Z_1, Z_2) = diag(e^{i\theta_1}|Z_1 - Z_2|, ..., e^{i\theta_k}|Z_1 - Z_2|, ..., e^{i\theta_n}|Z_1 - Z_2|)$$

$$=\begin{pmatrix} e^{i\theta_1}|Z_1-Z_2| & \cdots & 0 & \cdots & 0\\ \vdots & \ddots & \vdots & & \vdots\\ 0 & \cdots & e^{i\theta_k}|Z_1-Z_2| & \cdots & 0\\ \vdots & & \vdots & \ddots & \vdots\\ 0 & \cdots & 0 & \cdots & e^{i\theta_n}|Z_1-Z_2| \end{pmatrix},$$

for all $Z_1, Z_2 \in \mathbb{C}$, $i = \sqrt{-1}$, k = 1, ..., n, $\theta_k \in [0, \frac{\pi}{2}]$. Then, (Ω, A, d_A) is a C*-algebra-valued metric space. It is clear that it is a generalization of the complex-valued metric space given in [25], when $A = \mathbb{C}$.

Definition 2. Let (Ω, A, d_A) be a C^{*}-algebra-valued metric space, $\mu \in \Omega$, and $\{\mu_n\}_{n=1}^{+\infty}$ be a sequence in Ω . Then,

(*i*) $\{\mu_n\}_{n=1}^{+\infty}$ convergent to μ whenever, for every $\varepsilon \in A$ with $\varepsilon \succ 0_A$, there is a natural number $N \in \mathbb{N}$, such that

$$d_A(\mu_n,\mu) \prec \varepsilon$$

for all n > N. We denote this by $\lim_{n \to \infty} \mu_n = \mu$ or $\mu_n \to \mu$ as $n \to +\infty$.

(ii) $\{\mu_n\}_{n=1}^{+\infty}$ is said to be a Cauchy sequence whenever, for every $\varepsilon \in A$ with $\varepsilon \succ 0_A$, there is a natural number $N \in \mathbb{N}$, such that

$$d_A(\mu_n,\mu_m)\prec\varepsilon$$
,

for all n, m > N.

Lemma 2. (*i*) $\{\mu_n\}_{n=1}^{+\infty}$ is convergent in Ω if, for any element $\epsilon > 0$, there is $N \in \mathbb{N}$, such that for all n > N, $||d(\mu_n, \mu)|| \le \epsilon$.

(ii) $\{\mu_n\}_{n=1}^{+\infty}$ is a Cauchy sequence in Ω if, for any $\epsilon > 0$ there is $N \in \mathbb{N}$, such that $\|d_A(\mu_n, \mu_m)\| \leq \epsilon$, for all n, m > N. We say that (Ω, A, d_A) is a complete C*-algebra-valued metric space if every Cauchy sequence is convergent with respect to A.

Example 3. Let Ω be a compact Hausdorff space. We denote by $C(\Omega)$ the algebra of all complexvalued continuous functions on Ω with pointwise addition and multiplication. The algebra $C(\Omega)$ with the involution defined by $f^*(\mu) = \overline{f(\mu)}$ for each $f \in C(\Omega), \mu \in \Omega$ and with the norm $\|f\|_{\infty} = \sup\{|f(\mu)|, \mu \in \Omega\}$ is a commutative C^* -algebra where unit $I_{C(\Omega)}$ is the constant function. Let $C^+(\Omega) = \{f \in C(\Omega) : \overline{f(\mu)} = f(\mu), f(\mu) \ge 0\}$ denote the positive cone of $C(\Omega)$, with partial order relation $f \le g$ if and only if $f(\mu) \le g(\mu)$. Put $d_{C(\Omega)} : C(\Omega) \times C(\Omega) \rightarrow$ $C(\Omega)$ as $d_{C(\Omega)}(f,g) = \sup_{\mu \in \Omega} \{|f(\mu) - g(\mu)|\}.I_{C(\Omega)}$. It is clear that $(C(\Omega), C(\Omega), d_{C(\Omega)})$ is a complete C^* -algebra-valued metric space.

Definition 3. [6] Let $T : \Omega \to \Omega$ be a self map and $\alpha : \Omega \times \Omega \to [0, +\infty)$. Then, T is called α -admissible if for all $\mu, \nu \in \Omega$ and $\alpha(\mu, \nu) \ge 1$ implies $\alpha(T\mu, T\nu) \ge 1$.

Definition 4. Let Ω be a non-empty set and $\alpha_A : \Omega \times \Omega \to (A^+)'$ be a function. We say that the self map T is α_A -admissible if for all $(\mu, \nu) \in \Omega \times \Omega$, $\alpha_A(\mu, \nu) \succeq I_A \Rightarrow \alpha_A(T\mu, T\nu) \succeq I_A$, where I_A is the unit of A.

Definition 5. Let (Ω, A, d_A) be a C*-algebra-valued metric space and $T : \Omega \to \Omega$ be a mapping. We say that T is an α_A - ψ_A -contractive mapping if there exist two functions $\alpha_A : \Omega \times \Omega \to A_+$ and $\psi_A \in \Psi_A$, such that

$$\alpha_A(\mu,\nu)d_A(T\mu,T\nu) \preceq \psi_A(d_A(\mu,\nu)),$$

for all $\mu, \nu \in \Omega$.

Definition 6. Suppose that A and B are C*-algebras. A mapping $\psi : A \rightarrow B$ is said to be a C*-homomorphism if:

(a) $\psi(\lambda_1 a_1 + \lambda_2 a_2) = \lambda_1 \psi(a_1) + \lambda_2 \psi(a_2)$ for all $\lambda_1, \lambda_2 \in \mathbb{C}$ and $a_1, a_2 \in A$; (b) $\psi(a_1 a_2) = \psi(a_1)\psi(a_2), \forall a_1, a_2 \in A$; (c) $\psi(a^*) = \psi(a)^*, \forall a \in A$; and (d) ψ maps the unit in A to the unit in B.

