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1. Introduction

The Banach contraction principle [1] is one of the most important tools of analysis
and has many significant applications in various fields of science. It has been improved in
many ways and generalized by many researchers. A map T : Ω → Ω, where (Ω, d) is a
complete metric space, is said to be a contraction map if there exists λ ∈ (0, 1), such that
for all µ, ν ∈ Ω

d(Tµ, Tν) ≤ λd(µ, ν). (1)

This result was introduced by Banach in 1922. Kannan [2] in 1968 proved that, if (Ω, d)
is a complete metric space and T : Ω→ Ω is a map satisfying

d(Tµ, Tν) ≤ λ(d(Tµ, µ) + d(Tν, ν)), (2)

where λ ∈ (0, 1
2 ) for all µ, ν ∈ Ω, then there is a unique fixed point on T. Later, in 1972,

Chatterjea [3] proved that if (Ω, d) is a complete metric space and T : Ω→ Ω is a mapping
that exists λ ∈ (0, 1

2 ), such that µ, ν ∈ Ω, the inequality

d(Tµ, Tν) ≤ λ(d(Tµ, ν) + d(Tν, µ)) (3)

is satisfied; thus, T has a unique fixed point.
C̀iric̀ [4] in 1974 introduced an interesting general contraction condition. If there exists

λ ∈ (0, 1), such that for all µ, ν ∈ Ω, and T : Ω→ Ω is a map satisfying

d(Tµ, Tν) ≤ λ ·max{d(µ, ν), d(Tµ, µ)d(Tν, ν), d(Tµ, ν), d(Tν, µ)}, (4)

then T has a unique fixed point.
On the other hand, Samet et al. [5,6] studied α-ψ-contractive mappings in metric spaces.

Many researchers have established related studies to α-admissible and α− ψ-contractive
mappings and related fixed-point theorems (see [7–15]).

Recently, Ma et al. [10] introduced the more generalized notion 0f a C∗-algebra-valued
metric space by replacing real numbers with the positive cone of C∗-algebra. This line of
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research was continued in [16–22], where several other fixed-point results were obtained in
the framework of C∗-algebra-valued metric space.

Throughout this paper, we suppose that A is a unital C∗-algebra with a unit IA. We
mean that a unital C∗-algebra is a complex Banach algebra A with an involution map
∗ : A→ A, a→ a∗, such that (a∗)∗ = a, (ab)∗ = a∗b∗, (a + b)∗ = a∗ + b∗ and (λa)∗ = λa∗

for a, b, A, λ ∈ C, such that ‖a∗a‖ = ‖a‖2. Set Ah = {a ∈ A : a = a∗}. An element a ∈ A is
a positive element if a = a∗ and σ(a) ⊂ R+, where σ(a) is the spectrum of a. We define a
partial ordering � on A as a � b if 0A � b− a, where 0A means the zero element in A, and
we let A+ denote the {a ∈ A : a � 0A} and |a| = (a∗a)

1
2 .

The results described in this article extend some fixed-point theorems in C∗-algebra-
valued metric spaces. C∗-algebras are considered typical examples of quantum spaces and
non-commutative spaces. They play an important role in the non-commutative geometry
project introduced by Alain Connes [23]. Thus, the theory of metric space-valued C∗-
algebras should apply to many problems in quantum spaces, such as matrices and bounded
linear operators on Hilbert spaces. Therefore, C∗-algebras and their metric provide a
non-commutative version of ordinary metric spaces.

2. Preliminaries

In this section, we introduce some basic notions which will be used in the following work.

Lemma 1. Suppose that A is a unital C∗-algebra with unit IA. The following holds.
(1) If a ∈ A, with ‖a‖ < 1

2 , then 1− a is invertible and ‖a(1− a)−1‖ < 1.
(2) If a, b ∈ A+ and ab = ba, then a.b � 0A.
(3) Let a ∈ A′. If b, c ∈ A with b � c � 0A and 1− a ∈ (A′)+ is an invertible element, then
(IA − a)−1b � (IA − a)−1c, where A′ = {b ∈ A : ab = ba ∀a ∈ A}.
We refer to [24] for more C∗algebra details.

