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Abstract: Due to the advancements of information technologies and the Internet of Things (IoT),
the number of distributed sensors and IoT devices in the social IoT (SIoT) systems is proliferating.
This has led to various multimedia applications, face recognition and augmented reality (AR). These
applications are computation-intensive and delay-sensitive and have become popular in our daily
life. However, IoT devices are well-known for their constrained computational resources, which
hinders the execution of these applications. Mobile edge computing (MEC) has appeared and
been deemed a prospective paradigm to solve this issue. Migrating the applications of IoT devices
to be executed in the edge cloud can not only provide computational resources to process these
applications but also lower the transmission latency between the IoT devices and the edge cloud. In
this paper, computation resource allocation and multimedia applications offloading in MEC-assisted
SIoT systems are investigated. We aim to optimize the resource allocation and application offloading
by jointly minimizing the execution latency of multimedia applications and the consumed energy of
IoT devices. The studied problem is a formulation of the total computation overhead minimization
problem by optimizing the computational resources in the edge servers. Besides, as the technology of
dynamic voltage scaling (DVS) can offer more flexibility for the MEC system design, we incorporate it
into the application offloading. Since the studied problem is a mixed-integer nonlinear programming
(MINP) problem, an efficient method is proposed to address it. By comparing with the baseline
schemes, the theoretic analysis and simulation results demonstrate that the proposed multimedia
applications offloading method can improve the performances of MEC-assisted SIoT systems for the
most part.

Keywords: multimedia applications; resource allocation; mobile edge computing

MSC: 90C26

1. Introduction

Due to the advancements of information technologies [1–3], as well as the expansion
of the IoT [4–7], the number of sensors and other IoT devices distributed by IoT users in
the SIoT systems is growing explosively [8,9]. It is reported by Cisco that the number of
the IoT devices and connections in the globe will be 13.5 billion by the year 2022, as can
be observed from Figure 1 [10]. Accordingly, various multimedia applications, such as
face recognition and augmented reality (AR), are appearing and have become popular in
our daily life [11]. These multimedia applications are typically computation-intensive and
need real-time processing [12]. However, the computation resources of these IoT nodes are
insufficient enough to meet the demands of these applications [13,14].

Mobile cloud computing (MCC) was once regarded as an important paradigm to
conquer the limitations of IoT devices, where the computation-intensive IoT applications
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can be migrated and processed in the distant public cloud [15]. However, one of the obvious
shortcomings of this method is the high latency for the long transmission delay, which is
not a suitable choice for the processing of latency-sensitive multimedia applications. There-
fore, a promising paradigm, which is MEC, has been introduced [16–18]. By distributing
the cloud resources near the edge of the wireless networks, MEC can not only provide
computing resources to the IoT devices but also lower the latency from the transmission of
the IoT devices to the edge cloud.

Figure 1. The growth of devices and connections worldwide [10].

Despite the advantages that the MEC has, how efficiently to allocate the computing re-
sources of the MEC servers, such that both the application execution latency and consumed
energy of IoT devices are minimized, is a challenging issue. From the viewpoint of the SIoT
systems, designing efficient resources allocation algorithms can improve its safety, reliabil-
ity and security, which ultimately contributes to the improvement of the reliability [19,20].
The DVS technology can vary the voltage and clock frequency of IoT devices according
to the computation load such that the desired performance is provided [21]. By resorting
to the DVS technique, the IoT devices cloud make adjustments to their computational
speeds in order to reduce the application completion time and consumed energy. Therefore,
combining the DVS technology with the application offloading can make the offloading
strategy design more flexible. Although a significant amount of research attention has
been paid to resource allocation and applications offloading in the MEC systems, joint
consideration of the computational resources in the edge servers and adopting the DVS
technology is not fully investigated.