Definition 7. If $\psi : A \to B$ is a linear mapping in C^* -algebra, it is said to be positive if $\psi(A^+) \subseteq B^+$. In this case, $\psi(A_h) \subseteq B_h$, and the restriction map $\psi : A_h \to B_h$ increases. Every C^* -homomorphism is contractive and hence bounded and every *-homomorphism is positive.

Definition 8. Let Ψ_A be the set of positive functions $\psi_A : A^+ \to A^+$ satisfying the following conditions:

(a) $\psi_A(a)$ is continuous and non-decreasing, $\psi_A(a) \prec a$; (b) $\psi_A(a) = 0$ iff a = 0; and (c) $\sum_{n=1}^{\infty} \psi_A^n(a) < \infty$, $\lim_{n \to \infty} \psi_A^n(a) = 0$ for each $a \succ 0$, where ψ_A^n is the nth-iterate of ψ_A .

3. Main Results

In this section, we give some types of Chatterjea and Ciric fixed-point theorems in a C^* -algebra-valued metric space using $(\alpha - \psi)$ -contraction.

Theorem 1. (*Chatterjea Type*) Let (Ω, A, d_A) be a complete C^{*}-algebra-valued metric space and $T : \Omega \to \Omega$, be a mapping satisfying:

$$\alpha_A(\mu,\nu)d_A(T\mu,T\nu) \preceq \psi_A(\frac{d_A(T\mu,\nu) + d_A(T\nu,\mu)}{2}),\tag{5}$$

for $\mu, \nu \in \Omega$, where

$$lpha_A:\Omega imes\Omega o A^+$$
 and $\psi_A\in \Psi_A$, $\psi_A\prec rac{1}{2}.I_A$

and the following conditions hold: (a) T is α_A -admissible; (b) There exists $\mu_0 \in \Omega$, such that $\alpha_A(\mu_0, T\mu_0) \succeq I_A$; and (c) T is continuous. Then, T has a fixed point in Ω .

Proof. Let $\mu_0 \in \Omega$, such that $\alpha_A(\mu_0, T\mu_0) \succeq I_A$, and define the sequence $\{\mu_n\}_{n=0}^{+\infty}$ in Ω , such that $\mu_{n+1} = T\mu_n$ for all $n \in \mathbb{N}$. If $\mu_n = \mu_{n+1}$ for some $n \in \mathbb{N}$, then μ_n is a fixed point for *T*.

Suppose that $\mu_n \neq \mu_{\mu+1}$ for all $n \in \mathbb{N}$. Because *T* is α_A -admissible, we obtain

$$\alpha_A(\mu_0,\mu_1) = \alpha_A(\mu_0,T\mu_0) \succeq I_A \Rightarrow$$

$$\alpha_A(T\mu_0, T^2\mu_0) = \alpha_A(\mu_1, \mu_2) \succeq I_A.$$
(6)

By induction, we have $\alpha_A(\mu_n, \mu_{n+1}) \succeq I_A$ for all $n \in \mathbb{N}$. By using inequalities (5) and (6), we have

$$\begin{aligned} d_A(\mu_n, \mu_{n+1}) &= d_A(T\mu_{n-1}, T\mu_n) \\ &\preceq & \alpha_A(\mu_{n-1}, \mu_n) d_A(T\mu_{n-1}, T\mu_n) \\ &\preceq & \psi_A(\frac{d_A(T\mu_{n-1}, \mu_n) + d_A(T\mu_n, \mu_{n-1})}{2}) \\ &= & \psi_A(\frac{d_A(\mu_n, \mu_n) + d_A(T\mu_n, \mu_{n-1})}{2}) \\ &= & \psi_A((\frac{d_A(\mu_n, \mu_n)) + \psi_A(d_A(\mu_{n+1}, \mu_{n-1})}{2}). \end{aligned}$$

Because $\varphi_A(0) = 0$, we obtain

$$d_A(\mu_n, \mu_{n+1}) \preceq \psi_A(\frac{d_A(\mu_{n+1}, \mu_{n-1})}{2}).$$
(7)

Applying triangular inequality in (7), we have

$$d_A(\mu_n,\mu_{n+1}) \preceq \psi_A \frac{(d_A(\mu_{n+1},\mu_n)+d_A(\mu_n,\mu_{n-1}))}{2}.$$

Because ψ_A is additive, we have

$$d_A(\mu_n,\mu_{n+1}) \preceq \frac{\psi_A(d_A(\mu_{n+1},\mu_n))}{2} + \frac{\psi_A(d_A(\mu_n,\mu_{n-1}))}{2}$$

Thus,

$$(\frac{1}{2}-\psi_A)(d_A(\mu_n,\mu_{n+1})) \preceq \frac{1}{2}\psi_A(d_A(\mu_n,\mu_{n-1})),$$

and we have

$$d_A(\mu_n,\mu_{n+1}) \preceq \frac{1}{2}(\psi_A(\frac{1}{2}-\psi_A)^{-1})(d_A(\mu_n,\mu_{n-1})).$$

Putting $\frac{1}{2}\psi_A(\frac{1}{2}-\psi_A)^{-1} = \phi_A$ by induction, we have

$$d_A(\mu_n, \mu_{n+1}) \preceq \phi_A^n(d_A(\mu_0, \mu_1)),$$

for all $n \in \mathbb{N}$. Let $n, m \in \mathbb{N}$ with m > n. We obtain

$$d_A(\mu_n,\mu_m) \preceq \sum_{k=n}^{m-1} \phi_A^k(d_A(\mu_0,\mu_1)) \quad \to \quad 0_A \ (as \ n \to +\infty).$$

Therefore, we can prove that $\{\mu_n\}$ is a Cauchy sequence in the *C**-algebra metric space (Ω, A, d_A) .