Definition 1. [10] Let Ω be a non-empty set. Suppose the mapping dA : Ω×Ω→ A satisfies:
(1) dA(µ, ν) � 0A for all µ, ν ∈ Ω and dA(µ, ν) = 0A ⇔ µ = ν.
(2) dA(µ, ν) = dA(ν, µ) for all µ, ν ∈ Ω.
(3) dA(µ, ξ) � dA(µ, ν) + dA(ν, ξ) for all µ, ν, ξ ∈ Ω.
Then, dA is called a C∗-algebra-valued metric on Ω and (Ω, A, dA) is called C∗-algebra-valued
metric space.

Example 1. Let Ω be a Banach space and dA : Ω×Ω→ A given by dA(µ, ν) = ‖µ− ν‖ · a, for
all µ, ν ∈ Ω, which should be where a ∈ A+, a � 0 .
It is easy to verify that (Ω, A, dA) is a C∗-algebra-valued metric space.

Example 2. Let Ω = C and A = Mn(C). It is obvious that A is a C∗-algebra with the matrix
norm and the involution given by ∗ : Mn(C) → Mn(C), (Zij)1≤i,j≤n → (Zij)

∗
1≤i,j≤n =

(Zji)1≤i,j≤n, where Zij is the conjugate of Zij, Zij ∈ C. Define a mapping dA : Ω×Ω→ A, by:

d(Z1, Z2) = diag(eiθ1 |Z1 − Z2|, ..., eiθk |Z1 − Z2|, ...eiθn |Z1 − Z2|)

=



eiθ1 |Z1 − Z2| · · · 0 · · · 0
...

. . .
...

...
0 · · · eiθk |Z1 − Z2| · · · 0
...

...
. . .

...
0 · · · 0 · · · eiθn |Z1 − Z2|

,

for all Z1, Z2 ∈ C, i =
√
−1, k = 1, ..., n, θk ∈ [0, π

2 ]. Then, (Ω, A, dA) is a C∗-algebra-valued
metric space. It is clear that it is a generalization of the complex-valued metric space given in [25],
when A = C.
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Definition 2. Let (Ω, A, dA) be a C∗-algebra-valued metric space, µ ∈ Ω, and {µn}+∞
n=1 be a

sequence in Ω. Then,
(i) {µn}+∞

n=1 convergent to µ whenever, for every ε ∈ A with ε � 0A, there is a natural number
N ∈ N, such that

dA(µn, µ) ≺ ε,

for all n > N. We denote this by lim
n→∞

µn = µ or µn → µ as n→ +∞.

(ii) {µn}+∞
n=1 is said to be a Cauchy sequence whenever, for every ε ∈ A with ε � 0A, there is a

natural number N ∈ N, such that
dA(µn, µm) ≺ ε,

for all n, m > N.

Lemma 2. (i) {µn}+∞
n=1 is convergent in Ω if, for any element ε > 0, there is N ∈ N, such that for

all n > N, ‖d(µn, µ)‖ ≤ ε.
(ii) {µn}+∞

n=1 is a Cauchy sequence in Ω if, for any ε > 0 there is N ∈ N, such that
‖dA(µn, µm)‖ ≤ ε, for all n, m > N. We say that (Ω, A, dA) is a complete C∗-algebra-valued
metric space if every Cauchy sequence is convergent with respect to A.

Example 3. Let Ω be a compact Hausdorff space. We denote by C(Ω) the algebra of all complex-
valued continuous functions on Ω with pointwise addition and multiplication. The algebra C(Ω)
with the involution defined by f ∗(µ) = f (µ) for each f ∈ C(Ω), µ ∈ Ω and with the norm
‖ f ‖∞ = sup{| f (µ)|, µ ∈ Ω} is a commutative C∗-algebra where unit IC(Ω) is the constant
function. Let C+(Ω) = { f ∈ C(Ω) : f (µ) = f (µ), f (µ) ≥ 0} denote the positive cone of C(Ω),
with partial order relation f ≤ g if and only if f (µ) ≤ g(µ). Put dC(Ω) : C(Ω) × C(Ω) →
C(Ω) as dC(Ω)( f , g) = supµ∈Ω{| f (µ)− g(µ)|}.IC(Ω). It is clear that (C(Ω), C(Ω), dC(Ω)) is
a complete C∗-algebra-valued metric space.

Definition 3. [6] Let T : Ω → Ω be a self map and α : Ω×Ω → [0,+∞). Then, T is called
α-admissible if for all µ, ν ∈ Ω and α(µ, ν) ≥ 1 implies α(Tµ, Tν) ≥ 1.

