Multiple Periodic Solutions for Odd Perturbations of the Discrete Relativistic Operator

Petru Jebelean * and Călin Şerban

Department of Mathematics, West University of Timişoara, 4, Blvd. V. Pârvan, 300223 Timişoara, Romania; calin.serban@e-uvt.ro
* Correspondence: petru.jebelean@e-uvt.ro

Abstract

We obtain the existence of multiple pairs of periodic solutions for difference equations of type $-\Delta\left(\frac{\Delta u(n-1)}{\sqrt{1-|\Delta u(n-1)|^{2}}}\right)=\lambda g(u(n)) \quad(n \in \mathbb{Z})$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous odd function with anticoercive primitive, and $\lambda>0$ is a real parameter. The approach is variational and relies on the critical point theory for convex, lower semicontinuous perturbations of C^{1}-functionals.

Keywords: discrete relativistic operator; periodic solution; critical point; genus
MSC: 39A23; 39A27; 47J20

Citation: Jebelean, P.; Şerban, C. Multiple Periodic Solutions for Odd Perturbations of the Discrete Relativistic Operator. Mathematics 2022, 10, 1595. https://doi.org/ 10.3390/math10091595

Academic Editor: Alessio Pomponio

Received: 2 April 2022
Accepted: 7 May 2022
Published: 8 May 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ $4.0 /$).

1. Introduction

In this note, we are concerned with the multiplicity of solutions for difference equations with relativistic operator of type

$$
\begin{equation*}
-\Delta[\phi(\Delta u(n-1))]=\lambda g(u(n)), \quad u(n)=u(n+T) \quad(n \in \mathbb{Z}) \tag{1}
\end{equation*}
$$

where $\Delta u(n)=u(n+1)-u(n)$ is the usual forward difference operator, $\lambda>0$ is a real parameter, $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous odd function, and

$$
\phi(y)=\frac{y}{\sqrt{1-y^{2}}} \quad(y \in(-1,1)) .
$$

In recent years, special attention has been paid to the existence and multiplicity of T-periodic solutions for problems with a discrete relativistic operator. Thus, for instance, in [1,2], variational arguments were employed to prove the solvability of systems of difference equations having the form

$$
\begin{equation*}
\Delta\left[\phi_{N}(\Delta u(n-1))\right]=\nabla_{u} V(n, u(n))+h(n) \quad(n \in \mathbb{Z}) \tag{2}
\end{equation*}
$$

under various hypotheses upon V and h (coerciveness, growth restriction, convexity or periodicity conditions); here, ϕ_{N} is the N-dimensional variant of ϕ, i.e.,

$$
\phi_{N}(y)=\frac{y}{\sqrt{1-|y|^{2}}} \quad\left(y \in \mathbb{R}^{N},|y|<1\right)
$$

The existence of at least $N+1$ geometrically distinct T-periodic solutions of (2) was proved in [3], under the assumptions that h is T-periodic, $\sum_{j=1}^{T} h(j)=0$, and the mapping $V(n, x)$ is T-periodic in n and ω_{i}-periodic $\left(\omega_{i}>0\right)$ with respect to each $x_{i}(i=1, \ldots, N)$. For the proof, using an idea from the differential case [4], the singular problem (2) was reduced to an equivalent non-singular one to which classical Ljusternik-Schnirelmann category methods can be applied. In addition, under some similar assumptions on V and h,
were obtained in [5] using Morse theory, conditions under which system (2) has at least 2^{N} geometrically distinct T-periodic solutions.

The motivation of the present study mainly comes from paper [6], where for problems involving Fisher-Kolmogorov nonlinearities of type

$$
\begin{equation*}
-\Delta[\phi(\Delta u(n-1))]=\lambda u(n)\left(1-|u(n)|^{q}\right), \quad u(n)=u(n+T) \quad(n \in \mathbb{Z}) \tag{3}
\end{equation*}
$$

with $q>0$ fixed and $\lambda>0$ a real parameter, it was proved that if $\lambda>8 m T$ for some $m \in \mathbb{N}$ with $2 \leq m \leq T$, then problem (3) has at least m distinct pairs of nontrivial solutions. We also refer the interested reader to [6] for a discussion concerning the origin and steps in the study of this type of nonlinearity. In this respect, we shall see in Example 1 below that a sharper result holds true, namely,
(i) If $\lambda>8 \sin ^{2} \frac{m \pi}{T}$ with $0 \leq m \leq\left\{\begin{array}{l}(T-1) / 2 \text { if } T \text { is odd } \\ (T-2) / 2 \text { if } T \text { is even }\end{array}\right.$, then problem (3) has at least $2 m+1$ distinct pairs of nontrivial solutions.
(ii) If T is even and $\lambda>8$, then (3) has at least T distinct pairs of nontrivial solutions.