Because (Ω, A, d_A) is complete, there exists $\mu \in \Omega$, such that $\mu_n \to \mu$ as $n \to +\infty$. From the continuity of *T*, it follows that $\mu_{n+1} = T\mu_n \to T\mu$ is as $n \to +\infty$.

By continuity of this limit, we have $T\mu = \mu$ —that is, μ is a fixed point of *T*.

The proof of the uniqueness is as follows. If $\nu \neq \mu$ is another fixed point of *T*, then

$$\begin{array}{rcl} 0_A \leq d_A(\mu,\nu) &=& d_A(T\mu,T\nu) \\ &\leq& \alpha_A(\mu,\nu)d_A(T\mu,T\nu) \\ &\leq& \psi_A \frac{(d_A(T\mu,\nu)+d_A(T\nu,\mu))}{2} \\ &=& \psi_A \frac{(d_A(\mu,\nu)+d_A(\mu,\nu))}{2} \\ &=& I_A \psi_A(d_A(\mu,\nu)), \ \psi_A(a) \prec a \ for \ any \ a \in A_r. \end{array}$$

This implies that

$$0_A \preceq d_A(\mu, \nu) \prec d_A(\mu, \nu)$$

which gives a contradiction, and we can obtain $\mu = \nu$. This completes the proof. \Box

Corollary 1. Let (Ω, A, d) be a complete C*-algebra-valued metric space. Suppose $T : \Omega \to \Omega$ satisfies for all $\mu, \nu \in \Omega$

$$d_A(T\mu, T\nu) \le \mathbb{A}(d_A(T\mu, \nu) + d_A(T\nu, \mu)),$$

where $\mathbb{A} \in (A')^+$ and $\|\mathbb{A}\| \leq \frac{1}{2}$. Then, there exists a unique fixed point T in Ω [10].

Proof. This is an immediate consequence of Theorem 1, with $\alpha_A(\mu, \nu) = Id$, $\psi_A(a) = \mathbb{A}a_{\mu}$, where $a \in A$, $\mathbb{A} \in (A')^+$. \Box

Theorem 2. (Banach-Chatterjea Type) Let (Ω, A, d_A) be a complete C*-algebra-valued metric space and $T : \Omega \to \Omega$ be a mapping satisfying

$$\alpha_{A}(\mu,\nu)d_{A}(T\mu,T\nu) \preceq \frac{\psi_{A}(d_{A}(\mu,\nu) + (d_{A}(T\mu,\nu) + d_{A}(T\nu,\mu)))}{3}, \ \psi_{A} \prec \frac{1}{3}.I_{A}$$
(8)

for $\mu, \nu \in \Omega$, where the following conditions hold: (i) T is α_A -admissible; (ii) there exists $\mu_0 \in \Omega$, such that $\alpha_A(\mu_0, T\mu_0) \succeq I_A$; and (iii) T is continuous. Then, T has a fixed point in Ω .

Proof. Following the first part of the proof in the Theorem 1, we obtain

$$\alpha_A(\mu_n,\mu_{n+1}) \succeq I_A \text{ for all } n \in \mathbb{N}.$$
(9)

By using inequalities (8) and (9), we have

$$\begin{aligned} d_A(\mu_n, \mu_{n+1}) &= d_A(T\mu_{n-1}, T\mu_n) \\ &\preceq & \alpha_A(\mu_{n-1}, \mu_n)(d_A(T\mu_{n-1}, T\mu_n)) \\ &\preceq & \frac{1}{3}\psi_A(d_A(\mu_{n-1}, \mu_n) + d_A(T\mu_{n-1}, \mu_n) + d_A(T\mu_n, \mu_{n-1})) \\ &= & \frac{1}{3}\psi_A(d_A(\mu_{n-1}, \mu_n) + d_A(\mu_n, \mu_n) + d_A(\mu_{n+1}, \mu_{n-1})) \\ &= & \frac{1}{3}\psi_A(d_A(\mu_{n-1}, \mu_n) + d_A(\mu_{n+1}, \mu_{n-1})). \end{aligned}$$

By using triangular inequality, we obtain

$$d_A(\mu_n, \mu_{n+1}) \preceq \frac{1}{3} \psi_A(d_A(\mu_{n-1}, \mu_n) + d_A(\mu_{n-1}, \mu_n) + d_A(\mu_n, \mu_{n+1}))$$

= $\frac{2}{3} \psi_A(d_A(\mu_{n-1}, \mu_n)) + \frac{1}{3} \psi_A(d_A(\mu_n, \mu_{n+1})).$

Thus, we have

$$(1-\frac{1}{3}\psi_A)(d_A(\mu_n,\mu_{n+1})) \preceq \frac{2}{3}\psi_A(d_A(\mu_{n-1},\mu_n)).$$

This implies that

$$d_A(\mu_n,\mu_{n+1}) \leq \frac{2}{3}\psi_A(1-\frac{1}{3}\psi_A)^{-1}(d_A(\mu_{n-1},\mu_n)).$$

Putting $\phi_A = \frac{2}{3}\psi_A(1-\frac{1}{3}\psi_A)^{-1}$, we obtain

$$d_A(\mu_n,\mu_{n+1}) \preceq \phi_A^n(d_A(\mu_0,\mu_1))$$

for $m \ge n$. Thus, we obtain

$$d_A(\mu_n,\mu_m) \leq \sum_{k=n}^{m-1} \phi_A^k(d_A(\mu_0,\mu_1))$$

$$\to 0 \text{ as } (n \to +\infty).$$

Thus, $\{\mu_n\}$ is a Cauchy sequence in Ω with respect to (Ω, A, d_A) .

Because (Ω, A, d_A) is a complete C^* -algebra-valued metric space, we conclude that $\{\mu_n\}$ is a convergence sequence, and so $\{\mu_n\} \to \mu$ as $n \to +\infty$ and $T\mu = \mu$ as $n \to +\infty$. Therefore, μ is a fixed point of T.