Definition 4. Let Ω be a non-empty set and αA : Ω×Ω → (A+)′ be a function. We say that
the self map T is αA -admissible if for all (µ, ν) ∈ Ω×Ω, αA(µ, ν) � IA ⇒ αA(Tµ, Tν) � IA,
where IA is the unit of A.

Definition 5. Let (Ω, A, dA) be a C∗-algebra-valued metric space and T : Ω→ Ω be a mapping.
We say that T is an αA-ψA-contractive mapping if there exist two functions αA : Ω×Ω → A+

and ψA ∈ ΨA, such that

αA(µ, ν)dA(Tµ, Tν) � ψA(dA(µ, ν)),

for all µ, ν ∈ Ω.

Definition 6. Suppose that A and B are C∗-algebras. A mapping ψ : A → B is said to be a
C∗-homomorphism if :
(a) ψ(λ1a1 + λ2a2) = λ1ψ(a1) + λ2ψ(a2) for all λ1, λ2 ∈ C and a1, a2 ∈ A;
(b) ψ(a1a2) = ψ(a1)ψ(a2), ∀a1, a2 ∈ A;
(c) ψ(a∗) = ψ(a)∗, ∀a ∈ A; and
(d) ψ maps the unit in A to the unit in B.

Definition 7. If ψ : A→ B is a linear mapping in C∗-algebra, it is said to be positive if ψ(A+) ⊆
B+. In this case, ψ(Ah) ⊆ Bh, and the restriction map ψ : Ah → Bh increases. Every C∗-
homomorphism is contractive and hence bounded and every ∗-homomorphism is positive.
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Definition 8. Let ΨA be the set of positive functions ψA : A+ → A+ satisfying the following
conditions:
(a) ψA(a) is continuous and non-decreasing, ψA(a) ≺ a;
(b) ψA(a) = 0 iff a = 0; and

(c)
∞
∑

n=1
ψn

A(a) < ∞, lim
n→∞

ψn
A(a) = 0 for each a � 0, where ψn

A is the nth-iterate of ψA.

3. Main Results

In this section, we give some types of Chatterjea and C̀iric̀ fixed-point theorems in a
C∗-algebra-valued metric space using (α− ψ)-contraction.

Theorem 1. (Chatterjea Type) Let (Ω, A, dA) be a complete C∗-algebra-valued metric space and
T : Ω→ Ω, be a mapping satisfying:

αA(µ, ν)dA(Tµ, Tν) � ψA(
dA(Tµ, ν) + dA(Tν, µ)

2
), (5)

f or µ, ν ∈ Ω, where

αA : Ω×Ω→ A+ and ψA ∈ ΨA , ψA ≺
1
2

.IA

and the following conditions hold:
(a) T is αA-admissible;
(b) There exists µ0 ∈ Ω, such that αA(µ0, Tµ0) � IA; and
(c) T is continuous.
Then, T has a fixed point in Ω.

Proof. Let µ0 ∈ Ω, such that αA(µ0, Tµ0) � IA, and define the sequence {µn}+∞
n=0 in Ω,

such that µn+1 = Tµn for all n ∈ N. If µn = µn+1 for some n ∈ N, then µn is a fixed point
for T.

Suppose that µn 6= µµ+1 for all n ∈ N. Because T is αA-admissible, we obtain

αA(µ0, µ1) = αA(µ0, Tµ0) � IA ⇒

αA(Tµ0, T2µ0) = αA(µ1, µ2) � IA. (6)

By induction, we have αA(µn, µn+1) � IA for all n ∈ N.
By using inequalities (5) and (6), we have

dA(µn, µn+1) = dA(Tµn−1, Tµn)

� αA(µn−1, µn)dA(Tµn−1, Tµn)

� ψA(
dA(Tµn−1, µn) + dA(Tµn, µn−1)

2
)

= ψA(
dA(µn, µn) + dA(Tµn, µn−1)

2
)

= ψA((
dA(µn, µn)) + ψA(dA(µn+1, µn−1)

2
).

Because ϕA(0) = 0, we obtain

dA(µn, µn+1) � ψA(
dA(µn+1, µn−1)

2
). (7)
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Applying triangular inequality in (7), we have

dA(µn, µn+1) � ψA
(dA(µn+1, µn) + dA(µn, µn−1))

2
.