Moreover, we prove in Theorem 2 that the above statements (i) and (ii) still remain valid for a larger class of periodic problems.

As in [6], our approach to problem (1) is variational and combines a Clark-type abstract result for convex, lower semicontinuous perturbations of C^{1}-functionals, based on Krasnoselskii's genus. However, our technique here brings the novelty that it exploits the interference of the geometry of the energy functional with fine spectral properties of the operator $-\Delta^{2}$; recall that

$$
\Delta^{2} u(n-1):=\Delta(\Delta u(n-1))=u(n+1)-2 u(n)+u(n-1) .
$$

It is worth noting that in paper [7] analogous multiplicity results are obtained in the differential case for potential systems involving parametric odd perturbations of the relativistic operator. In addition, we mention the recent paper [8], where the authors obtain the existence and multiplicity of sign-changing solutions for a slightly modified parametric problem of type (1) using bifurcation techniques.

We conclude this introductory part by briefly recalling some topics in the frame of Szulkin's critical point theory [9], which is needed in the sequel. Let $(Y,\|\cdot\|)$ be a real Banach space and $\mathcal{I}: Y \rightarrow(-\infty,+\infty]$ be a functional having the following structure:

$$
\begin{equation*}
\mathcal{I}=\mathcal{F}+\psi \tag{4}
\end{equation*}
$$

where $\mathcal{F} \in C^{1}(Y, \mathbb{R})$ and $\psi: Y \rightarrow(-\infty,+\infty]$ is proper, convex and lower semicontinuous. A point $u \in D(\psi)$ is said to be a critical point of \mathcal{I} if it satisfies the inequality

$$
\left\langle\mathcal{F}^{\prime}(u), v-u\right\rangle+\psi(v)-\psi(u) \geq 0 \quad \forall v \in D(\psi) .
$$

A sequence $\left\{u_{n}\right\} \subset D(\psi)$ is called a (PS)-sequence if $\mathcal{I}\left(u_{n}\right) \rightarrow c \in \mathbb{R}$ and

$$
\left\langle\mathcal{F}^{\prime}\left(u_{n}\right), v-u_{n}\right\rangle+\psi(v)-\psi\left(u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\| \quad \forall v \in D(\psi),
$$

where $\varepsilon_{n} \rightarrow 0$. The functional \mathcal{I} is said to satisfy the (PS) condition if any (PS)-sequence has a convergent subsequence in Y.

Let Σ be the collection of all symmetric subsets of $Y \backslash\{0\}$ which are closed in Y. The genus of a nonempty set $A \in \Sigma$ is defined as being the smallest integer k with the property that there exists an odd continuous mapping $h: A \rightarrow \mathbb{R}^{k} \backslash\{0\}$; in this case, we write $\gamma(A)=k$. If such an integer does not exist, then $\gamma(A):=+\infty$. Notice that if $A \in \Sigma$ is homeomorphic to $S^{k-1}\left(k-1\right.$ dimension unit sphere in the Euclidean space $\left.\mathbb{R}^{k}\right)$ by an odd homeomorphism, then $\gamma(A)=k$ ([10], Corollary 5.5). For other properties and more details on the notion of genus, we refer the reader to $[10,11]$. The following theorem is an immediate consequence of ([9], Theorem 4.3).

Theorem 1. Let \mathcal{I} be of type (4) with \mathcal{F} and ψ even. In addition, suppose that \mathcal{I} is bounded from below, satisfies the $(P S)$ condition and $\mathcal{I}(0)=0$. If there exists a nonempty compact symmetric subset $A \subset Y \backslash\{0\}$ with $\gamma(A) \geq k$, such that

$$
\sup _{v \in A} \mathcal{I}(v)<0
$$

then the functional \mathcal{I} has at least k distinct pairs of nontrivial critical points.