To prove the uniqueness, we suppose that $(\nu \neq \mu)$ is another fixed point of *T*. Thus,

$$\begin{array}{rcl} 0_A \leq d_A(\mu, \nu) &=& d_A(T\mu, T\nu) \\ \leq & \alpha_A(\mu, \nu)\psi_A(d_A(T\mu, T\nu)) \\ \leq & \frac{1}{3}\psi_A(d_A(\mu, \nu) + d_A(T\mu, \nu) + d_A(T\nu, \mu)) \\ \leq & \frac{1}{3}\psi_A(d_A(\mu, \nu) + d_A(\mu, \nu) + d_A(\mu, \nu)) \\ \leq & \psi_A(d_A(\mu, \nu)) \prec d_A(\mu, \nu). \end{array}$$

This is a contradiction, so $d_A(\mu, \nu) = 0_A$ and $\mu = \nu$. \Box

Corollary 2. *Let* (Ω, d) *be a complete real-valued metric space. Suppose* $T : \Omega \to \Omega$ *satisfies for all* $\mu, \nu \in \Omega$

$$d(T\mu, T\nu) \leq k(d(\mu, \nu) + d(T\mu, \nu) + d(T\nu, \mu)),$$

where $k \in (0, \frac{1}{3})$. Then, T has a unique fixed point in Ω .

Proof. This is an immediate consequence of Theorem 2, with $\mathbb{A} = \mathbb{R}$ and $\alpha_A(\mu, \nu) = I$ and $\psi_A(t) = kt, t \in \mathbb{R}$. \Box

Theorem 3. (*Ćirić Contraction Type*) Let (Ω, A, d_A) be a complete C*-algebra-valued metric space and $T : \Omega \to \Omega$ be a mapping satisfying

$$\alpha_A(\mu,\nu)d_A(T\mu,T\nu) \preceq \quad \psi_A(M_A(\mu,\nu)) \tag{10}$$

$$M_A(\mu,\nu) = \frac{I_A}{3} [d_A(\mu,\nu) + (d_A(T\mu,\mu) + d_A(T\nu,\nu)) + (d_A(T\mu,\nu) + d_A(T\nu,\mu)], \ \psi_A \prec \frac{1}{2} I_A$$

for $\mu, \nu \in \Omega$, where the following conditions hold: (i) T is α_A -admissible; (ii) there exists $\mu_0 \in \Omega$, such that $\alpha_A(\mu_0, T\mu_0) \succeq I_A$; and (iii) T is continuous. Then, T has a fixed point in Ω .

Proof. Following the first part of the proof in the Theorem 1, we obtain

$$\alpha_A(\mu_n, \mu_{n+1}) \succeq I_A \text{ for all } n \in \mathbb{N}.$$
(11)

By using (10) and (11), we have

$$d_{A}(\mu_{n},\mu_{n+1}) = d_{A}(T\mu_{n-1},T\mu_{n})$$

$$\leq \alpha_{A}(\mu_{n-1},\mu_{n})d_{A}(T\mu_{n-1},T\mu_{n})$$

$$\leq \psi_{A}(M_{A}(\mu_{n-1},\mu_{n})).$$
(12)

On the other hand, we have

$$M_{A}(\mu_{n-1},\mu_{n}) = \frac{1}{3}(d_{A}(\mu_{n-1},\mu_{n}) + d_{A}(T\mu_{n-1},\mu_{n-1}) + d_{A}(T\mu_{n},\mu_{n}))$$

+ $d_{A}(T\mu_{n-1},\mu_{n}) + d_{A}(T\mu_{n},\mu_{n-1})).I_{A}$
So, $M_{A}(\mu_{n-1},\mu_{n}) = \frac{1}{3}I_{A}(d_{A}(\mu_{n},\mu_{n-1}) + d_{A}(\mu_{n},\mu_{n-1}) + d_{A}(\mu_{n},\mu_{n+1}))$
+ $d_{A}(\mu_{n},\mu_{n}) + d_{A}(\mu_{n+1},\mu_{n-1})).$

Because $d_A(\mu, \mu) = 0$, we obtain

$$M_A(\mu_{n-1},\mu_n) \leq \frac{1}{3} I_A(d_A(\mu_n,\mu_{n-1}) + d_A(\mu_n,\mu_{n-1}) + d_A(\mu_n,\mu_{n+1}) + d_A(\mu_{n+1},\mu_{n-1})).$$

So,
$$M_A(\mu_{n-1},\mu_n) \leq \frac{1}{3}I_A(2d_A(\mu_n,\mu_{n-1})+d_A(\mu_n,\mu_{n+1})+d_A(\mu_{n+1},\mu_{n-1}))).$$

By using triangular inequality, we obtain

$$\begin{aligned} d_A(\mu_n,\mu_{n+1}) &\preceq \frac{1}{3}\psi_A I_A[2d_A(\mu_n,\mu_{n-1}) + d_A(\mu_n,\mu_{n+1}) + d_A(\mu_n,\mu_{n+1}) + d_A(\mu_n,\mu_{n-1})]. \\ d_A(\mu_n,\mu_{n+1}) &\preceq \frac{1}{3}\psi_A I_A[3d_A(\mu_{n-1},\mu_n) + 2d_A(\mu_n,\mu_{n+1})]. \end{aligned}$$

Therefore,

$$\begin{aligned} (1 - \frac{2}{3}\psi_A)(d_A(\mu_n, \mu_{n+1})) & \preceq & \psi_A I_A(d_A(\mu_{n-1}, \mu_n)) \\ d_A(\mu_n, \mu_{n+1}) & \preceq & \psi_A (1 - \frac{2}{3}\psi_A)^{-1} I_A(d_A(\mu_{n-1}, \mu_n)). \end{aligned}$$

Putting $\phi_A = \psi_A (1 - \frac{2}{3}\psi_A)^{-1}$, $\|\psi_A\| < \frac{1}{2}$; then, we obtain

$$d_A(\mu_n, \mu_{n+1}) \preceq \phi_A^n(d_A(\mu_0, \mu_1)).$$
(13)

Let $n, m \in \mathbb{N}$, such that m > n. We thus obtain

$$d_A(\mu_n,\mu_m) \quad \preceq \quad \sum_{k=n}^{m-1} \phi_A^k(d_A(\mu_0,\mu_1)) \\ \rightarrow \quad 0 \text{ as } (n \to +\infty).$$

Thus, $\{\mu_n\}$ is a Cauchy sequence and $\mu_n \to \mu$ as $n \to +\infty$. Thus, we obtain $T\mu = \mu$ as a fixed point of *T*.

