Article

Chatterjea and C̀iric̀-Type Fixed-Point Theorems Using $(\alpha-\psi)$ Contraction on C^{*}-Algebra-Valued Metric Space

Ibtisam Masmali ${ }^{1, *}$ and Saleh Omran ${ }^{2}$
1 Department of Mathematics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
2 Department of Mathematics, South Valley University, Qena 83523, Egypt; saleh.omran@sci.svu.edu.eg
* Correspondence: iamasmali@jazanu.edu.sa

Citation: Masmali, I.; Omran, S. Chatterjea and Ciric̀-Type Fixed-Point Theorems Using $(\alpha-\psi)$ Contraction on C^{*}-Algebra-Valued Metric Space. Mathematics 2022, 10, 1615. https://doi.org/10.3390/ math10091615

Received: 12 March 2022
Accepted: 6 May 2022
Published: 9 May 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In the present paper, we provide and verify several results obtained by using the Chatterjea and C̀iric̀ fixed-point theorems by using $(\alpha-\psi)$-contractive mapping in C^{*}-algebra-valued metric space. We provide some examples and an application to illustrate our results. Our study extends and generalizes the results of several studies in the literature.

Keywords: C^{*}-algebra-valued metric space; fixed-point theorem; $(\alpha-\psi)$-contractive mapping
MSC: 47H10; 46L07

1. Introduction

The Banach contraction principle [1] is one of the most important tools of analysis and has many significant applications in various fields of science. It has been improved in many ways and generalized by many researchers. A map $T: \Omega \rightarrow \Omega$, where (Ω, d) is a complete metric space, is said to be a contraction map if there exists $\lambda \in(0,1)$, such that for all $\mu, v \in \Omega$

$$
\begin{equation*}
d(T \mu, T v) \leq \lambda d(\mu, v) \tag{1}
\end{equation*}
$$

This result was introduced by Banach in 1922. Kannan [2] in 1968 proved that, if (Ω, d) is a complete metric space and $T: \Omega \rightarrow \Omega$ is a map satisfying

$$
\begin{equation*}
d(T \mu, T v) \leq \lambda(d(T \mu, \mu)+d(T v, v)) \tag{2}
\end{equation*}
$$

where $\lambda \in\left(0, \frac{1}{2}\right)$ for all $\mu, v \in \Omega$, then there is a unique fixed point on T. Later, in 1972, Chatterjea [3] proved that if (Ω, d) is a complete metric space and $T: \Omega \rightarrow \Omega$ is a mapping that exists $\lambda \in\left(0, \frac{1}{2}\right)$, such that $\mu, v \in \Omega$, the inequality

$$
\begin{equation*}
d(T \mu, T v) \leq \lambda(d(T \mu, v)+d(T v, \mu)) \tag{3}
\end{equation*}
$$

is satisfied; thus, T has a unique fixed point.
Ciric̀ [4] in 1974 introduced an interesting general contraction condition. If there exists $\lambda \in(0,1)$, such that for all $\mu, v \in \Omega$, and $T: \Omega \rightarrow \Omega$ is a map satisfying

$$
\begin{equation*}
d(T \mu, T v) \leq \lambda \cdot \max \{d(\mu, v), d(T \mu, \mu) d(T v, v), d(T \mu, v), d(T v, \mu)\} \tag{4}
\end{equation*}
$$

then T has a unique fixed point.
On the other hand, Samet et al. [5,6] studied $\alpha-\psi$-contractive mappings in metric spaces. Many researchers have established related studies to α-admissible and $\alpha-\psi$-contractive mappings and related fixed-point theorems (see [7-15]).

Recently, Ma et al. [10] introduced the more generalized notion 0f a C^{*}-algebra-valued metric space by replacing real numbers with the positive cone of C^{*}-algebra. This line of
research was continued in [16-22], where several other fixed-point results were obtained in the framework of C^{*}-algebra-valued metric space.

Throughout this paper, we suppose that A is a unital C^{*}-algebra with a unit I_{A}. We mean that a unital C^{*}-algebra is a complex Banach algebra A with an involution map * : $A \rightarrow A, a \rightarrow a^{*}$, such that $\left(a^{*}\right)^{*}=a,(a b)^{*}=a^{*} b^{*},(a+b)^{*}=a^{*}+b^{*}$ and $(\lambda a)^{*}=\bar{\lambda} a^{*}$ for $a, b, A, \lambda \in \mathbb{C}$, such that $\left\|a^{*} a\right\|=\|a\|^{2}$. Set $A_{h}=\left\{a \in A: a=a^{*}\right\}$. An element $a \in A$ is a positive element if $a=a^{*}$ and $\sigma(a) \subset \mathbb{R}^{+}$, where $\sigma(a)$ is the spectrum of a. We define a partial ordering \preceq on A as $a \preceq b$ if $0_{A} \preceq b-a$, where 0_{A} means the zero element in A, and we let A^{+}denote the $\left\{a \in A: a \succeq 0_{A}\right\}$ and $|a|=\left(a^{*} a\right)^{\frac{1}{2}}$.

The results described in this article extend some fixed-point theorems in C^{*}-algebravalued metric spaces. C^{*}-algebras are considered typical examples of quantum spaces and non-commutative spaces. They play an important role in the non-commutative geometry project introduced by Alain Connes [23]. Thus, the theory of metric space-valued C^{*} algebras should apply to many problems in quantum spaces, such as matrices and bounded linear operators on Hilbert spaces. Therefore, C^{*}-algebras and their metric provide a non-commutative version of ordinary metric spaces.

2. Preliminaries

In this section, we introduce some basic notions which will be used in the following work.
Lemma 1. Suppose that A is a unital C^{*}-algebra with unit I_{A}. The following holds.
(1) If $a \in A$, with $\|a\|<\frac{1}{2}$, then $1-a$ is invertible and $\left\|a(1-a)^{-1}\right\|<1$.
(2) If $a, b \in A^{+}$and $a b=b a$, then $a \cdot b \succeq 0_{A}$.
(3) Let $a \in A^{\prime}$. If $b, c \in A$ with $b \succeq c \succeq 0_{A}$ and $1-a \in\left(A^{\prime}\right)^{+}$is an invertible element, then $\left(I_{A}-a\right)^{-1} b \succeq\left(I_{A}-a\right)^{-1} c$, where $A^{\prime}=\{b \in A: a b=b a \forall a \in A\}$.
We refer to [24] for more C^{*} algebra details.
Definition 1. [10] Let Ω be a non-empty set. Suppose the mapping $d_{A}: \Omega \times \Omega \rightarrow A$ satisfies:
(1) $d_{A}(\mu, v) \succeq 0_{A}$ for all $\mu, v \in \Omega$ and $d_{A}(\mu, v)=0_{A} \Leftrightarrow \mu=v$.
(2) $d_{A}(\mu, v)=d_{A}(\nu, \mu)$ for all $\mu, v \in \Omega$.
(3) $d_{A}(\mu, \xi) \preceq d_{A}(\mu, v)+d_{A}(v, \xi)$ for all $\mu, v, \xi \in \Omega$.

Then, d_{A} is called a C^{*}-algebra-valued metric on Ω and $\left(\Omega, A, d_{A}\right)$ is called C^{*}-algebra-valued metric space.