2. Variational Approach and Preliminaries

To introduce the variational formulation for problem (1), let H_{T} be the space of all T-periodic \mathbb{Z}-sequences in \mathbb{R}, i.e., of mappings $u: \mathbb{Z} \rightarrow \mathbb{R}$, such that $u(n)=u(n+T)$ for all $n \in \mathbb{Z}$. On H_{T}, we consider the following inner product and corresponding norm:

$$
(u \mid v):=\sum_{j=1}^{T} u(j) v(j), \quad\|u\|=\left(\sum_{j=1}^{T}|u(j)|^{2}\right)^{1 / 2}
$$

which makes it a Hilbert space. In addition, for each $u \in H_{T}$, we set

$$
\bar{u}:=\frac{1}{T} \sum_{j=1}^{T} u(j), \quad \tilde{u}:=u-\bar{u} .
$$

It is not difficult to check that

$$
\begin{equation*}
|\tilde{u}(i)| \leq T^{\frac{1}{2}}\left(\sum_{j=1}^{T}|\Delta u(j)|^{2}\right)^{1 / 2} \quad(i \in\{1, \ldots, T\}) \tag{5}
\end{equation*}
$$

Now, let the closed convex subset K of H_{T} be defined by

$$
K:=\left\{u \in H_{T}:|\Delta u|_{\infty} \leq 1\right\},
$$

where $|\Delta u|_{\infty}:=\max _{i=1, \ldots, T}|\Delta u(i)|$. Then, from (5), one has

$$
\begin{equation*}
|\bar{u}|-T \leq|u(i)| \leq|\bar{u}|+T \quad(i \in\{1, \ldots, T\}), \tag{6}
\end{equation*}
$$

for all $u \in K$. We introduce the even functions

$$
\Psi(u)=\left\{\begin{array}{l}
\sum_{j=1}^{T} \Phi[\Delta u(j)], \quad \text { if } u \in K \\
+\infty, \quad \text { otherwise }
\end{array}\right.
$$

where $\Phi(y)=1-\sqrt{1-y^{2}}(y \in[-1,1])$ and

$$
\mathcal{G}_{\lambda}(u)=-\lambda \sum_{j=1}^{T} G(u(j)) \quad\left(u \in H_{T}\right)
$$

with G the primitive

$$
G(x)=\int_{0}^{x} g(\tau) d \tau \quad(x \in \mathbb{R})
$$

It is not difficult to see that Ψ is convex and lower semicontinuos, while \mathcal{G}_{λ} is of class C^{1}, its derivative being given by

$$
\left\langle\mathcal{G}_{\lambda}^{\prime}(u), v\right\rangle=-\lambda \sum_{j=1}^{T} g(u(j)) v(j) \quad\left(u, v \in H_{T}\right) .
$$

Then, the functional $I_{\lambda}: H_{T} \rightarrow(-\infty,+\infty]$ associated to (1) is

$$
I_{\lambda}=\Psi+\mathcal{G}_{\lambda}
$$

and it is clear that it has the structure required by Szulkin's critical point theory. A solution of problem (1) is an element $u \in H_{T}$ such that $|\Delta u(n)|<1$, for all $n \in \mathbb{Z}$, which satisfies the equation in (1). The following result reduces the search of solutions of problem (1) to finding critical points of I_{λ}.

Proposition 1. Any critical point of I_{λ} is a solution of problem (1).
Proof. Let $e \in H_{T}$. By virtue of Lemmas 5 and 6 in [1], the problem

$$
\Delta[\phi(\Delta u(n-1))]=\bar{u}+e(n), \quad u(n)=u(n+T) \quad(n \in \mathbb{Z})
$$

has a unique solution u_{e}, which is also the unique solution of the variational inequality

$$
\begin{equation*}
\sum_{j=1}^{T}\{\Phi[\Delta v(j)]-\Phi[\Delta u(j)]+\bar{u}(\bar{v}-\bar{u})+e(j)(v(j)-u(j))\} \geq 0, \forall v \in K \tag{7}
\end{equation*}
$$