In this paper, we make efforts to study computation resource allocation and multime-
dia applications offloading problems to optimize the performances in MEC-assisted SIoT
systems. We formulate the studied problem as a latency and energy consumption mini-
mization problem by optimizing the computational resources in the edge servers. Besides,
as the DVS can offer more flexibility for the MEC system design, we incorporate it into the
application offloading. Since the studied problem is an MINP problem, a method proven
to be efficient is proposed to address it. Simulation results are presented to demonstrate
the efficiency of the proposed multimedia applications offloading scheme by comparing it
with the baseline schemes.

In summary, we demonstrate the main contributions in this paper as follows:

• The minimization problem of multimedia application execution latency and energy
consumption of IoT devices is studied by the allocation of computing resources in the
edge servers while adopting the DVS technology.
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• The studied problem of latency and energy consumption is formulated. Due to the
formulated problem being an MINP problem, an efficient multimedia applications
offloading scheme is proposed, and the solution of it is obtained.

• Simulation results are performed to evaluate the efficacy of the proposed multimedia
applications offloading scheme by comparing with the two baseline schemes. The
theoretical analysis and simulation results indicate that the multimedia applications’
offloading scheme proposed in this paper can perform better than the baseline meth-
ods, which can integrate the dependability aspects into the design of SIoT systems.

2. Related Work

Applications offloading, also known as data offloading, task offloading and compu-
tation offloading, and together with resource allocation, has been broadly studied in the
current works. The allocated resources can be computing resources of MEC servers, radio
resources, transmission power, and caching resources. The main objectives of them focus
on the minimization of energy consumption, the application execution time, and both the
application processing time and the consumed energy. We have referred to many of the
relevant studies in the top renowned journals, which are included in the famous databases
in the literature, such as IEEE Xplore and Elsevier. Based on the relevant studies, we discuss
the related work from the following three perspectives.

(1) Energy consumption minimization.
In [22], Li et al. studied computation offloading problem for total energy consump-

tion minimization by allocating transmission power in the dual connectivity (DC)-and
nonorthogonal multiple access (NOMA)-assisted MEC systems. As the formulated prob-
lem is an MINLP problem, they proposed an iterative optimization method to obtain the
solution. In [23], Wang et al. studied transmit power allocation and computing resources
allocation for task offloading in order to obtain the minimization of the energy consump-
tion of the mobile user equipment. In particular, they consider the imperfect channel state
information (CSI). In [24], Liu et al. investigated the minimization of energy consumption
of mobile devices in MCC systems under the constraints of transmission error rate and
time delay. In [25], You et al. studied computing resource allocation of edge servers for
mobile energy consumption minimization with computation latency constraint in MEC
systems based on TDMA and OFDMA. In [26], Lyu et al. studied energy-efficient task
admission for delay-sensitive applications in MEC systems. They formulated the total
energy consumption minimization under the constraints of computational resources in the
edge servers and latency. In [27], Zhao et al. studied the problem of energy consumption
minimization by optimizing radio and computational resources of edge servers for smart
mobile devices of the MEC system with multiple users. As the formulated problem is MINP,
they proposed a method to obtain the optimal result. In [28], Zeng and Fodor investigated
the problem of transmission energy consumption by allocating radio and computational
resources jointly under a delay constraint. In [29], Meskar et al. studied commutation
offloading in a MEC system to obtain the reduction of energy consumption. They used
the competitive game to model the system, and a Gauss–Seidel method was introduced
to determine the equilibrium. The optimization of resource allocation is not considered.
In [14], Li et al. studied computation offloading for big data processing in the energy
efficient large-scale IoT systems. For the research line of these previous studies, they either
just paid attention to minimize the energy consumption or ignored the joint consideration
of DVS technology and computation resource allocation.