Because ψA is additive, we have

dA(µn, µn+1) �
ψA(dA(µn+1, µn)

2
+

ψA(dA(µn, µn−1))

2
.

Thus,

(
1
2
− ψA)(dA(µn, µn+1)) �

1
2

ψA(dA(µn, µn−1)),

and we have

dA(µn, µn+1) �
1
2
(ψA(

1
2
− ψA)

−1)(dA(µn, µn−1)).

Putting 1
2 ψA(

1
2 − ψA)

−1 = φA by induction, we have

dA(µn, µn+1) � φn
A(dA(µ0, µ1)),

for all n ∈ N. Let n, m ∈ N with m > n. We obtain

dA(µn, µm) �
m−1

∑
k=n

φk
A(dA(µ0, µ1)) → 0A (as n→ +∞).

Therefore, we can prove that {µn} is a Cauchy sequence in the C∗-algebra metric space
(Ω, A, dA).

Because (Ω, A, dA) is complete, there exists µ ∈ Ω, such that µn → µ as n → +∞.
From the continuity of T, it follows that µn+1 = Tµn → Tµ is as n→ +∞.

By continuity of this limit, we have Tµ = µ—that is, µ is a fixed point of T.
The proof of the uniqueness is as follows. If ν( 6= µ) is another fixed point of T, then

0A � dA(µ, ν) = dA(Tµ, Tν)

� αA(µ, ν)dA(Tµ, Tν)

� ψA
(dA(Tµ, ν) + dA(Tν, µ))

2

= ψA
(dA(µ, ν) + dA(µ, ν))

2
= IAψA(dA(µ, ν)), ψA(a) ≺ a f or any a ∈ A, .

This implies that
0A � dA(µ, ν) ≺ dA(µ, ν),

which gives a contradiction, and we can obtain µ = ν. This completes the proof.

Corollary 1. Let (Ω, A, d) be a complete C∗-algebra-valued metric space. Suppose T : Ω → Ω
satisfies for all µ, ν ∈ Ω

dA(Tµ, Tν) ≤ A(dA(Tµ, ν) + dA(Tν, µ)),

where A ∈ (A′)+ and ‖A‖ ≤ 1
2 . Then, there exists a unique fixed point T in Ω [10].

Proof. This is an immediate consequence of Theorem 1, with αA(µ, ν) = Id, ψA(a) = Aa,,
where a ∈ A, A ∈ (A′)+.
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Theorem 2. (Banach-Chatterjea Type) Let (Ω, A, dA) be a complete C∗-algebra-valued metric
space and T : Ω→ Ω be a mapping satisfying

αA(µ, ν)dA(Tµ, Tν) � ψA(dA(µ, ν) + (dA(Tµ, ν) + dA(Tν, µ)))

3
, ψA ≺

1
3

.IA (8)

f or µ, ν ∈ Ω, where the following conditions hold:
(i) T is αA-admissible;
(ii) there exists µ0 ∈ Ω, such that αA(µ0, Tµ0) � IA; and
(iii) T is continuous.
Then, T has a fixed point in Ω.

Proof. Following the first part of the proof in the Theorem 1, we obtain

αA(µn, µn+1) � IA f or all n ∈ N. (9)

By using inequalities (8) and (9), we have

dA(µn, µn+1) = dA(Tµn−1, Tµn)

� αA(µn−1, µn)(dA(Tµn−1, Tµn))

� 1
3

ψA(dA(µn−1, µn) + dA(Tµn−1, µn) + dA(Tµn, µn−1))

=
1
3

ψA(dA(µn−1, µn) + dA(µn, µn) + dA(µn+1, µn−1))

=
1
3

ψA(dA(µn−1, µn) + dA(µn+1, µn−1)).

By using triangular inequality, we obtain

dA(µn, µn+1) �
1
3

ψA(dA(µn−1, µn) + dA(µn−1, µn) + dA(µn, µn+1))

=
2
3

ψA(dA(µn−1, µn)) +
1
3

ψA(dA(µn, µn+1)).

Thus, we have

(1− 1
3

ψA)(dA(µn, µn+1)) �
2
3

ψA(dA(µn−1, µn)).

This implies that

dA(µn, µn+1) �
2
3

ψA(1−
1
3

ψA)
−1(dA(µn−1, µn)).