([6], Proposition 3.1). Next, let $w \in K$ be a critical point of I_{λ}. Then, for any $v \in K$, one has

$$
\sum_{j=1}^{T}\{\Phi[\Delta v(j)]-\Phi[\Delta w(j)]-\lambda g(w(j))(v(j)-w(j))\} \geq 0
$$

which can be written as

$$
\sum_{j=1}^{T}\{\Phi[\Delta v(j)]-\Phi[\Delta w(j)]+\bar{w}(v(j)-w(j))\}-\sum_{j=1}^{T}[\lambda g(w(j))+\bar{w}](v(j)-w(j)) \geq 0
$$

Hence, w is a solution of the variational inequality

$$
\begin{equation*}
\sum_{j=1}^{T}\left\{\Phi[\Delta v(j)]-\Phi[\Delta w(j)]+\bar{w}(\bar{v}-\bar{w})+e_{w}(j)(v(j)-w(j))\right\} \geq 0, \quad \forall v \in K \tag{8}
\end{equation*}
$$

with $e_{w} \in H_{T}$ being given by $e_{w}(n)=-\lambda g(w(n))-\bar{w}(n \in \mathbb{Z})$.
Therefore, by (8) and the uniqueness of the solution of (7), we obtain that, in fact, w solves problem (1).

Proposition 2. If G is anticoercive, i.e.,

$$
\begin{equation*}
\lim _{|x| \rightarrow+\infty} G(x)=-\infty, \tag{9}
\end{equation*}
$$

then I_{λ} is bounded from below and satisfies the (PS) condition.
Proof. From (9) we have that $-G$, hence \mathcal{G}_{λ}, are bounded from below on \mathbb{R}, respectively on H_{T}. This, together with the fact that Ψ is bounded from below, ensure that the same is true for I_{λ}.

To see that I_{λ} satisfies the (PS) condition, let $\left\{u_{n}\right\} \subset K$ be a (PS)-sequence. Assuming by contradiction that $\left\{\left|\bar{u}_{n}\right|\right\}$ is not bounded, we may suppose, going, if necessary, to a subsequence, that $\left|\bar{u}_{n}\right| \rightarrow+\infty$. Then, by virtue of (6) and (9), we deduce that $I_{\lambda}\left(u_{n}\right) \rightarrow-\infty$, contradicting the fact that $\left\{I_{\lambda}\left(u_{n}\right)\right\}$ is convergent. Consequently, $\left\{\left|\bar{u}_{n}\right|\right\}$ is bounded. This, together with $\left|\tilde{u}_{n}\right| \leq T$ shows that $\left\{u_{n}\right\}$ is bounded in the finite-dimensional space H_{T}; hence, it contains a convergent subsequence.

Remark 1. Notice that until here in this section, no parity assumptions on the continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ must be required.

We end this section by reviewing some spectral properties of the operator $-\Delta^{2}$, which is needed in the sequel. A real number $\lambda \in \mathbb{R}$ is said to be an eigenvalue of $-\Delta^{2}$ on H_{T}, if there is some $u \in H_{T} \backslash\left\{0_{H_{T}}\right\}$ such that

$$
\begin{equation*}
-\Delta^{2} u(n-1)=\lambda u(n), \quad(n \in \mathbb{Z}) \tag{10}
\end{equation*}
$$

and in this case, u is called eigensequence corresponding to the eigenvalue λ. On account of the periodicity of u, relation (10) is equivalent to the system

$$
\left\{\begin{array}{l}
-u(2)+2 u(1)-u(T)=\lambda u(1) \tag{11}\\
-u(3)+2 u(2)-u(1)=\lambda u(2) \\
\vdots \\
-u(T)+2 u(T-1)-u(T-2)=\lambda u(T-1) \\
-u(1)+2 u(T)-u(T-1)=\lambda u(T)
\end{array}\right.
$$