To prove the uniqueness, we suppose that $(\nu \neq \mu)$ is another fixed point of *T*. Thus,

Because $\psi_A(a) \prec a$, this implies that $0 \preceq d_A(\mu, \nu) \prec d_A(\mu, \nu)$, which gives a contradiction. Then, we obtain $\mu = \nu$. \Box

Example 4. Let Ω be a Banach space and $d_A : \Omega \times \Omega \to A$ be defined as $d_A(\mu, \nu) = \|\mu - \nu\| \cdot I_A$ for all $\mu, \nu \in \Omega$. I_A is the unit of A because Ω is a Banach space. Then, (Ω, A, d_A) is a complete C^* -algebra-valued metric space. Define $T : \Omega \to \Omega$ as $T\mu = 2\mu$ and define $\psi_A : A^+ \to A^+$ as $\psi_A(a) = 3aI_A$ for all $a \in A^+$, where A^+ is the positive cone of A. Additionally, $\alpha_A : \Omega \times \Omega \to A^+$ is defined by $\alpha_A(\mu, \nu) = I_A$, where

$$\alpha_A(T\mu, T\nu) = \alpha_A(2\mu, 2\nu) = 2\alpha_A(\mu, \nu) = 2I_A \succeq I_A.$$

Now,

$$\begin{aligned} d_A(T\mu, T\nu) &= \|T\mu - T\nu\| \cdot I_A = \|2\mu - 2\nu\| \cdot I_A \\ &= \|2\mu - 2\nu + \nu - \nu + \mu - \mu\| \cdot I_A \\ &= \|(2\mu - \nu) - (2\nu - \mu) - (\mu - \nu)\| \cdot I_A \\ &\preceq (\|2\mu - \nu\| + \|2\nu - \mu\| + \|\mu - \nu\|) \cdot I_A \\ &\preceq (\|T\mu - \nu\| + \|T\nu - \mu\| + \|\mu - \nu\|) \cdot I_A \\ &= (d_A(T\mu, \nu) + d_A(T\nu, \mu) + d_A(\mu, \nu)) \\ &\preceq \frac{1}{3} \psi_A(d_A(T\mu, \nu) + d_A(T\nu, \mu) + d_A(\mu, \nu)). \end{aligned}$$

Applying $\alpha_A(\mu, \nu)$, we obtain

$$\alpha_A(\mu,\nu)d_A(T\mu,T\nu) \quad \preceq \quad \frac{1}{3}\psi_A(d_A(T\mu,\nu)+d_A(T\nu,\mu)+d_A(\mu,\nu)).$$

This satisfies the conditions in Theorem 2. Then, T has a fixed point of Ω *.*

We introduce a numerical example, assuming that the metric space is valued-noncommutative C^* -algebra $M_2(\mathbb{R})$

Example 5. Let $\Omega = \mathbb{R}$ and $A = M_2(\mathbb{R})$, where $M_2(\mathbb{R})$ is the set of all 2×2 matrices entries in \mathbb{R} . It is obvious that $M_2(\mathbb{R})$ is a C^* -algebra with matrix norm and involution $*: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by $*: a \to a^t$, where a^t is the transpose of $a, a \in M_2(\mathbb{R})$. Define

$$d_A(\mu,\nu) = \begin{pmatrix} |\mu-\nu| & 0\\ 0 & k|\mu-\nu| \end{pmatrix},$$

for all $\mu, \nu \in \Omega$, k > 0. It is clear that (Ω, A, d_A) is C^* -algebra-valued metric space. To verify the contraction conditions in Theorem 3, we take $\mu = 1$, $\nu = 2$, k = 3.

Additionally, we define $T: \Omega \to \Omega$ by $T(\mu) = 2\mu$ and $\alpha_A: \Omega \times \Omega \to M_2(\mathbb{R})^+$ by

$$\alpha_A(\mu,\nu) = 2 \begin{pmatrix} |\mu-\nu| & 0\\ 0 & |\mu-\nu| \end{pmatrix}.$$

and $\psi_A : M_2(\mathbb{R})^+ \to M_2(\mathbb{R})^+$, by $\psi_A(a) = 3a$, for $a \in M_2(\mathbb{R})^+$, $\mu, \nu \in Z$, where $M_2(\mathbb{R})^+$ is the set of positive matrices of $M_2(\mathbb{R})$.

Now, by simple calculation, we obtain

$$d_A(\mu, \nu) = d_A(1, 2) = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix},$$

$$d_A(T\mu, T\nu) = d_A(2, 4) = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix},$$

$$d_A(T\mu,\nu) = d_A(2,2) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

$$d_A(T\nu,\mu) = d_A(4,1) = \begin{pmatrix} 3 & 0 \\ 0 & 9 \end{pmatrix},$$

$$d_A(T\mu,\mu) = d_A(4,1) = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix},$$

$$d_A(T\nu,\nu) = d_A(4,1) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix},$$

$$\alpha_A(\mu,\nu) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

Thus, we calculate the right hand side of the inequality (10) in Theorem 3 as

$$M_A(\mu,\nu) = \frac{1}{3}(d_A(\mu,\nu) + d_A(T\mu,\nu) + d_A(T\nu,\mu) + d_A(T\mu,\mu) + d_A(T\nu,\nu))$$

= $\frac{1}{3}\begin{pmatrix}7 & 0\\0 & 21\end{pmatrix}.$

Therefore, $\psi(M_A(\mu,\nu) = \begin{pmatrix} 7 & 0 \\ 0 & 21 \end{pmatrix}$.