Example 1. Let Ω be a Banach space and $d_{A}: \Omega \times \Omega \rightarrow A$ given by $d_{A}(\mu, v)=\|\mu-v\| \cdot a$, for all $\mu, v \in \Omega$, which should be where $a \in A^{+}, a \succeq 0$.
It is easy to verify that $\left(\Omega, A, d_{A}\right)$ is a C^{*}-algebra-valued metric space.
Example 2. Let $\Omega=\mathbb{C}$ and $A=M_{n}(\mathbb{C})$. It is obvious that A is a C^{*}-algebra with the matrix norm and the involution given by $*: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C}),\left(Z_{i j}\right)_{1 \leq i, j \leq n} \rightarrow\left(Z_{i j}\right)_{1 \leq i, j \leq n}=$ $\left(\overline{Z_{j i}}\right)_{1 \leq i, j \leq n}$, where $\overline{Z_{i j}}$ is the conjugate of $Z_{i j}, Z_{i j} \in \mathbb{C}$. Define a mapping $d_{A}: \Omega \times \Omega \rightarrow A$, by:

$$
\begin{aligned}
d\left(Z_{1}, Z_{2}\right) & =\operatorname{diag}\left(e^{i \theta_{1}}\left|Z_{1}-Z_{2}\right|, \ldots, e^{i \theta_{k}}\left|Z_{1}-Z_{2}\right|, \ldots e^{i \theta_{n}}\left|Z_{1}-Z_{2}\right|\right) \\
& =\left(\begin{array}{ccccc}
e^{i \theta_{1}}\left|Z_{1}-Z_{2}\right| & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & & \vdots \\
0 & \cdots & e^{i \theta_{k}}\left|Z_{1}-Z_{2}\right| & \cdots & 0 \\
\vdots & & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & e^{i \theta_{n}}\left|Z_{1}-Z_{2}\right|
\end{array}\right),
\end{aligned}
$$

for all $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in \mathbb{C}, i=\sqrt{-1}, k=1, \ldots, n, \theta_{k} \in\left[0, \frac{\pi}{2}\right]$. Then, $\left(\Omega, A, d_{A}\right)$ is a C^{*}-algebra-valued metric space. It is clear that it is a generalization of the complex-valued metric space given in [25], when $A=\mathbb{C}$.

Definition 2. Let $\left(\Omega, A, d_{A}\right)$ be a C^{*}-algebra-valued metric space, $\mu \in \Omega$, and $\left\{\mu_{n}\right\}_{n=1}^{+\infty}$ be a sequence in Ω. Then,
(i) $\left\{\mu_{n}\right\}_{n=1}^{+\infty}$ convergent to μ whenever, for every $\varepsilon \in A$ with $\varepsilon \succ 0_{A}$, there is a natural number $N \in \mathbb{N}$, such that

$$
d_{A}\left(\mu_{n}, \mu\right) \prec \varepsilon
$$

for all $n>N$. We denote this by $\lim _{n \rightarrow \infty} \mu_{n}=\mu$ or $\mu_{n} \rightarrow \mu$ as $n \rightarrow+\infty$.
(ii) $\left\{\mu_{n}\right\}_{n=1}^{+\infty}$ is said to be a Cauchy sequence whenever, for every $\varepsilon \in A$ with $\varepsilon \succ 0_{A}$, there is a natural number $N \in \mathbb{N}$, such that

$$
d_{A}\left(\mu_{n}, \mu_{m}\right) \prec \varepsilon
$$

for all $n, m>N$.
Lemma 2. (i) $\left\{\mu_{n}\right\}_{n=1}^{+\infty}$ is convergent in Ω if, for any element $\epsilon>0$, there is $N \in \mathbb{N}$, such that for all $n>N,\left\|d\left(\mu_{n}, \mu\right)\right\| \leq \epsilon$.
(ii) $\left\{\mu_{n}\right\}_{n=1}^{+\infty}$ is a Cauchy sequence in Ω if, for any $\epsilon>0$ there is $N \in \mathbb{N}$, such that $\left\|d_{A}\left(\mu_{n}, \mu_{m}\right)\right\| \leq \epsilon$, for all $n, m>N$. We say that $\left(\Omega, A, d_{A}\right)$ is a complete C^{*}-algebra-valued metric space if every Cauchy sequence is convergent with respect to A.

Example 3. Let Ω be a compact Hausdorff space. We denote by $C(\Omega)$ the algebra of all complexvalued continuous functions on Ω with pointwise addition and multiplication. The algebra $C(\Omega)$ with the involution defined by $f^{*}(\mu)=\overline{f(\mu)}$ for each $f \in C(\Omega), \mu \in \Omega$ and with the norm $\|f\|_{\infty}=\sup \{|f(\mu)|, \mu \in \Omega\}$ is a commutative C^{*}-algebra where unit $I_{C(\Omega)}$ is the constant function. Let $C^{+}(\Omega)=\{f \in C(\Omega): \overline{f(\mu)}=f(\mu), f(\mu) \geq 0\}$ denote the positive cone of $C(\Omega)$, with partial order relation $f \leq g$ if and only if $f(\mu) \leq g(\mu)$. Put $d_{C(\Omega)}: C(\Omega) \times C(\Omega) \rightarrow$ $C(\Omega)$ as $d_{C(\Omega)}(f, g)=\sup _{\mu \in \Omega}\{|f(\mu)-g(\mu)|\} . I_{C(\Omega)}$. It is clear that $\left(C(\Omega), C(\Omega), d_{C(\Omega)}\right)$ is a complete C^{*}-algebra-valued metric space.

Definition 3. [6] Let $T: \Omega \rightarrow \Omega$ be a self map and $\alpha: \Omega \times \Omega \rightarrow[0,+\infty)$. Then, T is called α-admissible if for all $\mu, v \in \Omega$ and $\alpha(\mu, v) \geq 1$ implies $\alpha(T \mu, T \nu) \geq 1$.

Definition 4. Let Ω be a non-empty set and $\alpha_{A}: \Omega \times \Omega \rightarrow\left(A^{+}\right)^{\prime}$ be a function. We say that the self map T is α_{A}-admissible if for all $(\mu, v) \in \Omega \times \Omega, \alpha_{A}(\mu, v) \succeq I_{A} \Rightarrow \alpha_{A}(T \mu, T v) \succeq I_{A}$, where I_{A} is the unit of A.

Definition 5. Let $\left(\Omega, A, d_{A}\right)$ be a C^{*}-algebra-valued metric space and $T: \Omega \rightarrow \Omega$ be a mapping. We say that T is an $\alpha_{A} \psi_{A}$-contractive mapping if there exist two functions $\alpha_{A}: \Omega \times \Omega \rightarrow A_{+}$ and $\psi_{A} \in \Psi_{A}$, such that

$$
\alpha_{A}(\mu, v) d_{A}(T \mu, T v) \preceq \psi_{A}\left(d_{A}(\mu, v)\right),
$$

for all $\mu, v \in \Omega$.
Definition 6. Suppose that A and B are C^{*}-algebras. A mapping $\psi: A \rightarrow B$ is said to be a C^{*}-homomorphism if:
(a) $\psi\left(\lambda_{1} a_{1}+\lambda_{2} a_{2}\right)=\lambda_{1} \psi\left(a_{1}\right)+\lambda_{2} \psi\left(a_{2}\right)$ for all $\lambda_{1}, \lambda_{2} \in \mathbb{C}$ and $a_{1}, a_{2} \in A$;
(b) $\psi\left(a_{1} a_{2}\right)=\psi\left(a_{1}\right) \psi\left(a_{2}\right), \forall a_{1}, a_{2} \in A$;
(c) $\psi\left(a^{*}\right)=\psi(a)^{*}, \forall a \in A$; and
(d) ψ maps the unit in A to the unit in B.

Definition 7. If $\psi: A \rightarrow B$ is a linear mapping in C^{*}-algebra, it is said to be positive if $\psi\left(A^{+}\right) \subseteq$ B^{+}. In this case, $\psi\left(A_{h}\right) \subseteq B_{h}$, and the restriction map $\psi: A_{h} \rightarrow B_{h}$ increases. Every $C^{*}-$ homomorphism is contractive and hence bounded and every $*$-homomorphism is positive.

Definition 8. Let Ψ_{A} be the set of positive functions $\psi_{A}: A^{+} \rightarrow A^{+}$satisfying the following conditions:
(a) $\psi_{A}(a)$ is continuous and non-decreasing, $\psi_{A}(a) \prec a$;
(b) $\psi_{A}(a)=0$ iff $a=0$; and
(c) $\sum_{n=1}^{\infty} \psi_{A}^{n}(a)<\infty, \lim _{n \rightarrow \infty} \psi_{A}^{n}(a)=0$ for each $a \succ 0$, where ψ_{A}^{n} is the nth-iterate of ψ_{A}.