If we consider the particular circulant matrix

$$
M_{T}:=\left(\begin{array}{ccccccc}
2 & -1 & 0 & \cdots & 0 & 0 & -1 \\
-1 & 2 & -1 & \cdots & 0 & 0 & 0 \\
\vdots & & & & & & \\
0 & 0 & 0 & \cdots & -1 & 2 & -1 \\
-1 & 0 & 0 & \cdots & 0 & -1 & 2
\end{array}\right)
$$

then, having in view (11), the eigenvalues of $-\Delta^{2}$ are precisely the characteristic roots of M_{T}. In addition, if $y=\left(y_{1}, \ldots, y_{T}\right) \in \mathbb{R}^{T} \backslash\left\{0_{\mathbb{R}^{T}}\right\}$ is an eigenvector corresponding to a characteristic root λ, then its extension $u^{y} \in H_{T}$, defined by $u^{y}(i)=y_{i}$ for $i=\overline{1, T}$, is an eigensequence corresponding to the eigenvalue λ. This means that an orthonormal basis of eigensequences u^{1}, \ldots, u^{T} can be constructed from an orthonormal basis of eigenvectors x^{1}, \ldots, x^{T} of M_{T} by extending x^{i} in $H_{T}(i=\overline{1, T})$ as above.

From ([12], p. 38), we know that the characteristic roots of M_{T}, hence the eigenvalues of $-\Delta^{2}$, are $4 \sin ^{2} i \pi / T(i=\overline{0, T-1})$. We can label them according to the parity of T as follows:

Todd :

$$
\lambda_{0}=0, \quad \lambda_{2 k-1}=\lambda_{2 k}=4 \sin ^{2} \frac{k \pi}{T}, \quad k=1, \ldots, \frac{T-1}{2} ;
$$

Teven :

$$
\lambda_{0}=0, \quad \lambda_{2 k-1}=\lambda_{2 k}=4 \sin ^{2} \frac{k \pi}{T}, \quad k=1, \ldots, \frac{T-2}{2}, \quad \lambda_{T-1}=4 .
$$

In both cases, we consider an orthonormal basis e^{0}, \ldots, e^{T-1} in H_{T}, such that e^{i} is an eigensequence corresponding to $\lambda_{i}(i=\overline{0, T-1})$. Observe that, by multiplying equality (10) by arbitrary $v \in H_{T}$ and using summation by parts formula, one obtains that if $u \in H_{T}$ and $\lambda \in \mathbb{R}$ satisfy (10), then

$$
\sum_{j=1}^{T} \Delta u(j) \Delta v(j)=\lambda(u \mid v)
$$

This yields

$$
\begin{equation*}
\sum_{j=1}^{T} \Delta e^{i}(j) \Delta e^{k}(j)=\lambda_{k} \delta_{i k} \quad(i, k \in\{0, \ldots, T-1\}) \tag{12}
\end{equation*}
$$

where $\delta_{i k}$ stands for the Kronecker delta function.

3. Main Result

Our main result is given in the following.
Theorem 2. Assume that $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous odd function and that G satisfies (9) together with

$$
\begin{equation*}
\liminf _{x \rightarrow 0} \frac{2 G(x)}{x^{2}} \geq 1 \tag{13}
\end{equation*}
$$

Then, the following hold true:
(i) If

$$
\lambda>8 \sin ^{2} \frac{m \pi}{T}\left(=2 \lambda_{2 m}\right) \text { with } 0 \leq m \leq\left\{\begin{array}{l}
(T-1) / 2 \text { if } T \text { is odd } \tag{14}\\
(T-2) / 2 \text { if } T \text { is even }
\end{array}\right.
$$

then problem (1) has at least $2 m+1$ distinct pairs of nontrivial solutions.
(ii) If T is even and

$$
\begin{equation*}
\lambda>8\left(=2 \lambda_{T-1}\right) \tag{15}
\end{equation*}
$$

then (1) has at least T distinct pairs of nontrivial solutions.
Proof. We show (i) in the odd case because the even case follows by exactly the same arguments, and under assumption (15), a quite similar strategy works by simply replacing " $2 m$ " with " $T-1$ ".