(2) Application execution time minimization.
In [30], the problem of spectrum allocation and transmission power allocation for

applications offloading is investigated to reduce the execution time, including compu-
tational time of MEC servers and transmission time of all mobile users. Because of the
complexity of the optimized problem, they developed a reinforcement learning-based
method to obtain the solution for the problem. In [31], Sun et al. studied the management
of energy-aware mobility for MEC systems in the ultra-dense networks environment. They
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optimized the computation delay under the constraint of energy consumption by applying
the Lyapunov optimization method. However, they did not consider resource allocations.
In [32], Qian et al. studied the overall completing time reduction of the workload of smart
terminal by formulating the optimization problem of computation resource allocation of
edge servers. An efficient layered algorithm was proposed by them to obtain the opti-
mal solution. In [33], Liu et al. studied a MEC system with two IoT devices offloading
their tasks to an edge server so that the execution latency of IoT users can be minimized
by considering the hybrid NOMA-OMA transmission. In [34], Chen et al. studied the
minimization of compression execution time of multimedia applications in MEC systems.
However, they only considered the optimization of radio and computation resources and
ignored the adoption of DVS technology. As far as the research line of the aforementioned
studies is concerned, their focus was concentrated on minimizing the application execution
time, ignoring the joint consideration of DVS technology.

(3) Both the energy and application processing time minimization.
In [21], Wang et al. studied partial computation offloading by allocating the transmit

power of mobile devices with DVS. They have two system design objectives, namely,
the minimization of consumed energy and task execution time. In [35], Zhong et al.
investigated the problem of task offloading by intelligently and efficiently manage resources
in MEC for minimizing delay and energy consumption. They put forward a CL-ADMM
framework that can reduce the delay and energy consumption effectively. In [36], Yang et al.
studied task offloading for minimizing the energy and delay in the NOMA-enabled MEC
systems with small cell networks. A hybrid genetic hill climbing (HGHC) algorithm is
put forward to obtain the optimal solution to the formulated problem. In [37], Zhang et al.
studied the tradeoff of energy and latency in the energy-aware MEC systems. A task
offloading scheme was presented by the optimal allocation of the communication resource
and using the DVS technology under the constraints of energy and delay. In our previous
work [38], we studied bandwidth allocation for minimizing the system cost, which is
measured by the task completion time and consumed energy of IoT devices, adopting
the DVS technology. In [39], the authors studied transmission power and communication
resources allocation for the balance of energy and latency task offloading in the full-duplex
MEC systems. In [40], Zhu and Wen studied the allocation of transmission power, wireless
resources, and computing resources in the edge servers to obtain the tradeoff of delay and
energy. A computation task offloading policy was proposed by using the genetic algorithm.
Although these previous studies considered the objectives of minimizing both energy and
execution time, the DVS technology is overlooked.

From the above analysis, it is obvious that the allocation of computing resources in the
edge cloud and the technology of DVS are not jointly considered in these previous works.
Although the authors in [41] studied resource allocation for big data processing, their study
is conducted in the geo-distributed federated public clouds. In addition, the joint objectives
of the task completion time and energy consumed by IoT devices are not fully studied. We
compare these previous works with the study of this paper, the results of which are listed
in Table 1. From Table 1, it is clearly observed that the study in this paper can overcome the
shortcomings that exist in the previous works and also provide a complement to them.

Table 1. Comparison.

Reference DVS Application
Execution Time

Energy
Consumption

Computation
Resources

Chen et al. [16] No No Yes No
Wang et al. [21] Yes Yes Yes No
Wang et al. [30] No No No No
Zhong et al. [35] No Yes Yes No

Li et al. [22] No Yes Yes No
Wang et al. [23] No No Yes Yes

Liu et al. [33] No No Yes No
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Table 1. Cont.