3. Main Results

In this section, we give some types of Chatterjea and C̀iric̀ fixed-point theorems in a C^{*}-algebra-valued metric space using $(\alpha-\psi)$-contraction.

Theorem 1. (Chatterjea Type) Let $\left(\Omega, A, d_{A}\right)$ be a complete C^{*}-algebra-valued metric space and $T: \Omega \rightarrow \Omega$, be a mapping satisfying:

$$
\begin{equation*}
\alpha_{A}(\mu, v) d_{A}(T \mu, T v) \preceq \psi_{A}\left(\frac{d_{A}(T \mu, v)+d_{A}(T v, \mu)}{2}\right), \tag{5}
\end{equation*}
$$

for $\mu, \nu \in \Omega$, where

$$
\alpha_{A}: \Omega \times \Omega \rightarrow A^{+} \text {and } \psi_{A} \in \Psi_{A}, \psi_{A} \prec \frac{1}{2} \cdot I_{A}
$$

and the following conditions hold:
(a) T is α_{A}-admissible;
(b) There exists $\mu_{0} \in \Omega$, such that $\alpha_{A}\left(\mu_{0}, T \mu_{0}\right) \succeq I_{A}$; and
(c) T is continuous.

Then, T has a fixed point in Ω.
Proof. Let $\mu_{0} \in \Omega$, such that $\alpha_{A}\left(\mu_{0}, T \mu_{0}\right) \succeq I_{A}$, and define the sequence $\left\{\mu_{n}\right\}_{n=0}^{+\infty}$ in Ω, such that $\mu_{n+1}=T \mu_{n}$ for all $n \in \mathbb{N}$. If $\mu_{n}=\mu_{n+1}$ for some $n \in \mathbb{N}$, then μ_{n} is a fixed point for T.

Suppose that $\mu_{n} \neq \mu_{\mu+1}$ for all $n \in \mathbb{N}$. Because T is α_{A}-admissible, we obtain

$$
\begin{gather*}
\alpha_{A}\left(\mu_{0}, \mu_{1}\right)=\alpha_{A}\left(\mu_{0}, T \mu_{0}\right) \succeq I_{A} \Rightarrow \\
\alpha_{A}\left(T \mu_{0}, T^{2} \mu_{0}\right)=\alpha_{A}\left(\mu_{1}, \mu_{2}\right) \succeq I_{A} . \tag{6}
\end{gather*}
$$

By induction, we have $\alpha_{A}\left(\mu_{n}, \mu_{n+1}\right) \succeq I_{A}$ for all $n \in \mathbb{N}$. By using inequalities (5) and (6), we have

$$
\begin{aligned}
d_{A}\left(\mu_{n}, \mu_{n+1}\right) & =d_{A}\left(T \mu_{n-1}, T \mu_{n}\right) \\
& \preceq \alpha_{A}\left(\mu_{n-1}, \mu_{n}\right) d_{A}\left(T \mu_{n-1}, T \mu_{n}\right) \\
& \preceq \psi_{A}\left(\frac{d_{A}\left(T \mu_{n-1}, \mu_{n}\right)+d_{A}\left(T \mu_{n}, \mu_{n-1}\right)}{2}\right) \\
& =\psi_{A}\left(\frac{d_{A}\left(\mu_{n}, \mu_{n}\right)+d_{A}\left(T \mu_{n}, \mu_{n-1}\right)}{2}\right) \\
& =\psi_{A}\left(\left(\frac{\left.d_{A}\left(\mu_{n}, \mu_{n}\right)\right)+\psi_{A}\left(d_{A}\left(\mu_{n+1}, \mu_{n-1}\right)\right.}{2}\right) .\right.
\end{aligned}
$$

Because $\varphi_{A}(0)=0$, we obtain

$$
\begin{equation*}
d_{A}\left(\mu_{n}, \mu_{n+1}\right) \preceq \psi_{A}\left(\frac{d_{A}\left(\mu_{n+1}, \mu_{n-1}\right)}{2}\right) . \tag{7}
\end{equation*}
$$

Applying triangular inequality in (7), we have

$$
d_{A}\left(\mu_{n}, \mu_{n+1}\right) \preceq \psi_{A} \frac{\left(d_{A}\left(\mu_{n+1}, \mu_{n}\right)+d_{A}\left(\mu_{n}, \mu_{n-1}\right)\right)}{2} .
$$

Because ψ_{A} is additive, we have

$$
d_{A}\left(\mu_{n}, \mu_{n+1}\right) \preceq \frac{\psi_{A}\left(d_{A}\left(\mu_{n+1}, \mu_{n}\right)\right.}{2}+\frac{\psi_{A}\left(d_{A}\left(\mu_{n}, \mu_{n-1}\right)\right)}{2}
$$

Thus,

$$
\left(\frac{1}{2}-\psi_{A}\right)\left(d_{A}\left(\mu_{n}, \mu_{n+1}\right)\right) \preceq \frac{1}{2} \psi_{A}\left(d_{A}\left(\mu_{n}, \mu_{n-1}\right)\right),
$$

and we have

$$
d_{A}\left(\mu_{n}, \mu_{n+1}\right) \preceq \frac{1}{2}\left(\psi_{A}\left(\frac{1}{2}-\psi_{A}\right)^{-1}\right)\left(d_{A}\left(\mu_{n}, \mu_{n-1}\right)\right) .
$$

Putting $\frac{1}{2} \psi_{A}\left(\frac{1}{2}-\psi_{A}\right)^{-1}=\phi_{A}$ by induction, we have

$$
d_{A}\left(\mu_{n}, \mu_{n+1}\right) \preceq \phi_{A}^{n}\left(d_{A}\left(\mu_{0}, \mu_{1}\right)\right),
$$

for all $n \in \mathbb{N}$. Let $n, m \in \mathbb{N}$ with $m>n$. We obtain

$$
d_{A}\left(\mu_{n}, \mu_{m}\right) \preceq \sum_{k=n}^{m-1} \phi_{A}^{k}\left(d_{A}\left(\mu_{0}, \mu_{1}\right)\right) \quad \rightarrow \quad 0_{A}(\text { as } n \rightarrow+\infty) .
$$

Therefore, we can prove that $\left\{\mu_{n}\right\}$ is a Cauchy sequence in the C^{*}-algebra metric space $\left(\Omega, A, d_{A}\right)$.

Because $\left(\Omega, A, d_{A}\right)$ is complete, there exists $\mu \in \Omega$, such that $\mu_{n} \rightarrow \mu$ as $n \rightarrow+\infty$. From the continuity of T, it follows that $\mu_{n+1}=T \mu_{n} \rightarrow T \mu$ is as $n \rightarrow+\infty$.

By continuity of this limit, we have $T \mu=\mu$-that is, μ is a fixed point of T.
The proof of the uniqueness is as follows. If $v(\neq \mu)$ is another fixed point of T, then

$$
\begin{aligned}
0_{A} \preceq d_{A}(\mu, v) & =d_{A}(T \mu, T v) \\
& \preceq \alpha_{A}(\mu, v) d_{A}(T \mu, T v) \\
& \preceq \psi_{A} \frac{\left(d_{A}(T \mu, v)+d_{A}(T v, \mu)\right)}{2} \\
& =\psi_{A} \frac{\left(d_{A}(\mu, v)+d_{A}(\mu, v)\right)}{2} \\
& =I_{A} \psi_{A}\left(d_{A}(\mu, v)\right), \psi_{A}(a) \prec \text { a for any } a \in A, .
\end{aligned}
$$

This implies that

$$
0_{A} \preceq d_{A}(\mu, v) \prec d_{A}(\mu, v),
$$

which gives a contradiction, and we can obtain $\mu=v$. This completes the proof.
Corollary 1. Let (Ω, A, d) be a complete C^{*}-algebra-valued metric space. Suppose $T: \Omega \rightarrow \Omega$ satisfies for all $\mu, v \in \Omega$

$$
d_{A}(T \mu, T v) \leq \mathbb{A}\left(d_{A}(T \mu, v)+d_{A}(T v, \mu)\right)
$$

where $\mathbb{A} \in\left(A^{\prime}\right)^{+}$and $\|\mathbb{A}\| \leq \frac{1}{2}$. Then, there exists a unique fixed point T in Ω [10].
Proof. This is an immediate consequence of Theorem 1, with $\alpha_{A}(\mu, v)=I d, \psi_{A}(a)=\mathbb{A} a$, where $a \in A, \mathbb{A} \in\left(A^{\prime}\right)^{+}$.