Putting φA = 2
3 ψA(1− 1

3 ψA)
−1, we obtain

dA(µn, µn+1) � φn
A(dA(µ0, µ1))

for m ≥ n. Thus, we obtain

dA(µn, µm) �
m−1

∑
k=n

φk
A(dA(µ0, µ1))

→ 0 as (n→ +∞).

Thus, {µn} is a Cauchy sequence in Ω with respect to (Ω, A, dA) .
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Because (Ω, A, dA) is a complete C∗-algebra-valued metric space, we conclude that
{µn} is a convergence sequence, and so {µn} → µ as n → +∞ and Tµ = µ as n → +∞.
Therefore, µ is a fixed point of T.

To prove the uniqueness, we suppose that (ν 6= µ) is another fixed point of T. Thus,

0A � dA(µ, ν) = dA(Tµ, Tν)

� αA(µ, ν)ψA(dA(Tµ, Tν))

� 1
3

ψA(dA(µ, ν) + dA(Tµ, ν) + dA(Tν, µ))

� 1
3

ψA(dA(µ, ν) + dA(µ, ν) + dA(µ, ν))

� ψA(dA(µ, ν)) ≺ dA(µ, ν).

This is a contradiction, so dA(µ, ν) = 0A and µ = ν.

Corollary 2. Let (Ω, d) be a complete real-valued metric space. Suppose T : Ω→ Ω satisfies for
all µ, ν ∈ Ω

d(Tµ, Tν) ≤ k(d(µ, ν) + d(Tµ, ν) + d(Tν, µ)),

where k ∈ (0, 1
3 ). Then, T has a unique fixed point in Ω.

Proof. This is an immediate consequence of Theorem 2, with A = R and αA(µ, ν) = I and
ψA(t) = kt, t ∈ R.

Theorem 3. (Ćirić Contraction Type) Let (Ω, A, dA) be a complete C∗-algebra-valued metric space
and T : Ω→ Ω be a mapping satisfying

αA(µ, ν)dA(Tµ, Tν) � ψA(MA(µ, ν)) (10)

MA(µ, ν) =
IA
3
[dA(µ, ν) + (dA(Tµ, µ) + dA(Tν, ν)) + (dA(Tµ, ν) + dA(Tν, µ)], ψA ≺

1
2

.IA

f or µ, ν ∈ Ω, where the following conditions hold:
(i) T is αA-admissible;
(ii) there exists µ0 ∈ Ω, such that αA(µ0, Tµ0) � IA; and
(iii) T is continuous.
Then, T has a fixed point in Ω.

Proof. Following the first part of the proof in the Theorem 1, we obtain

αA(µn, µn+1) � IA f or all n ∈ N. (11)

By using (10) and (11), we have

dA(µn, µn+1) = dA(Tµn−1, Tµn) (12)

� αA(µn−1, µn)dA(Tµn−1, Tµn)

� ψA(MA(µn−1, µn)).
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On the other hand, we have

MA(µn−1, µn) =
1
3
(dA(µn−1, µn) + dA(Tµn−1, µn−1) + dA(Tµn, µn)

+ dA(Tµn−1, µn) + dA(Tµn, µn−1)).IA

So, MA(µn−1, µn) =
1
3

IA(dA(µn, µn−1) + dA(µn, µn−1) + dA(µn, µn+1)

+ dA(µn, µn) + dA(µn+1, µn−1)).

Because dA(µ, µ) = 0, we obtain

MA(µn−1, µn) �
1
3

IA(dA(µn, µn−1) + dA(µn, µn−1) + dA(µn, µn+1) + dA(µn+1, µn−1)).

So, MA(µn−1, µn) �
1
3

IA(2dA(µn, µn−1) + dA(µn, µn+1) + dA(µn+1, µn−1))).

By using triangular inequality, we obtain

dA(µn, µn+1) �
1
3

ψA IA[2dA(µn, µn−1) + dA(µn, µn+1) + dA(µn, µn+1) + dA(µn, µn−1)].

dA(µn, µn+1) �
1
3

ψA IA[3dA(µn−1, µn) + 2dA(µn, µn+1)].

Therefore,

(1− 2
3

ψA)(dA(µn, µn+1)) � ψA IA(dA(µn−1, µn))

dA(µn, µn+1) � ψA(1−
2
3

ψA)
−1 IA(dA(µn−1, µn)).