Reference DVS Application
Execution Time

Energy
Consumption

Computation
Resources

Li et al. [14] No No Yes No
Li et al. [38] Yes Yes Yes No

Yang et al. [36] No Yes Yes No
Liu et al. [24] No Yes Yes Yes
Lyu et al. [26] No Yes Yes Yes
You et al. [25] No Yes Yes Yes

Zhao et al. [27] No Yes Yes Yes
Kabir et al. [39] No Yes Yes No
Zhang et al. [37] Yes Yes Yes No
Sun et al. [31] No Yes Yes No

Meskar et al. [29] No Yes Yes No
Zeng et al. [28] No Yes Yes No
Zhu et al. [40] No Yes Yes Yes

This Study Yes Yes Yes Yes

3. System Architecture

The system architecture is introduced in this section. Suppose that there is a MEC-
assisted SIoT system with N IoT devices and one base station (BS), as Figure 2 shows.
Each IoT device has a multimedia application that needs a lot of computation resources
to be computed. Besides, an edge cloud is deployed near the BS to provide computation
resources. As far as the IoT device i is concerned, i ∈ {1, 2, 3, ..., N}, its application can be
represented by Ii = (Di, Ci), where Di is the data size, and Ci is the needed number of CPU
cycles for computing this application. The user of the IoT device i can use the methods
in [42] to obtain the information of Di and Ci. The IoT devices will make offloading
decisions on whether to offload and process their applications in the edge servers or
not. Let Oi denote the application offloading decision made by IoT device i. If the IoT
device i offloads its application via BS to the edge cloud, Oi = 1, otherwise, Oi = 0. It
should be noted that the system architecture of this paper can be utilized in numerous
real-life cases. For example, the IoT devices may correspond to networked cameras of the
surveillance monitoring systems, whose sensed video data require real-time execution, and
the multimedia applications can face recognition applications.

Figure 2. MEC-assisted social IoT system.

3.1. Local Computation Model

In this model, the application of the IoT device i is computed locally using its resources. We
use f l

i to denote the computing capacity in cycles per second. For IoT device i, the corresponding
application execution time and consumed energy can be, respectively, denoted as [16]

ti,l =
Ci

f l
i

(1)
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ei,l = Pi,lti,l (2)

where Pi,l is the consumed consumption for one CPU cycle.
The CPU power consumption per cycle is [16]

Pi,l = ki( f l
i )

3 (3)

where ki is a constant parameter, and its value relies on the chip architecture [37].
Therefore,

ei,l = kiCi( f l
i )

2 (4)

Based on Equations (1) and (4), the local computation cost in the measure of the
application execution time and the consumed energy is denoted as

Gi = λi,tti,l + λi,eei,l

= λi,t
Ci

f l
i
+ λi,ekiCi( f l

i )
2 (5)

where λi,t and λi,e ∈ [0, 1] represent the weight coefficient of the application processing
time and consumed energy, respectively. If λi,t > λi,e, the IoT user puts more weight on
processing time. Otherwise, if λi,t < λi,e, the IoT user puts more weight on the consumed
energy such that its battery energy can be saved.

3.2. Edge Cloud Model

For the edge cloud model, IoT device i will offload and process its application in the
edge cloud via wireless access, such as a macrocell BS or a WIFI access point.

For IoT device i, the uplink transmission data rate is

ri = wi log2(1 +
qihi
v0

) (6)

where qi is the transmit power, wi is the channel bandwidth, hi is the channel gain, and v0
is the background noise power.

Then, the consumed time of IoT device i in the uplink is

ti,t =
Di
ri

=
Di

wi log2(1 +
qihi
v0

)
(7)

Accordingly, the consumed energy in the uplink is

ei,o = qiti,t = qi
Di

wi log2(1 +
qihi
v0

)
(8)

After the applications of IoT devices are migrated to the edge cloud, the computing
resources will be allocated to process them. For the IoT device i, its application processing time is

ti,e =
Ci
f e
i

(9)

Based on Equations (7) and (9), the application offloading time is

ti,o = ti,t + ti,e =
Di

wi log2(1 +
qihi
v0

)
+

Ci
f e
i

(10)
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Therefore, according to the Equations (8) and (10), the computation cost of application
offloading for mobile device i is

Hi = λi,tti,o + λi,eei,o

= λi,t(
Di

wi log2(1 +
qihi
v0

)
+

Ci
f e
i
)