Thus, let $0 \leq m \leq(T-1) / 2$. On account of Theorem 1 and Propositions 1 and 2, we have to prove that there exists a nonempty compact symmetric subset $A_{m} \subset H_{T} \backslash\{0\}$ with $\gamma\left(A_{m}\right) \geq 2 m+1$, such that

$$
\begin{equation*}
\sup _{v \in A_{m}} I_{\lambda}(v)<0 \tag{16}
\end{equation*}
$$

Since $\lambda>2 \lambda_{2 m}$, we can choose $\varepsilon \in(0,1)$, so that $\lambda>2 \lambda_{2 m} /(1-\varepsilon)$. Then, by virtue of (13), there exists $\delta>0$ such that

$$
\begin{equation*}
2 G(x) \geq(1-\varepsilon) x^{2} \quad \text { as }|x| \leq \delta \tag{17}
\end{equation*}
$$

Next, we introduce the set

$$
A_{m}:=\left\{\sum_{k=0}^{2 m} \alpha_{k} e^{k}: \alpha_{0}^{2}+\cdots+\alpha_{2 m}^{2}=\rho^{2}\right\}
$$

where ρ is a positive number, which is chosen $\leq \min \left\{\frac{1}{2 \sqrt{2 m+1}}, \delta\right\}$.
Then, it is not difficult to see that the odd mapping $H: A_{m} \rightarrow S^{2 m}$ defined by

$$
H\left(\sum_{k=0}^{2 m} \alpha_{k} e^{k}\right)=\left(\frac{\alpha_{0}}{\rho}, \frac{\alpha_{1}}{\rho} \ldots, \frac{\alpha_{2 m}}{\rho}\right)
$$

is a homeomorphism between A_{m} and $S^{2 m}$; therefore, $\gamma\left(A_{m}\right)=2 m+1$.
We have that $A_{m} \subset K$. Indeed, let $v=\sum_{k=0}^{2 m} \alpha_{k} e^{k} \in A_{m}$. Then, for all $j \in\{1, \ldots, T\}$, we obtain

$$
\begin{align*}
|\Delta v(j)| & \leq \sum_{k=0}^{2 m}\left|\alpha_{k} e^{k}(j+1)\right|+\sum_{k=0}^{2 m}\left|\alpha_{k} e^{k}(j)\right| \leq 2 \sum_{k=0}^{2 m}\left|\alpha_{k}\right| \\
& \leq 2 \sqrt{2 m+1}\left(\sum_{k=0}^{2 m} \alpha_{k}^{2}\right)^{1 / 2}=2 \rho \sqrt{2 m+1} \tag{18}
\end{align*}
$$

and since $\rho \leq 1 /(2 \sqrt{2 m+1})$, one has $|\Delta v|_{\infty} \leq 1$, which shows that $v \in K$. On the other hand, using (12), we obtain

$$
\begin{align*}
\sum_{j=1}^{T}|\Delta v(j)|^{2} & =\sum_{j=1}^{T}\left|\Delta\left(\sum_{k=0}^{2 m} \alpha_{k} e^{k}(j)\right)\right|^{2}=\sum_{j=1}^{T}\left(\sum_{k=0}^{2 m} \alpha_{k} \Delta e^{k}(j)\right)^{2} \\
& =\sum_{j=1}^{T}\left(\sum_{k=0}^{2 m} \alpha_{k}^{2}\left(\Delta e^{k}(j)\right)^{2}+\sum_{\substack{i, k=0 \\
i \neq k}}^{2 m} \alpha_{i} \alpha_{k} \Delta e^{k}(j) \Delta e^{i}(j)\right) \\
& =\sum_{k=0}^{2 m} \alpha_{k}^{2} \sum_{j=1}^{T}\left(\Delta e^{k}(j)\right)^{2}+\sum_{\substack{i, k=0 \\
i \neq k}}^{2 m} \alpha_{i} \alpha_{k} \sum_{j=1}^{T} \Delta e^{k}(j) \Delta e^{i}(j) \\
& =\sum_{k=0}^{2 m} \lambda_{k} \alpha_{k}^{2} \leq \lambda_{2 m} \sum_{k=0}^{2 m} \alpha_{k}^{2}=\lambda_{2 m} \rho^{2} . \tag{19}
\end{align*}
$$

In addition, it is clear that

$$
\begin{equation*}
\sum_{j=1}^{T}|v(j)|^{2}=\|v\|^{2}=(v \mid v)=\sum_{k=0}^{2 m} \alpha_{k}^{2}=\rho^{2} . \tag{20}
\end{equation*}
$$