On the other hand, the left hand side of the inequality (10) in Theorem 3 is given by $\alpha_A(\mu,\nu)d_A(T\mu,T\nu) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 12 \end{pmatrix}.$

Hence, it is obvious that T is $\alpha_A - \psi_A$ *-admissible and, because* $\begin{pmatrix} 2 & 0 \\ 0 & 12 \end{pmatrix} \leq \begin{pmatrix} 7 & 0 \\ 0 & 21 \end{pmatrix}$ *, we an obtain*

can obtain

$$\alpha_A(\mu,\nu)d_A(T\mu,T\nu) \leq \psi_A(M_2(\mu,\nu)).$$

Thus, all conditions of Theorem 3 are satisfied. Therefore, there exists a unique fixed point of T, and the zero matrix is the fixed point of $T \in \Omega$.

We discuss a numerical example that satisfies the conditions of Theorem 3, where the metric space in this example is valued-commutative C^* -algebra \mathbb{C}^2 .

Example 6. Let $\Omega = [0, \infty)$ and $A = \mathbb{C}^2 = \mathbb{C} \oplus \mathbb{C}$, the set of direct sum of two copies of complex numbers. \mathbb{C}^2 with the vector addition and pointwise multiplication defined by $(Z_1, Z_2) + (W_1, W_2) = (Z_1 + W_1, Z_2 + W_2)$, and $(Z_1, Z_2) \cdot (W_1, W_2) = (Z_1 \cdot W_1, Z_2 \cdot W_2)$, for all $Z_1, Z_2, W_1, W_2 \in \mathbb{C}$, is a \mathbb{C}^* -algebra with the maximum norm given by $||(Z_1, Z_2)|| = \max\{|Z_1|, |Z_2|\}$, and involution $* : \mathbb{C}^2 \to \mathbb{C}^2$ given by $(Z_1, Z_2)^* = (\overline{Z_1}, \overline{Z_2})$, for all $Z_1, Z_2 \in \mathbb{C}$. Define a partial order \leq on $\mathbb{C}^2 : (Z_1, Z_2) \leq (W_1, W_2)$ if and only if

(a) $Re(Z_1) \leq Re(W_1)$, $Im W_1 \leq Im W_1$, and

(b) $Re(Z_2) \leq Re(W_2)$, $Im W_2 \leq Im W_2$.

Thus, $(W_1, W_2) - (Z_1, Z_2) \succeq 0$ *iff* $(Z_1, Z_2) \preceq (W_1, W_2)$. *Additionally,* $(Z_1, Z_2) \succeq 0$ *if* $Z_1 \succeq 0$ and $Z_2 \succeq 0$. In addition, $Re(Z_1) \ge 0$, $ImZ_1 \ge 0$ and $Re(Z_2) \ge 0$, $ImZ_2 \ge 0$

Let \mathbb{C}^2_+ be the set of all positive element in \mathbb{C}^2 . Suppose $\Omega = [0, \infty)$ and $d_A : \Omega \times \Omega \to \mathbb{C}^2$ be a mapping defined by $d_A(|\mu - \nu| + i|\mu - \nu|, |\mu - \nu| + 2i|\mu - \nu|)$ for all $\mu, \nu \in \Omega$ and $i = \sqrt{-1}$. It is clear that (Ω, A, d_A) is C*-algebra-valued metric space.

Now, define $T: \Omega \to \Omega$ by $T\mu = e^{\mu}$ and $\alpha_A : \Omega \times \Omega \to \mathbb{C}^2_+$ as $\alpha_A(\mu, \nu) = I_A$. In addition, assume $\psi_A : \mathbb{C}^2_+ \to \mathbb{C}^2_+$ defined by $\psi_A(a) = 3a \ \forall \ a \in \mathbb{C}^2_+$.

To verify the contraction conditions in Theorem 3, we take $\mu = 1$, $\nu = 2$. By calculation, one can obtain the following:

$$\begin{array}{rcl} d_A(\mu,\nu) &=& d(1,2) = (1+i,1+2i), \\ d_A(T\mu,T\nu) &=& d_A(e,e^2), \\ &\simeq& (4.670+4.670i,4.670+9.340i), \\ d_A(T\mu,\nu) &=& d_A(e,2), \\ &\simeq& (0.718+0.718i,0.718+1.436i), \\ d_A(T\nu,\mu) &=& d_A(e^2,1), \\ &\simeq& (6.389+6.389i,6.389+12.778i), \\ d_A(T\mu,\mu) &=& d_A(e,1), \\ &\simeq& (1.718+1.718i,1.718+3.436i), \\ d_A(T\nu,\nu) &=& d_A(e^2,2), \\ &\simeq& (5.389+5.389i,5.389+10.778i), \\ \alpha_A(\mu,\nu) &=& \alpha_A(1,2) = (1,2). \end{array}$$

We calculate the right-hand side of the inequality (10) in the Theorem 3 and obtain

$$\psi_A(M_A(\mu,\nu)) \simeq (15.214 + 15.214i, 15.214 + 30.428i).$$

On the other hand, the left-hand side of the inequality (10) in the Theorem 3 gives

$$\alpha_A(\mu,\nu)d_A(T\mu,T\nu) \simeq (4.670 + 4.670i, 4.670 + 18.680i)$$

It is clear that $\alpha_A(\mu, \nu)d_A(T\mu, T\nu) \leq \psi_A(M_A(\mu, \nu))$, and this satisfies all conditions of the Theorem 3.

In the following, we provide an application scenario with which to study the existence and uniqueness of the solution of a system of matrix equations. The existence and uniqueness of the solution of the linear matrix equations are very interesting and important in linear systems.

Here, we are interested in using C^* -algebra-valued metric spaces to find a positive definite hermitian solution for a system of matrix equations with complex entries.