Theorem 2. (Banach-Chatterjea Type) Let $\left(\Omega, A, d_{A}\right)$ be a complete C^{*}-algebra-valued metric space and $T: \Omega \rightarrow \Omega$ be a mapping satisfying

$$
\begin{equation*}
\alpha_{A}(\mu, v) d_{A}(T \mu, T v) \preceq \frac{\psi_{A}\left(d_{A}(\mu, v)+\left(d_{A}(T \mu, v)+d_{A}(T v, \mu)\right)\right)}{3}, \psi_{A} \prec \frac{1}{3} . I_{A} \tag{8}
\end{equation*}
$$

for $\mu, v \in \Omega$, where the following conditions hold:
(i) T is α_{A}-admissible;
(ii) there exists $\mu_{0} \in \Omega$, such that $\alpha_{A}\left(\mu_{0}, T \mu_{0}\right) \succeq I_{A}$; and
(iii) T is continuous.

Then, T has a fixed point in Ω.
Proof. Following the first part of the proof in the Theorem 1, we obtain

$$
\begin{equation*}
\alpha_{A}\left(\mu_{n}, \mu_{n+1}\right) \succeq I_{A} \text { for all } n \in \mathbb{N} . \tag{9}
\end{equation*}
$$

By using inequalities (8) and (9), we have

$$
\begin{aligned}
d_{A}\left(\mu_{n}, \mu_{n+1}\right) & =d_{A}\left(T \mu_{n-1}, T \mu_{n}\right) \\
& \preceq \alpha_{A}\left(\mu_{n-1}, \mu_{n}\right)\left(d_{A}\left(T \mu_{n-1}, T \mu_{n}\right)\right) \\
& \preceq \frac{1}{3} \psi_{A}\left(d_{A}\left(\mu_{n-1}, \mu_{n}\right)+d_{A}\left(T \mu_{n-1}, \mu_{n}\right)+d_{A}\left(T \mu_{n}, \mu_{n-1}\right)\right) \\
& =\frac{1}{3} \psi_{A}\left(d_{A}\left(\mu_{n-1}, \mu_{n}\right)+d_{A}\left(\mu_{n}, \mu_{n}\right)+d_{A}\left(\mu_{n+1}, \mu_{n-1}\right)\right) \\
& =\frac{1}{3} \psi_{A}\left(d_{A}\left(\mu_{n-1}, \mu_{n}\right)+d_{A}\left(\mu_{n+1}, \mu_{n-1}\right)\right)
\end{aligned}
$$

By using triangular inequality, we obtain

$$
\begin{aligned}
d_{A}\left(\mu_{n}, \mu_{n+1}\right) & \preceq \frac{1}{3} \psi_{A}\left(d_{A}\left(\mu_{n-1}, \mu_{n}\right)+d_{A}\left(\mu_{n-1}, \mu_{n}\right)+d_{A}\left(\mu_{n}, \mu_{n+1}\right)\right) \\
& =\frac{2}{3} \psi_{A}\left(d_{A}\left(\mu_{n-1}, \mu_{n}\right)\right)+\frac{1}{3} \psi_{A}\left(d_{A}\left(\mu_{n}, \mu_{n+1}\right)\right)
\end{aligned}
$$

Thus, we have

$$
\left(1-\frac{1}{3} \psi_{A}\right)\left(d_{A}\left(\mu_{n}, \mu_{n+1}\right)\right) \preceq \frac{2}{3} \psi_{A}\left(d_{A}\left(\mu_{n-1}, \mu_{n}\right)\right) .
$$

This implies that

$$
d_{A}\left(\mu_{n}, \mu_{n+1}\right) \preceq \frac{2}{3} \psi_{A}\left(1-\frac{1}{3} \psi_{A}\right)^{-1}\left(d_{A}\left(\mu_{n-1}, \mu_{n}\right)\right) .
$$

Putting $\phi_{A}=\frac{2}{3} \psi_{A}\left(1-\frac{1}{3} \psi_{A}\right)^{-1}$, we obtain

$$
d_{A}\left(\mu_{n}, \mu_{n+1}\right) \preceq \phi_{A}^{n}\left(d_{A}\left(\mu_{0}, \mu_{1}\right)\right)
$$

for $m \geq n$. Thus, we obtain

$$
\begin{aligned}
d_{A}\left(\mu_{n}, \mu_{m}\right) & \preceq \sum_{k=n}^{m-1} \phi_{A}^{k}\left(d_{A}\left(\mu_{0}, \mu_{1}\right)\right) \\
& \rightarrow 0 \text { as }(n \rightarrow+\infty) .
\end{aligned}
$$

Thus, $\left\{\mu_{n}\right\}$ is a Cauchy sequence in Ω with respect to $\left(\Omega, A, d_{A}\right)$.

Because $\left(\Omega, A, d_{A}\right)$ is a complete C^{*}-algebra-valued metric space, we conclude that $\left\{\mu_{n}\right\}$ is a convergence sequence, and so $\left\{\mu_{n}\right\} \rightarrow \mu$ as $n \rightarrow+\infty$ and $T \mu=\mu$ as $n \rightarrow+\infty$. Therefore, μ is a fixed point of T.

To prove the uniqueness, we suppose that $(v \neq \mu)$ is another fixed point of T. Thus,

$$
\begin{aligned}
0_{A} \preceq d_{A}(\mu, v) & =d_{A}(T \mu, T v) \\
& \preceq \alpha_{A}(\mu, v) \psi_{A}\left(d_{A}(T \mu, T v)\right) \\
& \preceq \frac{1}{3} \psi_{A}\left(d_{A}(\mu, v)+d_{A}(T \mu, v)+d_{A}(T v, \mu)\right) \\
& \preceq \frac{1}{3} \psi_{A}\left(d_{A}(\mu, v)+d_{A}(\mu, v)+d_{A}(\mu, v)\right) \\
& \preceq \psi_{A}\left(d_{A}(\mu, v)\right) \prec d_{A}(\mu, v) .
\end{aligned}
$$

This is a contradiction, so $d_{A}(\mu, v)=0_{A}$ and $\mu=v$.
Corollary 2. Let (Ω, d) be a complete real-valued metric space. Suppose $T: \Omega \rightarrow \Omega$ satisfies for all $\mu, v \in \Omega$

$$
d(T \mu, T v) \leq k(d(\mu, v)+d(T \mu, v)+d(T v, \mu))
$$

where $k \in\left(0, \frac{1}{3}\right)$. Then, T has a unique fixed point in Ω.
Proof. This is an immediate consequence of Theorem 2 , with $\mathbb{A}=\mathbb{R}$ and $\alpha_{A}(\mu, v)=I$ and $\psi_{A}(t)=k t, t \in \mathbb{R}$.