Then, from (17), (19), (20) and $|v(j)| \leq \rho \leq \delta(j \in\{1, \ldots, T\})$, it follows that

$$
\begin{aligned}
I_{\lambda}(v) & =\Psi(v)+\mathcal{G}_{\lambda}(v) \leq \sum_{j=1}^{T}|\Delta v(j)|^{2}-\frac{\lambda}{2}(1-\varepsilon) \sum_{j=1}^{T}|v(j)|^{2} \\
& \leq \rho^{2} \lambda_{2 m}-\frac{\lambda}{2}(1-\varepsilon) \rho^{2}=\rho^{2} \frac{2 \lambda_{2 m}-\lambda(1-\varepsilon)}{2}<0 .
\end{aligned}
$$

Therefore, (16) holds true and the proof of (i) is complete.
Example 1. If (14) holds true, then problem (3) has at least $2 m+1$ distinct pairs of nontrivial solutions. In addition, if T is even, under assumption (15), problem (3) has at least T distinct pairs of nontrivial solutions. Notice that besides the trivial solution, problem (3) always has the pair of constant solutions $u \equiv \pm 1$, and these are the only constant nontrivial solutions of (3). Therefore, problem (3) has at least $2 m$ (resp. $T-1$) distinct pairs of nonconstant solutions if hypothesis (14) is satisfied (resp. (15) holds true).

Consider the eigenvalue type problem

$$
\begin{equation*}
-\Delta[\phi(\Delta u(n-1))]=\lambda u(n)+h(u(n)), \quad u(n)=u(n+T) \quad(n \in \mathbb{Z}) \tag{21}
\end{equation*}
$$

and set $H(x)=\int_{0}^{x} h(\tau) d \tau(x \in \mathbb{R})$.
Corollary 1. If the continuous function $h: \mathbb{R} \rightarrow \mathbb{R}$ is odd and

$$
\liminf _{x \rightarrow 0} \frac{H(x)}{x^{2}} \geq 0, \quad \lim _{x \rightarrow+\infty} \frac{H(x)}{x^{2}}=-\infty,
$$

then the conclusions (i) and (ii) of Theorem 2 remain valid with (21) instead of (1).
Proof. Theorem 2 applies to the problem

$$
-\Delta[\phi(\Delta u(n-1))]=\lambda\left(u(n)+\frac{h(u(n))}{\lambda}\right), \quad u(n)=u(n+T) \quad(n \in \mathbb{Z})
$$

Theorem 2 can be employed to derive the multiplicity of nontrivial solutions of autonomous non-parametric problems having the form

$$
\begin{equation*}
-\Delta[\phi(\Delta u(n-1))]=f(u(n)), \quad u(n)=u(n+T) \quad(n \in \mathbb{Z}) \tag{22}
\end{equation*}
$$

Setting $F(x)=\int_{0}^{x} f(\tau) d \tau(x \in \mathbb{R})$, we have the following.
Corollary 2. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous odd function and that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} F(x)=-\infty . \tag{23}
\end{equation*}
$$

Then, the following hold true:
(i) If

$$
\liminf _{x \rightarrow 0} \frac{F(x)}{x^{2}}>4 \sin ^{2} \frac{m \pi}{T} \text { with } 0 \leq m \leq\left\{\begin{array}{l}
(T-1) / 2 \text { if } T \text { is odd } \tag{24}\\
(T-2) / 2 \text { if } T \text { is even }
\end{array}\right.
$$

then problem (22) has at least $2 m+1$ distinct pairs of nontrivial solutions.
(ii) If T is even and

$$
\begin{equation*}
\liminf _{x \rightarrow 0} \frac{F(x)}{x^{2}}>4 \tag{25}
\end{equation*}
$$

then (22) has at least T distinct pairs of nontrivial solutions.
Proof. From (24), there exists $\bar{\lambda}>0$ such that

$$
\liminf _{x \rightarrow 0} \frac{2 F(x)}{x^{2}} \geq \bar{\lambda}>8 \sin ^{2} \frac{m \pi}{T}
$$

and the result follows from Theorem 2 with $g(x)=f(x) / \bar{\lambda}$; a similar argument works when (25) is fulfilled.