Putting φA = ψA(1− 2
3 ψA)

−1, ‖ψA‖ < 1
2 ; then, we obtain

dA(µn, µn+1) � φn
A(dA(µ0, µ1)). (13)

Let n, m ∈ N, such that m > n. We thus obtain

dA(µn, µm) �
m−1

∑
k=n

φk
A(dA(µ0, µ1))

→ 0 as (n→ +∞).

Thus, {µn} is a Cauchy sequence and µn → µ as n→ +∞. Thus, we obtain Tµ = µ as
a fixed point of T.

To prove the uniqueness, we suppose that (ν 6= µ) is another fixed point of T. Thus,

0A � dA(µ, ν) = dA(Tµ, Tν)

� αA(µ, ν)dA(Tµ, Tν)

� 1
3

ψA(dA(µ, ν) + dA(Tµ, ν) + dA(Tν, µ) + dA(Tµ, µ) + dA(Tν, ν)).IA

=
1
3

ψA(dA(µ, ν) + dA(µ, ν) + dA(ν, µ) + dA(µ, µ) + dA(ν, ν)).IA

=
1
3

ψA(3dA(µ, ν)).IA,

so, 0A � dA(µ, ν) � ψA(dA(µ, ν)).
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Because ψA(a) ≺ a, this implies that 0 � dA(µ, ν) ≺ dA(µ, ν),, which gives a contra-
diction. Then, we obtain µ = ν.

Example 4. Let Ω be a Banach space and dA : Ω×Ω→ A be defined as dA(µ, ν) = ‖µ− ν‖ · IA
for all µ, ν ∈ Ω. IA is the unit of A because Ω is a Banach space. Then, (Ω, A, dA) is a complete
C∗-algebra-valued metric space. Define T : Ω → Ω as Tµ = 2µ and define ψA : A+ → A+ as
ψA(a) = 3aIA for all a ∈ A+, where A+ is the positive cone of A. Additionally, αA : Ω×Ω→
A+ is defined by αA(µ, ν) = IA, where

αA(Tµ, Tν) = αA(2µ, 2ν) = 2αA(µ, ν) = 2IA � IA.

Now,

dA(Tµ, Tν) = ‖Tµ− Tν‖ · IA = ‖2µ− 2ν‖ · IA

= ‖2µ− 2ν + ν− ν + µ− µ‖ · IA

= ‖(2µ− ν)− (2ν− µ)− (µ− ν)‖ · IA

� (‖2µ− ν‖+ ‖2ν− µ‖+ ‖µ− ν‖) · IA

� (‖Tµ− ν‖+ ‖Tν− µ‖+ ‖µ− ν‖) · IA

= (dA(Tµ, ν) + dA(Tν, µ) + dA(µ, ν))

� 1
3

ψA(dA(Tµ, ν) + dA(Tν, µ) + dA(µ, ν)).

Applying αA(µ, ν), we obtain

αA(µ, ν)dA(Tµ, Tν) � 1
3

ψA(dA(Tµ, ν) + dA(Tν, µ) + dA(µ, ν)).

This satisfies the conditions in Theorem 2. Then, T has a fixed point of Ω.

We introduce a numerical example, assuming that the metric space is valued-non-
commutative C∗-algebra M2(R)

Example 5. Let Ω = R and A = M2(R), where M2(R) is the set of all 2× 2 matrices entries in R.
It is obvious that M2(R) is a C∗-algebra with matrix norm and involution ∗ : M2(R)→ M2(R)
given by ∗ : a→ at, where at is the transpose of a, a ∈ M2(R). Define

dA(µ, ν) =

(
|µ− ν| 0

0 k|µ− ν|

)
,

for all µ, ν ∈ Ω, k > 0. It is clear that (Ω, A, dA) is C∗-algebra-valued metric space. To verify the
contraction conditions in Theorem 3, we take µ = 1, ν = 2, k = 3.

Additionally, we define T : Ω→ Ω by T(µ) = 2µ and αA : Ω×Ω→ M2(R)+ by

αA(µ, ν) = 2
(
|µ− ν| 0

0 |µ− ν|

)
,

and ψA : M2(R)+ → M2(R)+, by ψA(a) = 3a, for a ∈ M2(R)+, µ, ν ∈ Z, where M2(R)+ is
the set of positive matrices of M2(R).