Theorem 3. (Ćirić Contraction Type) Let $\left(\Omega, A, d_{A}\right)$ be a complete C^{*}-algebra-valued metric space and $T: \Omega \rightarrow \Omega$ be a mapping satisfying

$$
\begin{equation*}
\alpha_{A}(\mu, v) d_{A}(T \mu, T v) \preceq \quad \psi_{A}\left(M_{A}(\mu, v)\right) \tag{10}
\end{equation*}
$$

$$
M_{A}(\mu, v)=\frac{I_{A}}{3}\left[d_{A}(\mu, v)+\left(d_{A}(T \mu, \mu)+d_{A}(T v, v)\right)+\left(d_{A}(T \mu, v)+d_{A}(T v, \mu)\right], \psi_{A} \prec \frac{1}{2} . I_{A}\right.
$$

for $\mu, v \in \Omega$, where the following conditions hold:
(i) T is α_{A}-admissible;
(ii) there exists $\mu_{0} \in \Omega$, such that $\alpha_{A}\left(\mu_{0}, T \mu_{0}\right) \succeq I_{A}$; and
(iii) T is continuous.

Then, T has a fixed point in Ω.
Proof. Following the first part of the proof in the Theorem 1, we obtain

$$
\begin{equation*}
\alpha_{A}\left(\mu_{n}, \mu_{n+1}\right) \succeq I_{A} \text { for all } n \in \mathbb{N} . \tag{11}
\end{equation*}
$$

By using (10) and (11), we have

$$
\begin{align*}
d_{A}\left(\mu_{n}, \mu_{n+1}\right) & =d_{A}\left(T \mu_{n-1}, T \mu_{n}\right) \tag{12}\\
& \preceq \alpha_{A}\left(\mu_{n-1}, \mu_{n}\right) d_{A}\left(T \mu_{n-1}, T \mu_{n}\right) \\
& \preceq \psi_{A}\left(M_{A}\left(\mu_{n-1}, \mu_{n}\right)\right) .
\end{align*}
$$

On the other hand, we have

$$
\begin{aligned}
M_{A}\left(\mu_{n-1}, \mu_{n}\right) & =\frac{1}{3}\left(d_{A}\left(\mu_{n-1}, \mu_{n}\right)+d_{A}\left(T \mu_{n-1}, \mu_{n-1}\right)+d_{A}\left(T \mu_{n}, \mu_{n}\right)\right. \\
& \left.+d_{A}\left(T \mu_{n-1}, \mu_{n}\right)+d_{A}\left(T \mu_{n}, \mu_{n-1}\right)\right) \cdot I_{A} \\
\text { So, } M_{A}\left(\mu_{n-1}, \mu_{n}\right) & =\frac{1}{3} I_{A}\left(d_{A}\left(\mu_{n}, \mu_{n-1}\right)+d_{A}\left(\mu_{n}, \mu_{n-1}\right)+d_{A}\left(\mu_{n}, \mu_{n+1}\right)\right. \\
& \left.+d_{A}\left(\mu_{n}, \mu_{n}\right)+d_{A}\left(\mu_{n+1}, \mu_{n-1}\right)\right) .
\end{aligned}
$$

Because $d_{A}(\mu, \mu)=0$, we obtain

$$
M_{A}\left(\mu_{n-1}, \mu_{n}\right) \preceq \frac{1}{3} I_{A}\left(d_{A}\left(\mu_{n}, \mu_{n-1}\right)+d_{A}\left(\mu_{n}, \mu_{n-1}\right)+d_{A}\left(\mu_{n}, \mu_{n+1}\right)+d_{A}\left(\mu_{n+1}, \mu_{n-1}\right)\right)
$$

So, $\left.M_{A}\left(\mu_{n-1}, \mu_{n}\right) \preceq \frac{1}{3} I_{A}\left(2 d_{A}\left(\mu_{n}, \mu_{n-1}\right)+d_{A}\left(\mu_{n}, \mu_{n+1}\right)+d_{A}\left(\mu_{n+1}, \mu_{n-1}\right)\right)\right)$.
By using triangular inequality, we obtain

$$
\begin{aligned}
d_{A}\left(\mu_{n}, \mu_{n+1}\right) & \preceq \frac{1}{3} \psi_{A} I_{A}\left[2 d_{A}\left(\mu_{n}, \mu_{n-1}\right)+d_{A}\left(\mu_{n}, \mu_{n+1}\right)+d_{A}\left(\mu_{n}, \mu_{n+1}\right)+d_{A}\left(\mu_{n}, \mu_{n-1}\right)\right] . \\
d_{A}\left(\mu_{n}, \mu_{n+1}\right) & \preceq \frac{1}{3} \psi_{A} I_{A}\left[3 d_{A}\left(\mu_{n-1}, \mu_{n}\right)+2 d_{A}\left(\mu_{n}, \mu_{n+1}\right)\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(1-\frac{2}{3} \psi_{A}\right)\left(d_{A}\left(\mu_{n}, \mu_{n+1}\right)\right) & \preceq \psi_{A} I_{A}\left(d_{A}\left(\mu_{n-1}, \mu_{n}\right)\right) \\
d_{A}\left(\mu_{n}, \mu_{n+1}\right) & \preceq \psi_{A}\left(1-\frac{2}{3} \psi_{A}\right)^{-1} I_{A}\left(d_{A}\left(\mu_{n-1}, \mu_{n}\right)\right) .
\end{aligned}
$$

Putting $\phi_{A}=\psi_{A}\left(1-\frac{2}{3} \psi_{A}\right)^{-1},\left\|\psi_{A}\right\|<\frac{1}{2}$; then, we obtain

$$
\begin{equation*}
d_{A}\left(\mu_{n}, \mu_{n+1}\right) \preceq \phi_{A}^{n}\left(d_{A}\left(\mu_{0}, \mu_{1}\right)\right) . \tag{13}
\end{equation*}
$$

Let $n, m \in \mathbb{N}$, such that $m>n$. We thus obtain

$$
\begin{aligned}
d_{A}\left(\mu_{n}, \mu_{m}\right) & \preceq \sum_{k=n}^{m-1} \phi_{A}^{k}\left(d_{A}\left(\mu_{0}, \mu_{1}\right)\right) \\
& \rightarrow 0 \text { as }(n \rightarrow+\infty) .
\end{aligned}
$$

Thus, $\left\{\mu_{n}\right\}$ is a Cauchy sequence and $\mu_{n} \rightarrow \mu$ as $n \rightarrow+\infty$. Thus, we obtain $T \mu=\mu$ as a fixed point of T.

To prove the uniqueness, we suppose that $(v \neq \mu)$ is another fixed point of T. Thus,

$$
\begin{aligned}
0_{A} \preceq d_{A}(\mu, v) & =d_{A}(T \mu, T v) \\
& \preceq \alpha_{A}(\mu, v) d_{A}(T \mu, T v) \\
& \preceq \frac{1}{3} \psi_{A}\left(d_{A}(\mu, v)+d_{A}(T \mu, v)+d_{A}(T v, \mu)+d_{A}(T \mu, \mu)+d_{A}(T v, v)\right) \cdot I_{A} \\
& =\frac{1}{3} \psi_{A}\left(d_{A}(\mu, v)+d_{A}(\mu, v)+d_{A}(v, \mu)+d_{A}(\mu, \mu)+d_{A}(v, v)\right) \cdot I_{A} \\
& =\frac{1}{3} \psi_{A}\left(3 d_{A}(\mu, v)\right) \cdot I_{A} \\
\text { so, } 0_{A} \preceq d_{A}(\mu, v) & \preceq \psi_{A}\left(d_{A}(\mu, v)\right) .
\end{aligned}
$$

Because $\psi_{A}(a) \prec a$, this implies that $0 \preceq d_{A}(\mu, v) \prec d_{A}(\mu, v)$,, which gives a contradiction. Then, we obtain $\mu=v$.