Example 2. Let $f_{a}: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f_{a}(x)=2 x \sin |x|^{-\frac{1}{2}}-\frac{x|x|^{-\frac{1}{2}} \cos |x|^{-\frac{1}{2}}}{2}+2 a x-4 x^{3} \quad(x \in \mathbb{R})
$$

Then,

$$
F_{a}(x)=x^{2}\left(\sin |x|^{-\frac{1}{2}}+a-x^{2}\right) \quad(x \in \mathbb{R})
$$

and by Corollary 2, we obtain that, if

$$
a>1+4 \sin ^{2} \frac{m \pi}{T} \text { with } 0 \leq m \leq\left\{\begin{array}{l}
(T-1) / 2 \text { if } T \text { is odd } \\
(T-2) / 2 \text { if } T \text { is even }
\end{array}\right.
$$

then the equation

$$
\begin{equation*}
-\Delta[\phi(\Delta u(n-1))]=f_{a}(u(n)) \quad(n \in \mathbb{Z}) \tag{26}
\end{equation*}
$$

has at least $2 m+1$ distinct pairs of nontrivial T-periodic solutions, while if T is even and $a>5$, then (26) has at least T distinct pairs of nontrivial T-periodic solutions.

Remark 2. A multiplicity result for odd perturbations of the discrete p-Laplacian operator is obtained in [13] using a Clark-type result in the frame of the classical critical point theory.

Author Contributions: Writing—original draft, P.J. and C.Ş.; Writing—review \& editing, P.J. and C.Ş. All authors contributed equally to the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors are grateful to the anonymous referees for the very useful comments and suggestions, which helped them to improve the presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mawhin, J. Periodic solutions of second order nonlinear difference systems with ϕ-Laplacian: A variational approach. Nonlinear Anal. 2012, 45, 4672-4687.
2. Mawhin, J. Periodic solutions of second order Lagrangian difference systems with bounded or singular ϕ-Laplacian and periodic potential. Discrete Contin. Dyn. Syst. Ser. S 2013, 6, 1065-1076.
3. Mawhin, J. A simple proof of multiplicity for periodic solutions of Lagrangian difference systems with relativistic operator and periodic potential. J. Difference Equ. Appl. 2016, 22, 306-315.
4. Jebelean, P.; Mawhin, J.; Şerban, C. Multiple periodic solutions for perturbed relativistic pendulum systems. Proc. Am. Math. Soc. 2015, 143, 3029-3039.
5. Jebelean, P.; Mawhin, J.; Şerban, C. Morse theory and multiple periodic solutions of some quasilinear difference systems with periodic nonlinearities. Georgian Math. J. 2017, 24, 103-112.
6. Jebelean, P.; Şerban, C. Fisher-Kolmogorov type perturbations of the relativistic operator: differential vs. difference. Proc. Am. Math. Soc. 2018, 144, 2005-2014.
7. Jebelean, P.; Şerban, C. Relativistic type systems with parametric odd nonlinearities. 2022, submitted.
8. Zhao, Z.; Ma, R.; Zhu, Y. Existence and multiplicity of sign-changing solutions for the discrete periodic problems with Minkowskicurvature operator. J. Appl. Anal. Comput. 2022, 12, 347-360.
9. Szulkin, A. Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. l'Inst. Henri Poincaré C Anal. Non Linéaire 1986, 3, 77-109.
10. Rabinowitz, P.H. Some Aspects of Critical Point Theory; MRC Tech. Rep. \#2465; University of Wisconsin-Madison Mathematics Research Center: Madison, WI, USA, 1983.
11. Rabinowitz, P.H. Variational methods for nonlinear eigenvalue problems. In Eigenvalues of Non-Linear Problems; Prodi, G., Ed.; C.I.M.E. Summer Schools Series; Springer: Berlin/Heidelberg, Germany, 1974; Volume 67, pp. 139-195.
12. Elliott, J.F. The Characteristic Roots of Certain Real Symmetric Matrices. Master's Thesis, University of Tennessee, Knoxville, TN, USA, 1953.
13. Bian, L.-H.; Sun, H.-R.; Zhang, Q.-G. Solutions for discrete p-Laplacian periodic boundary value problems via critical point theory. J. Differ. Equ. Appl. 2012, 18, 345-355.