+ λi,eqi
Di

wi log2(1 +
qihi
v0

)

(11)

3.3. Problem Formulation

The optimization problem is formulated by minimization of the computation cost for
the local computation and edge cloud computation of IoT devices, which is

P:

min
f l
i , f e

i ,Oi

N

∑
i=1

Zi

s.t. 0 < f l
i ≤ f l

i,m
N

∑
i=1

f e
i ≤ F

Oi ∈ {0, 1}

(12)

where Zi is denoted as

Zi = (1−Oi)Gi + Oi Hi

= (1−Oi)[λi,tti,l + λi,eei,l ]

+ Oi[λi,tti,o + λi,eei,o]

(13)

where Gi and Hi are shown in the Equations (5) and (11), respectively.
In the above problem, constraint one is the processing capacity of the IoT device i,

constraint two is the computation resources constraints of edge servers, and constraint
three means the offloading decision that the IoT device i will make.

For convenient investigation, the notations are summarized in Table 2.

Remark 1. Problem P is a typical MINP problem, the function of which is non-convex and
notoriously hard to be solved [43]. This is due to the fact that the application offloading decision
is binary, but the computation resource allocation is continuous. We can apply the Alternating
Direction Method of Multipliers (ADMM), dandelion algorithm (DA) [44], Bat algorithm [45],
and branch-and-bound methods to solve the MINP problem. However, the time-complexity is
prohibitive [26]. The authors in [46] solved the MINP problem using the algorithms of benders’
decomposition, admm, dinkelbach, and branch-and-bound, and compared the performances of these
algorithms. In the following section, a method is proposed to obtain the optimal solution.

Table 2. A summary of notations.

Notation Description

f l
i The processing rate of the IoT device i

ti,l The local processing time of the IoT device i
ei,l The local energy consumption of the IoT device i
ti,e The transmission time of the IoT device i
ei,o The transmission energy consumption of the IoT device i
Di The application i’s data size
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Table 2. Cont.

Notation Description

Ci The needed CPU cycles to process application of IoT device i
λi,t The weighting parameter of application processing time
λi,e The weighting parameter of energy consumption
wi The channel bandwidth
qi The transmit power of the IoT device i
hi The channel gain
v0 The background noise power
ri The uplink transmission rate for the IoT device i
Oi The application offloading decision that make by the IoT device i
f e
i The allocated computational resources in the edge cloud to device i

fi,m The maximum processing rate of the IoT device i
F The total computational resources in the edge servers

4. Solution Method

In this section, the proposed solution method for the formulated application execution
time and consumed energy minimization problem is introduced.

4.1. Solution Method

Before presenting the solution method, a lemma is firstly introduced, the proof of
which is shown in [47]. Based on this lemma, the proposed solution method is introduced.

Lemma 1. The following result is always true
sup
x,y

f (x, y)=sup
x

f̃ (x),

where f̃ (x)=supy f (x, y).

Lemma 1 shows that when trying to minimize a function, some variables can firstly
be chosen to be minimized, and then the left ones are to be minimized.

Based on Lemma 1, Problem P can be solved by maximizing over f l
i , and f e

i se-
quentially. Therefore, the problem P can be solved from the solution of the below three
subproblems:

(1) Local computation problem;
(2) Edge cloud computation problem;
(3) The offloading decision problem.

4.2. Local Computation Problem

When Oi = 0, the users of IoT devices will accomplish their applications on their own
mobile devices. In this case, problem P becomes the following problem:
P1:

min
f l
i

Gi( f l
i ) = λi,t

Ci

f l
i
+ λi,ekiCi( f l

i )
2

s.t. 0 < f l
i ≤ fi,m

(14)

From ∂2Gi
∂( f l

i )
2 > 0, we know that Gi( f l

i ) is convex. Hence, from the first derivative of

Gi( f l
i ) with respect to f l

i ,

∂Gi

∂ f l
i
= −λi,tCi

( f l
i )