Example 4. Let Ω be a Banach space and $d_{A}: \Omega \times \Omega \rightarrow$ A be defined as $d_{A}(\mu, v)=\|\mu-v\| \cdot I_{A}$ for all $\mu, \nu \in \Omega$. I_{A} is the unit of A because Ω is a Banach space. Then, $\left(\Omega, A, d_{A}\right)$ is a complete C^{*}-algebra-valued metric space. Define $T: \Omega \rightarrow \Omega$ as $T \mu=2 \mu$ and define $\psi_{A}: A^{+} \rightarrow A^{+}$as $\psi_{A}(a)=3 a I_{A}$ for all $a \in A^{+}$, where A^{+}is the positive cone of A. Additionally, $\alpha_{A}: \Omega \times \Omega \rightarrow$ A^{+}is defined by $\alpha_{A}(\mu, v)=I_{A}$, where

$$
\alpha_{A}(T \mu, T v)=\alpha_{A}(2 \mu, 2 v)=2 \alpha_{A}(\mu, v)=2 I_{A} \succeq I_{A}
$$

Now,

$$
\begin{aligned}
d_{A}(T \mu, T v) & =\|T \mu-T v\| \cdot I_{A}=\|2 \mu-2 v\| \cdot I_{A} \\
& =\|2 \mu-2 v+v-v+\mu-\mu\| \cdot I_{A} \\
& =\|(2 \mu-v)-(2 v-\mu)-(\mu-v)\| \cdot I_{A} \\
& \preceq(\|2 \mu-v\|+\|2 v-\mu\|+\|\mu-v\|) \cdot I_{A} \\
& \preceq(\|T \mu-v\|+\|T v-\mu\|+\|\mu-v\|) \cdot I_{A} \\
& =\left(d_{A}(T \mu, v)+d_{A}(T v, \mu)+d_{A}(\mu, v)\right) \\
& \preceq \frac{1}{3} \psi_{A}\left(d_{A}(T \mu, v)+d_{A}(T v, \mu)+d_{A}(\mu, v)\right) .
\end{aligned}
$$

Applying $\alpha_{A}(\mu, v)$, we obtain

$$
\alpha_{A}(\mu, v) d_{A}(T \mu, T v) \preceq \frac{1}{3} \psi_{A}\left(d_{A}(T \mu, v)+d_{A}(T v, \mu)+d_{A}(\mu, v)\right) .
$$

This satisfies the conditions in Theorem 2. Then, Thas a fixed point of Ω.
We introduce a numerical example, assuming that the metric space is valued-noncommutative C^{*}-algebra $M_{2}(\mathbb{R})$

Example 5. Let $\Omega=\mathbb{R}$ and $A=M_{2}(\mathbb{R})$, where $M_{2}(\mathbb{R})$ is the set of all 2×2 matrices entries in \mathbb{R}. It is obvious that $M_{2}(\mathbb{R})$ is a C^{*}-algebra with matrix norm and involution $*: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$ given by $*: a \rightarrow a^{t}$, where a^{t} is the transpose of $a, a \in M_{2}(\mathbb{R})$. Define

$$
d_{A}(\mu, v)=\left(\begin{array}{cc}
|\mu-v| & 0 \\
0 & k|\mu-v|
\end{array}\right)
$$

for all $\mu, v \in \Omega, k>0$. It is clear that $\left(\Omega, A, d_{A}\right)$ is C^{*}-algebra-valued metric space. To verify the contraction conditions in Theorem 3, we take $\mu=1, v=2, k=3$.

Additionally, we define $T: \Omega \rightarrow \Omega$ by $T(\mu)=2 \mu$ and $\alpha_{A}: \Omega \times \Omega \rightarrow M_{2}(\mathbb{R})^{+}$by

$$
\alpha_{A}(\mu, v)=2\left(\begin{array}{cc}
|\mu-v| & 0 \\
0 & |\mu-v|
\end{array}\right)
$$

and $\psi_{A}: M_{2}(\mathbb{R})^{+} \rightarrow M_{2}(\mathbb{R})^{+}$, by $\psi_{A}(a)=3 a$, for $a \in M_{2}(\mathbb{R})^{+}, \mu, v \in Z$, where $M_{2}(\mathbb{R})^{+}$is the set of positive matrices of $M_{2}(\mathbb{R})$.

Now, by simple calculation, we obtain

$$
\begin{gathered}
d_{A}(\mu, v)=d_{A}(1,2)=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right), \\
d_{A}(T \mu, T v)=d_{A}(2,4)=\left(\begin{array}{ll}
2 & 0 \\
0 & 6
\end{array}\right),
\end{gathered}
$$

$$
\begin{gathered}
d_{A}(T \mu, v)=d_{A}(2,2)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \\
d_{A}(T \nu, \mu)=d_{A}(4,1)=\left(\begin{array}{ll}
3 & 0 \\
0 & 9
\end{array}\right), \\
d_{A}(T \mu, \mu)=d_{A}(4,1)=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right) \\
d_{A}(T v, v)=d_{A}(4,1)=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
\alpha_{A}(\mu, v)=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
\end{gathered}
$$

Thus, we calculate the right hand side of the inequality (10) in Theorem 3 as

$$
\begin{aligned}
M_{A}(\mu, v) & =\frac{1}{3}\left(d_{A}(\mu, v)+d_{A}(T \mu, v)+d_{A}(T v, \mu)+d_{A}(T \mu, \mu)+d_{A}(T v, v)\right) \\
& =\frac{1}{3}\left(\begin{array}{cc}
7 & 0 \\
0 & 21
\end{array}\right) .
\end{aligned}
$$

Therefore, $\psi\left(M_{A}(\mu, v)=\left(\begin{array}{cc}7 & 0 \\ 0 & 21\end{array}\right)\right.$.
On the other hand, the left hand side of the inequality (10) in Theorem 3 is given by $\alpha_{A}(\mu, v) d_{A}(T \mu, T v)=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right) \cdot\left(\begin{array}{ll}2 & 0 \\ 0 & 6\end{array}\right)=\left(\begin{array}{cc}4 & 0 \\ 0 & 12\end{array}\right)$.

Hence, it is obvious that T is $\alpha_{A}-\psi_{A}$-admissible and, because $\left(\begin{array}{cc}2 & 0 \\ 0 & 12\end{array}\right) \leq\left(\begin{array}{cc}7 & 0 \\ 0 & 21\end{array}\right)$, we can obtain

$$
\alpha_{A}(\mu, v) d_{A}(T \mu, T v) \leq \psi_{A}\left(M_{2}(\mu, v)\right)
$$

Thus, all conditions of Theorem 3 are satisfied. Therefore, there exists a unique fixed point of T, and the zero matrix is the fixed point of $T \in \Omega$.

We discuss a numerical example that satisfies the conditions of Theorem 3, where the metric space in this example is valued-commutative C^{*}-algebra \mathbb{C}^{2}.

Example 6. Let $\Omega=[0, \infty)$ and $A=\mathbb{C}^{2}=\mathbb{C} \oplus \mathbb{C}$, the set of direct sum of two copies of complex numbers. \mathbb{C}^{2} with the vector addition and pointwise multiplication defined by $\left(Z_{1}, Z_{2}\right)+$ $\left(W_{1}, W_{2}\right)=\left(Z_{1}+W_{1}, Z_{2}+W_{2}\right)$, and $\left(Z_{1}, Z_{2}\right) \cdot\left(W_{1}, W_{2}\right)=\left(Z_{1} \cdot W_{1}, Z_{2} \cdot W_{2}\right)$, for all $Z_{1}, Z_{2}, W_{1}, W_{2} \in \mathbb{C}$, is a C^{*}-algebra with the maximum norm given by $\left\|\left(Z_{1}, Z_{2}\right)\right\|=\max \left\{\left|Z_{1}\right|,\left|Z_{2}\right|\right\}$, and involution $*: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ given by $\left(Z_{1}, Z_{2}\right)^{*}=\left(\overline{Z_{1}}, \overline{Z_{2}}\right)$, for all $Z_{1}, Z_{2} \in \mathbb{C}$. Define a partial order \preceq on $\mathbb{C}^{2}:\left(Z_{1}, Z_{2}\right) \preceq\left(W_{1}, W_{2}\right)$ if and only if
(a) $\operatorname{Re}\left(Z_{1}\right) \leq \operatorname{Re}\left(W_{1}\right)$, Im $W_{1} \leq \operatorname{Im} W_{1}$, and
(b) $\operatorname{Re}\left(Z_{2}\right) \leq \operatorname{Re}\left(W_{2}\right)$, Im $W_{2} \leq \operatorname{Im} W_{2}$.