Now, by simple calculation, we obtain

dA(µ, ν) = dA(1, 2) =
(

1 0
0 3

)
,

dA(Tµ, Tν) = dA(2, 4) =
(

2 0
0 6

)
,
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dA(Tµ, ν) = dA(2, 2) =
(

0 0
0 0

)
,

dA(Tν, µ) = dA(4, 1) =
(

3 0
0 9

)
,

dA(Tµ, µ) = dA(4, 1) =
(

1 0
0 3

)
,

dA(Tν, ν) = dA(4, 1) =
(

2 0
0 2

)
,

αA(µ, ν) =

(
2 0
0 2

)
.

Thus, we calculate the right hand side of the inequality (10) in Theorem 3 as

MA(µ, ν) =
1
3
(dA(µ, ν) + dA(Tµ, ν) + dA(Tν, µ) + dA(Tµ, µ) + dA(Tν, ν))

=
1
3

(
7 0
0 21

)
.

Therefore, ψ(MA(µ, ν) =

(
7 0
0 21

)
.

On the other hand, the left hand side of the inequality (10) in Theorem 3 is given by

αA(µ, ν)dA(Tµ, Tν) =

(
2 0
0 2

)
·
(

2 0
0 6

)
=

(
4 0
0 12

)
.

Hence, it is obvious that T is αA − ψA-admissible and, because
(

2 0
0 12

)
≤
(

7 0
0 21

)
, we

can obtain
αA(µ, ν)dA(Tµ, Tν) ≤ ψA(M2(µ, ν)).

Thus, all conditions of Theorem 3 are satisfied. Therefore, there exists a unique fixed point of T,
and the zero matrix is the fixed point of T ∈ Ω.

We discuss a numerical example that satisfies the conditions of Theorem 3, where the
metric space in this example is valued-commutative C∗-algebra C2.

Example 6. Let Ω = [0, ∞) and A = C2 = C⊕C, the set of direct sum of two copies of com-
plex numbers. C2 with the vector addition and pointwise multiplication defined by (Z1, Z2) +
(W1, W2) = (Z1 + W1, Z2 + W2), and (Z1, Z2) · (W1, W2) = (Z1 ·W1, Z2 ·W2), for all
Z1, Z2, W1, W2 ∈ C, is a C∗-algebra with the maximum norm given by ‖(Z1, Z2)‖ = max{|Z1|, |Z2|},
and involution ∗ : C2 → C2 given by (Z1, Z2)

∗ = (Z1, Z2), for all Z1, Z2 ∈ C. Define a partial
order � on C2 : (Z1, Z2) � (W1, W2) if and only if

(a) Re(Z1) ≤ Re(W1), Im W1 ≤ Im W1, and
(b) Re(Z2) ≤ Re(W2), Im W2 ≤ Im W2.
Thus, (W1, W2) − (Z1, Z2) � 0 iff (Z1, Z2) � (W1, W2). Additionally, (Z1, Z2) � 0 if

Z1 � 0 and Z2 � 0. In addition, Re(Z1) ≥ 0, ImZ1 ≥ 0 and Re(Z2) ≥ 0, ImZ2 ≥ 0
Let C2

+ be the set of all positive element in C2. Suppose Ω = [0, ∞) and dA : Ω×Ω→ C2 be
a mapping defined by dA(|µ− ν|+ i|µ− ν|, |µ− ν|+ 2i|µ− ν|) for all µ, ν ∈ Ω and i =

√
−1.

It is clear that (Ω, A, dA) is C∗-algebra-valued metric space.
Now, define T : Ω→ Ω by Tµ = eµ and αA : Ω×Ω→ C2

+ as αA(µ, ν) = IA. In addition,
assume ψA : C2

+ → C2
+ defined by ψA(a) = 3a ∀ a ∈ C2

+.
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To verify the contraction conditions in Theorem 3, we take µ = 1, ν = 2. By calculation, one
can obtain the following:

dA(µ, ν) = d(1, 2) = (1 + i, 1 + 2i),

dA(Tµ, Tν) = dA(e, e2),

' (4.670 + 4.670i, 4.670 + 9.340i),

dA(Tµ, ν) = dA(e, 2),

' (0.718 + 0.718i, 0.718 + 1.436i),

dA(Tν, µ) = dA(e2, 1),

' (6.389 + 6.389i, 6.389 + 12.778i),

dA(Tµ, µ) = dA(e, 1),

' (1.718 + 1.718i, 1.718 + 3.436i),

dA(Tν, ν) = dA(e2, 2),

' (5.389 + 5.389i, 5.389 + 10.778i),

αA(µ, ν) = αA(1, 2) = (1, 2).