The proof is based on the positive cones and the linear continuous operator mapping a cone into itself.

4. Application

Suppose that $M_n(\mathbb{C})$ is the set of all $n \times n$ matrices with complex entries. Additionally, $M_n(\mathbb{C})^+$ is the set of all positive definite matrices of $M_n(\mathbb{C})$. $M_n(\mathbb{C})$ is a Banach space with matrix norm and $M_n(\mathbb{C})$ is also a C^* -algebra with matrix norm and the involution $*: M_n(\mathbb{C}) \to M_n(\mathbb{C}), Z \to Z^*$, where $Z = (Z_{ij})_{1 \le i,j \le n} \in M_n(\mathbb{C})$ and $Z^* = (Z_{ij})_{1 \le i,j \le n}^* = (\overline{Z_{ij}})_{1 \le i,j \le n} \in M_n(\mathbb{C})$.

Let $A_1, A_2, ..., A_n \in M_n(\mathbb{C}), Z, W \in M_n(\mathbb{C})$. Additionally, $Q \in M_n(\mathbb{C})^+$. Then, the matrix equation

$$Z - \sum_{k=1}^{n} A_k^* Z A_k = Q$$
(14)

has a unique solution.

Proof. For $Z, W \in M_n(\mathbb{C})$, define $d_{M_n(\mathbb{C})} : M_n(\mathbb{C}) \times M_n(\mathbb{C}) \to M_n(\mathbb{C})$, as

$$d_{M_n(\mathbb{C})}(Z,W) = \|Z - W\| \cdot I_{d_{M_n(\mathbb{C})}}.$$

Then, $(M_n(\mathbb{C}), d_{M_n(\mathbb{C})})$ is a C^* -algebra-valued metric space and is complete, because the set $M_n(\mathbb{C})$ is complete. Consider $T : M_n(\mathbb{C}) \to M_n(\mathbb{C})$, defined by $T(Z) = \sum_{k=1}^n A_k^* Z A_k + Q$. Additionally, $\psi_{M_n(\mathbb{C})}(Z) = 3Z \cdot I_{M_n(\mathbb{C})}$. Define

$$\alpha_{M_n(\mathbb{C})}: M_n(\mathbb{C}) \times M_n(\mathbb{C}) \to M_n(\mathbb{C})^+$$

$$\alpha_{M_n(\mathbb{C})}(Z,W) = I_{M_n(\mathbb{C})}$$

It is clear that *T* is $\alpha_{M_n(\mathbb{C})} - \psi_{M_n(\mathbb{C})}$ admissible. Then,

$$\begin{aligned} d_{M_{n}(\mathbb{C})}(TZ, TW) &= \|TZ - TW\| \cdot I_{M_{n}(\mathbb{C})} \\ &= \|(\sum_{k=1}^{n} A_{k}^{*}ZA_{k} + Q) - (\sum_{k=1}^{n} A_{k}^{*}WA_{k} + Q)\| \cdot I_{M_{n}(\mathbb{C})} \\ &= \|((\sum_{k=1}^{n} A_{k}^{*}ZA_{k} + Q) - W) - ((\sum_{k=1}^{n} A_{k}^{*}WA_{k} + Q) - Z) - (Z - W)\| \cdot I_{M_{n}(\mathbb{C})} \\ &\preceq \|((\sum_{k=1}^{n} A_{k}^{*}ZA_{k} + Q) - W)\| \cdot I_{M_{n}(\mathbb{C})} + ((\sum_{k=1}^{n} A_{k}^{*}WA_{k} + Q) - Z)\| \cdot \|I_{M_{n}(\mathbb{C})} \\ &+ \|(Z - W)\| \cdot I_{M_{n}(\mathbb{C})} \\ &= \|TZ - W\| \cdot I_{M_{n}(\mathbb{C})} + \|TW - Z\| \cdot I_{M_{n}(\mathbb{C})} + \|(Z - W)\| \cdot I_{M_{n}(\mathbb{C})} \\ &= d_{M_{n}(\mathbb{C})}(TZ, W) + d_{M_{n}(\mathbb{C})}(TW, Z) + d_{M_{n}(\mathbb{C})}(Z, W) \\ &\preceq \frac{1}{3}\psi_{M_{n}(\mathbb{C})}(d_{M_{n}(\mathbb{C})}(TZ, W) + d_{M_{n}(\mathbb{C})}(TW, Z) + d_{M_{n}(\mathbb{C})}(Z, W)). \end{aligned}$$

$$\alpha_A(Z,W)d_{M_n(\mathbb{C})}(TZ,TW) \preceq \frac{1}{3}\psi_{M_n(\mathbb{C})}(d_{M_n(\mathbb{C})}(TZ,W) + d_{M_n(\mathbb{C})}(TW,Z) + d_{M_n(\mathbb{C})}(Z,W)).$$

This satisfies the conditions of Theorem 2. Thus, the system of matrix Equation (14) has a unique hermitian matrix solution. \Box

5. Conclusions

In this paper, we provide some results obtained for the Chatterjea and Ciric fixed-point theorems by using $\alpha_A \cdot \psi_A$ -contractive mapping in a C^* -algebra-valued metric space. Furthermore, illustrated examples and an application scenario are introduced. It is worth mentioning that these results generalize and extend some results described in [1–3,5,9,23,24,26–30].

Author Contributions: Conceptualization, I.M. and S.O.; methodology, I.M. and S.O.; validation, I.M.; formal analysis, I.M.; investigation, S.O.; resources, I.M.; data curation, S.O.; writing—original draft preparation, S.O.; writing—review and editing, I.M. All authors read and approved the final manuscript.

Funding: This research received no external funding.

Data Availability Statement: No data were used to support this study.

Acknowledgments: The first author thanks Jazan University, Saudi Arabia, for partially supporting this study. The second author thanks South Valley University, Egypt, for partially supporting the study.