Thus, $\left(W_{1}, W_{2}\right)-\left(Z_{1}, Z_{2}\right) \succeq 0$ iff $\left(Z_{1}, Z_{2}\right) \preceq\left(W_{1}, W_{2}\right)$. Additionally, $\left(Z_{1}, Z_{2}\right) \succeq 0$ if $Z_{1} \succeq 0$ and $Z_{2} \succeq 0$. In addition, $\operatorname{Re}\left(Z_{1}\right) \geq 0, \operatorname{Im} Z_{1} \geq 0$ and $\operatorname{Re}\left(Z_{2}\right) \geq 0, \operatorname{Im} Z_{2} \geq 0$

Let \mathbb{C}_{+}^{2} be the set of all positive element in \mathbb{C}^{2}. Suppose $\Omega=[0, \infty)$ and $d_{A}: \Omega \times \Omega \rightarrow \mathbb{C}^{2}$ be a mapping defined by $d_{A}(|\mu-v|+i|\mu-v|,|\mu-v|+2 i|\mu-v|)$ for all $\mu, v \in \Omega$ and $i=\sqrt{-1}$.

It is clear that $\left(\Omega, A, d_{A}\right)$ is C^{*}-algebra-valued metric space.
Now, define $T: \Omega \rightarrow \Omega$ by $T \mu=e^{\mu}$ and $\alpha_{A}: \Omega \times \Omega \rightarrow \mathbb{C}_{+}^{2}$ as $\alpha_{A}(\mu, v)=I_{A}$. In addition, assume $\psi_{A}: \mathbb{C}_{+}^{2} \rightarrow \mathbb{C}_{+}^{2}$ defined by $\psi_{A}(a)=3 a \forall a \in \mathbb{C}_{+}^{2}$.

To verify the contraction conditions in Theorem 3, we take $\mu=1, v=2$. By calculation, one can obtain the following:

$$
\begin{aligned}
d_{A}(\mu, v) & =d(1,2)=(1+i, 1+2 i) \\
d_{A}(T \mu, T v) & =d_{A}\left(e, e^{2}\right) \\
& \simeq(4.670+4.670 i, 4.670+9.340 i) \\
d_{A}(T \mu, v) & =d_{A}(e, 2) \\
& \simeq(0.718+0.718 i, 0.718+1.436 i) \\
d_{A}(T v, \mu) & =d_{A}\left(e^{2}, 1\right) \\
& \simeq(6.389+6.389 i, 6.389+12.778 i) \\
d_{A}(T \mu, \mu) & =d_{A}(e, 1) \\
& \simeq(1.718+1.718 i, 1.718+3.436 i) \\
d_{A}(T v, v) & =d_{A}\left(e^{2}, 2\right) \\
& \simeq(5.389+5.389 i, 5.389+10.778 i) \\
\alpha_{A}(\mu, v) & =\alpha_{A}(1,2)=(1,2)
\end{aligned}
$$

We calculate the right-hand side of the inequality (10) in the Theorem 3 and obtain

$$
\psi_{A}\left(M_{A}(\mu, v)\right) \simeq(15.214+15.214 i, 15.214+30.428 i)
$$

On the other hand, the left-hand side of the inequality (10) in the Theorem 3 gives

$$
\alpha_{A}(\mu, v) d_{A}(T \mu, T v) \simeq(4.670+4.670 i, 4.670+18.680 i) .
$$

It is clear that $\alpha_{A}(\mu, v) d_{A}(T \mu, T v) \leq \psi_{A}\left(M_{A}(\mu, v)\right)$, and this satisfies all conditions of the Theorem 3.

In the following, we provide an application scenario with which to study the existence and uniqueness of the solution of a system of matrix equations. The existence and uniqueness of the solution of the linear matrix equations are very interesting and important in linear systems.

Here, we are interested in using C^{*}-algebra-valued metric spaces to find a positive definite hermitian solution for a system of matrix equations with complex entries.

The proof is based on the positive cones and the linear continuous operator mapping a cone into itself.

4. Application

Suppose that $M_{n}(\mathbb{C})$ is the set of all $n \times n$ matrices with complex entries. Additionally, $M_{n}(\mathbb{C})^{+}$is the set of all positive definite matrices of $M_{n}(\mathbb{C}) . M_{n}(\mathbb{C})$ is a Banach space with matrix norm and $M_{n}(\mathbb{C})$ is also a C^{*}-algebra with matrix norm and the involution $*: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C}), Z \rightarrow Z^{*}$, where $Z=\left(Z_{i j}\right)_{1 \leq i, j \leq n} \in M_{n}(\mathbb{C})$ and $Z^{*}=\left(Z_{i j}\right)_{1 \leq i, j \leq n}^{*}=$ $\left(\overline{Z_{j i}}\right)_{1 \leq i, j \leq n} \in M_{n}(\mathbb{C})$.

Let $A_{1}, A_{2}, \ldots, A_{n} \in M_{n}(\mathbb{C}), Z, W \in M_{n}(\mathbb{C})$. Additionally, $Q \in M_{n}(\mathbb{C})^{+}$. Then, the matrix equation

$$
\begin{equation*}
Z-\sum_{k=1}^{n} A_{k}^{*} Z A_{k}=Q \tag{14}
\end{equation*}
$$

has a unique solution.
Proof. For $Z, W \in M_{n}(\mathbb{C})$, define $d_{M_{n}(\mathbb{C})}: M_{n}(\mathbb{C}) \times M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$, as

$$
d_{M_{n}(\mathbb{C})}(Z, W)=\|Z-W\| \cdot I_{d_{M_{n}(\mathbb{C})}}
$$

Then, $\left(M_{n}(\mathbb{C}), d_{M_{n}(\mathbb{C})}\right)$ is a C^{*}-algebra-valued metric space and is complete, because the set $M_{n}(\mathbb{C})$ is complete. Consider $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$, defined by $T(Z)=$ $\sum_{k=1}^{n} A_{k}^{*} Z A_{k}+Q$. Additionally, $\psi_{M_{n}(\mathbb{C})}(Z)=3 Z \cdot I_{M_{n}(\mathbb{C})}$. Define

$$
\begin{gathered}
\alpha_{M_{n}(\mathbb{C})}: M_{n}(\mathbb{C}) \times M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})^{+} \\
\alpha_{M_{n}(\mathbb{C})}(Z, W)=I_{M_{n}(\mathbb{C})} .
\end{gathered}
$$

It is clear that T is $\alpha_{M_{n}(\mathbb{C})}-\psi_{M_{n}(\mathbb{C})}$ admissible. Then,

$$
\begin{aligned}
d_{M_{n}(\mathbb{C})}(T Z, T W) & =\|T Z-T W\| \cdot I_{M_{n}(\mathbb{C})} \\
& =\left\|\left(\sum_{k=1}^{n} A_{k}^{*} Z A_{k}+Q\right)-\left(\sum_{k=1}^{n} A_{k}^{*} W A_{k}+Q\right)\right\| \cdot I_{M_{n}(\mathbb{C})} \\
& =\left\|\left(\left(\sum_{k=1}^{n} A_{k}^{*} Z A_{k}+Q\right)-W\right)-\left(\left(\sum_{k=1}^{n} A_{k}^{*} W A_{k}+Q\right)-Z\right)-(Z-W)\right\| \cdot I_{M_{n}(\mathbb{C})} \\
& \preceq\left\|\left(\left(\sum_{k=1}^{n} A_{k}^{*} Z A_{k}+Q\right)-W\right)\right\| \cdot I_{M_{n}(\mathbb{C})}+\left(\left(\sum_{k=1}^{n} A_{k}^{*} W A_{k}+Q\right)-Z\right)\|\cdot\| I_{M_{n}(\mathbb{C})} \\
& +\|(Z-W)\| \cdot I_{M_{n}(\mathbb{C})} \\
& =\|T Z-W\| \cdot I_{M_{n}(\mathbb{C})}+\|T W-Z\| \cdot I_{M_{n}(\mathbb{C})}+\|(Z-W)\| \cdot I_{M_{n}(\mathbb{C})} \\
& =d_{M_{n}(\mathbb{C})}(T Z, W)+d_{M_{n}(\mathbb{C})}(T W, Z)+d_{M_{n}(\mathbb{C})}(Z, W) \\
& \preceq \frac{1}{3} \psi_{M_{n}(\mathbb{C})}\left(d_{M_{n}(\mathbb{C})}(T Z, W)+d_{M_{n}(\mathbb{C})}(T W, Z)+d_{M_{n}(\mathbb{C})}(Z, W)\right) .
\end{aligned}
$$