We calculate the right-hand side of the inequality (10) in the Theorem 3 and obtain

ψA(MA(µ, ν)) ' (15.214 + 15.214i, 15.214 + 30.428i).

On the other hand, the left-hand side of the inequality (10) in the Theorem 3 gives

αA(µ, ν)dA(Tµ, Tν) ' (4.670 + 4.670i, 4.670 + 18.680i).

It is clear that αA(µ, ν)dA(Tµ, Tν) ≤ ψA(MA(µ, ν)), and this satisfies all conditions of the
Theorem 3.

In the following, we provide an application scenario with which to study the existence
and uniqueness of the solution of a system of matrix equations. The existence and unique-
ness of the solution of the linear matrix equations are very interesting and important in
linear systems.

Here, we are interested in using C∗-algebra-valued metric spaces to find a positive
definite hermitian solution for a system of matrix equations with complex entries.

The proof is based on the positive cones and the linear continuous operator mapping
a cone into itself.

4. Application

Suppose that Mn(C) is the set of all n× n matrices with complex entries. Additionally,
Mn(C)+ is the set of all positive definite matrices of Mn(C). Mn(C) is a Banach space
with matrix norm and Mn(C) is also a C∗-algebra with matrix norm and the involution
∗ : Mn(C) → Mn(C), Z → Z∗, where Z = (Zij)1≤i,j≤n ∈ Mn(C) and Z∗ = (Zij)

∗
1≤i,j≤n =

(Zji)1≤i,j≤n ∈ Mn(C).
Let A1, A2, ..., An ∈ Mn(C), Z, W ∈ Mn(C). Additionally, Q ∈ Mn(C)+. Then, the

matrix equation

Z−
n

∑
k=1

A∗k ZAk = Q (14)

has a unique solution.

Proof. For Z, W ∈ Mn(C), define dMn(C) : Mn(C)×Mn(C)→ Mn(C), as

dMn(C)(Z, W) = ‖Z−W‖ · IdMn(C)
.
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Then, (Mn(C), dMn(C)) is a C∗-algebra-valued metric space and is complete, be-
cause the set Mn(C) is complete. Consider T : Mn(C) → Mn(C), defined by T(Z) =

n
∑

k=1
A∗k ZAk + Q. Additionally, ψMn(C)(Z) = 3Z · IMn(C). Define

αMn(C) : Mn(C)×Mn(C)→ Mn(C)+

αMn(C)(Z, W) = IMn(C).

It is clear that T is αMn(C) − ψMn(C) admissible. Then,

dMn(C)(TZ, TW) = ‖TZ− TW‖ · IMn(C)

= ‖(
n

∑
k=1

A∗k ZAk + Q)− (
n

∑
k=1

A∗k WAk + Q)‖ · IMn(C)

= ‖((
n

∑
k=1

A∗k ZAk + Q)−W)− ((
n

∑
k=1

A∗k WAk + Q)− Z)− (Z−W)‖ · IMn(C)

� ‖((
n

∑
k=1

A∗k ZAk + Q)−W)‖ · IMn(C) + ((
n

∑
k=1

A∗k WAk + Q)− Z)‖ · ‖IMn(C)

+ ‖(Z−W)‖ · IMn(C)
= ‖TZ−W‖ · IMn(C) + ‖TW − Z‖ · IMn(C) + ‖(Z−W)‖ · IMn(C)
= dMn(C)(TZ, W) + dMn(C)(TW, Z) + dMn(C)(Z, W)

� 1
3

ψMn(C)(dMn(C)(TZ, W) + dMn(C)(TW, Z) + dMn(C)(Z, W)).

Thus,

αA(Z, W)dMn(C)(TZ, TW) � 1
3

ψMn(C)(dMn(C)(TZ, W) + dMn(C)(TW, Z) + dMn(C)(Z, W)).

This satisfies the conditions of Theorem 2. Thus, the system of matrix Equation (14)
has a unique hermitian matrix solution.

5. Conclusions

In this paper, we provide some results obtained for the Chatterjea and C̀iric̀ fixed-point
theorems by using αA-ψA-contractive mapping in a C∗-algebra-valued metric space. Further-
more, illustrated examples and an application scenario are introduced. It is worth mention-
ing that these results generalize and extend some results described in [1–3,5,9,23,24,26–30].
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