Conflicts of Interest: The authors of this current research declaring that this study has no competing interest.

References

- 1. Banach, S. Sur les operations dans les ensembles obstraits et. Leur. Application aux equation integrales. *Fund. Math.* **1922**, *3*, 133–181. [CrossRef]
- 2. Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76.
- 3. Chatterjea, S.K. Fixed point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [CrossRef]
- 4. Čirič, L. On some with non-unique fixed points. Publ. I'Institut MathÈMatique 1974, 17, 52–58.
- 5. Romaguera, S.; Tirado, P. A Characterization of Quasi-Metric Completeness in Terms of *α ψ*-Contractive Mappings Having Fixed Points. *Mathematics* **2020**, *8*, 16. [CrossRef]
- 6. Samet, B.; Vetro; Vetro, P. Fixed point theorems for $\alpha \psi$ -contractive type mappings. *Nonlinear Anal.* **2012**, *75*, 2154–2165. [CrossRef]
- 7. Abdou, A.; Alasmari, M. Fixed point theorems for generalized $\alpha \psi$ -contractive mappings in extended b-metric spaces with applications. *AIMS Math.* **2021**, *6*, 5465–5478. [CrossRef]
- Hu, P.; Gu, F. Some fixed point theorems of λ-contractive mappings in Menger PSM-spaces. J. Nonlinear Funct. Anal. 2020, 2020, 33.
- Hussain, N.; Al-Solami, A.M.; Kutbi, M.A. Fixed points α-Admissible mapping in cone b-metric space over Bansch algebra. J. Math. Anal. 2017, 8, 89–97.
- 10. Ma, Z.; Jiang, L.; Sun, H. C*-algebra-valued metric space and related fixed point theorems. *Fixed Point Theory Appl.* **2014**, 2014, 2014, 206. [CrossRef]
- 11. Nguyen, L.V.; Tram, N.T.N. Fixed point results with applications to involution mappings. J. Nonlinear Var. Anal. 2020, 4, 415–426.
- 12. Omran, S.; Masmali, I. α-Admissible mapping in C*-algebra-valued b-metric spaces and fixed point. *AIMS Math.* **2021**, *6*, 10192–10206. [CrossRef]
- 13. Parvaneh, V.; Bonab, S.H.; Hosseinzadeh, H.; Aydi, H. A Tripled Fixed Point Theorem in -Algebra-Valued Metric Spaces and Application in Integral Equations. *Adv. Math. Phys.* **2021**, *1–*6. [CrossRef]
- 14. Samet, B. The class of (α, ψ) -type contractions in b-metric space and fixed point theorems. *Fixed Point Theory Appl.* **2015**, 2015, 92. [CrossRef]
- 15. Vujakovic, J.; Mitrovic, S.; Mitrovic, Z.; Radenovic, S. On *F*-Contractions for Weak Admissible Mappings in Metric-Like Spaces. *Mathematics* **2020**, *8*, 1629. [CrossRef]
- 16. Chaharpashlou, R.; O'Regan, D.; Park, C.; Saadati, R. C*-Algebra valued fuzzy normed spaces with application of Hyers–Ulam stability of a random integral equation. *Adv. Differ. Equ.* **2020**, 2020, 326. [CrossRef]
- 17. Chandok, S.; Kumar, D.; Park, C. C*-Algebra-valued partial metric Spaces and Fixed Point theorems. *Proc. Indian Acad. Sci. (Math. Sci.)* **2019**, 129, 37. [CrossRef]
- Hussian, N.; Parvaneh, V.; Samet, B.; Vetro, C. Some fixed point theorems for generalized contractive mappings in complete metric spaces. *Fixed Point Theory Appl.* 2015, 2015, 185. [CrossRef]
- 19. Malhotra, S.K.; Sharma, J.B.; Shukla, S. Fixed point of *α* admissible mapping in cone metric spaces with Banach algebra. *Int. J. Anal. Appl.* **2015**, *9*, 9–18.
- Mlaiki, N.; Asim, M.; Imdad, M. C*-Algebra Valued Partial Metric Spaces and Fixed Point Results with an Application. *Mathematics* 2020, 8, 1381. [CrossRef]
- 21. Mustafa, Z.; Roshan, J.R.; Parvaneh, V.; Kadelburg, Z. Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces. *J. Inequalities Appl.* **2014**, 2014, 46. [CrossRef]
- 22. Wu, X.; Zhao, L. Fixed point theorems for generalized $\alpha \psi$ type contractive mappings in b-metric spaces and applications. *J. Math. Computer Sci.* **2018**, *18*, 49–62. [CrossRef]
- 23. Connes, A. Noncommutative Geometry; Academic Press: San Diago, CA, USA, 1994.
- 24. Murphy, G.J. C*-Algebras and Operator Theory; Academic Press, Inc.: Boston, MA, USA, 1990.
- 25. Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric spaces. *Numer. Funct. Anal. Optim.* **2011**, 32, 243–253. [CrossRef]
- 26. Čirič, L. Generalized contractions and fixed-point theorems. Publ. Inst. Math. 1971, 12, 19–26.
- 27. Kumar, D.; Rishi, D.; Park, C.; Lee, J. On fixed point in C*-algebra valued metric spaces using C*-class function. *Int. J. Nonlinear Anal. Appl.* **2021**, *12*, 1157–1161.
- 28. Omran, S.; Masmali, I. On the $(\alpha \psi)$ -Contractive Mappings in C*-Algebra Valued b-Metric Spaces and Fixed Point Theorems. *J. Math.* **2021**, 2021, 6. [CrossRef]
- 29. Kadelburg, Z.; Radenovic, S. Fixed point result in C*-algebra-valued metric space are direct consequences of their standard metric counterparts. *Fixed Point Theory Appl.* 2016, 2016, 53. [CrossRef]
- 30. Xin, Q.; Jiang, L.; Ma, Z. Common fixed point theorems in C*-algebra-valued metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 4617–4627. [CrossRef]