Thus,

$$
\alpha_{A}(Z, W) d_{M_{n}(\mathbb{C})}(T Z, T W) \preceq \frac{1}{3} \psi_{M_{n}(\mathbb{C})}\left(d_{M_{n}(\mathbb{C})}(T Z, W)+d_{M_{n}(\mathbb{C})}(T W, Z)+d_{M_{n}(\mathbb{C})}(Z, W)\right)
$$

This satisfies the conditions of Theorem 2. Thus, the system of matrix Equation (14) has a unique hermitian matrix solution.

5. Conclusions

In this paper, we provide some results obtained for the Chatterjea and C̀iric̀ fixed-point theorems by using $\alpha_{A}-\psi_{A}$-contractive mapping in a C^{*}-algebra-valued metric space. Furthermore, illustrated examples and an application scenario are introduced. It is worth mentioning that these results generalize and extend some results described in [1-3,5,9,23,24,26-30].

Author Contributions: Conceptualization, I.M. and S.O.; methodology, I.M. and S.O.; validation, I.M.; formal analysis, I.M.; investigation, S.O.; resources, I.M.; data curation, S.O.; writing-original draft preparation, S.O.; writing-review and editing, I.M. All authors read and approved the final manuscript.

Funding: This research received no external funding.
Data Availability Statement: No data were used to support this study.
Acknowledgments: The first author thanks Jazan University, Saudi Arabia, for partially supporting this study. The second author thanks South Valley University, Egypt, for partially supporting the study.

Conflicts of Interest: The authors of this current research declaring that this study has no competing interest.

References

1. Banach, S. Sur les operations dans les ensembles obstraits et. Leur. Application aux equation integrales. Fund. Math. 1922, 3, 133-181. [CrossRef]
2. Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71-76.
3. Chatterjea, S.K. Fixed point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727-730. [CrossRef]
4. C̀iric̀, L. On some with non-unique fixed points. Publ. I'Institut MathÈMatique 1974, 17, 52-58.
5. Romaguera, S.; Tirado, P. A Characterization of Quasi-Metric Completeness in Terms of $\alpha-\psi$-Contractive Mappings Having Fixed Points. Mathematics 2020, 8, 16. [CrossRef]
6. Samet, B.; Vetro; Vetro, P. Fixed point theorems for $\alpha-\psi$-contractive type mappings. Nonlinear Anal. 2012, 75, 2154-2165. [CrossRef]
7. Abdou, A.; Alasmari, M. Fixed point theorems for generalized $\alpha-\psi$-contractive mappings in extended b-metric spaces with applications. AIMS Math. 2021, 6, 5465-5478. [CrossRef]
8. Hu, P.; Gu, F. Some fixed point theorems of λ-contractive mappings in Menger PSM-spaces. J. Nonlinear Funct. Anal. 2020, 2020, 33.
9. Hussain, N.; Al-Solami, A.M.; Kutbi, M.A. Fixed points α-Admissible mapping in cone b-metric space over Bansch algebra. J. Math. Anal. 2017, 8, 89-97.
10. Ma, Z.; Jiang, L.; Sun, H. C*-algebra-valued metric space and related fixed point theorems. Fixed Point Theory Appl. 2014, 2014, 206. [CrossRef]
11. Nguyen, L.V.; Tram, N.T.N. Fixed point results with applications to involution mappings. J. Nonlinear Var. Anal. 2020, 4, 415-426.
12. Omran, S.; Masmali, I. α-Admissible mapping in C^{*}-algebra-valued b-metric spaces and fixed point. AIMS Math. 2021, 6, 10192-10206. [CrossRef]
13. Parvaneh, V.; Bonab, S.H.; Hosseinzadeh, H.; Aydi, H. A Tripled Fixed Point Theorem in -Algebra-Valued Metric Spaces and Application in Integral Equations. Adv. Math. Phys. 2021, 2021, 1-6. [CrossRef]
14. Samet, B. The class of (α, ψ)-type contractions in b-metric space and fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 92. [CrossRef]
15. Vujakovic, J.; Mitrovic, S.; Mitrovic, Z.; Radenovic, S. On F-Contractions for Weak Admissible Mappings in Metric-Like Spaces. Mathematics 2020, 8, 1629. [CrossRef]
16. Chaharpashlou, R.; O'Regan, D.; Park, C.; Saadati, R. C*-Algebra valued fuzzy normed spaces with application of Hyers-Ulam stability of a random integral equation. Adv. Differ. Equ. 2020, 2020, 326. [CrossRef]
17. Chandok, S.; Kumar, D.; Park, C. C*-Algebra-valued partial metric Spaces and Fixed Point theorems. Proc. Indian Acad. Sci. (Math. Sci.) 2019, 129, 37. [CrossRef]
18. Hussian, N.; Parvaneh, V.; Samet, B.; Vetro, C. Some fixed point theorems for generalized contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2015, 2015, 185. [CrossRef]
19. Malhotra, S.K.; Sharma, J.B.; Shukla, S. Fixed point of α - admissible mapping in cone metric spaces with Banach algebra. Int. J. Anal. Appl. 2015, 9, 9-18.
20. Mlaiki, N.; Asim, M.; Imdad, M. C*-Algebra Valued Partial Metric Spaces and Fixed Point Results with an Application. Mathematics 2020, 8, 1381. [CrossRef]
21. Mustafa, Z.; Roshan, J.R.; Parvaneh, V.; Kadelburg, Z. Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces. J. Inequalities Appl. 2014, 2014, 46. [CrossRef]
22. Wu, X.; Zhao, L. Fixed point theorems for generalized $\alpha-\psi$ type contractive mappings in b-metric spaces and applications. J. Math. Computer Sci. 2018, 18, 49-62. [CrossRef]
23. Connes, A. Noncommutative Geometry; Academic Press: San Diago, CA, USA, 1994.
24. Murphy, G.J. C*-Algebras and Operator Theory; Academic Press, Inc.: Boston, MA, USA, 1990.
25. Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim. 2011, 32, 243-253. [CrossRef]
26. Ciricic̀, L. Generalized contractions and fixed-point theorems. Publ. Inst. Math. 1971, 12, 19-26.
27. Kumar, D.; Rishi, D.; Park, C.; Lee, J. On fixed point in C^{*}-algebra valued metric spaces using C_{*}-class function. Int. J. Nonlinear Anal. Appl. 2021, 12, 1157-1161.
28. Omran, S.; Masmali, I. On the $(\alpha-\psi)$-Contractive Mappings in C^{*}-Algebra Valued b-Metric Spaces and Fixed Point Theorems. J. Math. 2021, 2021, 6. [CrossRef]
29. Kadelburg, Z.; Radenovic, S. Fixed point result in C^{*}-algebra-valued metric space are direct consequences of their standard metric counterparts. Fixed Point Theory Appl. 2016, 2016, 53. [CrossRef]
30. Xin, Q.; Jiang, L.; Ma, Z. Common fixed point theorems in C^{*}-algebra-valued metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 4617-4627. [CrossRef]