2
+ 2λi,eki f l

i Ci = 0 (15)
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From Equation (15), the following optimal solution is obtained.

f l∗
i = 3

√
λi,t

2kiλi,e
(16)

It is obviously observed that Gi( f l
i ) monotonously increases when f l

i > f l∗
i and

monotonously increases when f l
i < f l∗

i .
Therefore, the optimal solution for problem P1 is

Gi( f l
i ) =

{
Gi( fi,m), f l∗

i ≥ fi,m

Gi( f l∗
i ), f l∗

i < fi,m
(17)

4.3. Edge Cloud Computation Problem

If the users of IoT devices make decisions to offload and process their applications in
the edge cloud, problem P becomes the following problem:
P2:

min
f e
i

N

∑
i=1

Hi

N

∑
i=1

f e
i ≤ F

f e
i > 0

(18)

The objective function in the problem P2 is easily checked as an obvious convex
function. Hence, the Lagrangian function for problem P2 is

Li( f e
i , µ) = λi,t(

Di

wi log2(1 +
qihi
v0

)

+
Ci
f e
i
) + λi,eqi

Di

wi log2(1 +
qihi
v0

)

+ µ(
N

∑
i=1

f e
i − F)

(19)

where µ ≥ 0 denotes the Lagrangian multiplier.
Based on the KKT conditions [47], we have the following results.

∂Li
∂ f e

i
= − Ciλi,t

ri( f e
i )

2 + µ = 0 (20)

∂Li
∂µ

=
N

∑
i=1

f e
i − F = 0 (21)

µ ≥ 0 (22)

From Equation (20), it is evident that µ > 0. Therefore, we obtain

f e
i =

√
Ciλi,t

riµ
(23)
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Substituting Equation (23) back into Equation (21), we obtain

µ = (

N
∑

i=1

√
Ciλi,t

ri

F
)2 (24)

Substituting Equation (24) back into Equation (23), we obtain the optimal computa-
tional resource allocation of edge servers, which is denoted as

f e
i = F

√
Ciλi,t

ri

N
∑

i=1

√
Ciλi,t

ri

(25)

By solving the above two subproblems, we can obtain the computation cost in the two
computation models.

4.4. Application Offloading Decision

In this part, the proposed efficient application offloading algorithm will be introduced,
which is motivated by the work of [37]. The users of IoT devices will make decisions to
offload and process their applications in the edge cloud if the computation cost of the edge
cloud model is not higher than that of the local model [16]. The user of the IoT device i will
make an application offloading decision by comparing the computation cost of the local
and edge cloud computation,

Oi =

{
1, Gi ≥ Hi

0, Gi < Hi
(26)

After the minimum computation cost of each IoT device is obtained, the total minimum
system computation cost is denoted as

Z∗ =
N

∑
i=1

((1−Oi)G∗i + Oi H∗i ) (27)

Accordingly, the application offloading decisions of IoT devices in the MEC systems
are made according to Algorithm 1.

Algorithm 1 Computational Resource Allocation and Applications Offloading Algorithm

Input:
1: N applications;

Output:
2: The application offloading decision made by each user of IoT device and the system

computation overhead;
3: Obtain the optimal resource allocation of each IoT device by solving problem P1;
4: Based on Equation (16), IoT devices make adjustments to their voltage and clock

frequency to obtain the adaptive CPU frequency according to the weight coefficient
values by applying the DVS technology;

5: Obtain the optimized local computation cost of each IoT device based on Equation (17);
6: Calculate the allocated computational resource of each IoT device by solving problem

P2;
7: Obtain the optimal computation cost of the edge cloud computation model from

Equation (11);
8: if Gi ≥ Hi then
9: Oi = 1;

10: else
11: Oi = 0;
12: end if



Mathematics 2022, 10, 1593 11 of 17

5. Simulation Results

The proposed computational resource allocation and application offloading algorithm
is evaluated in this section by simulation results. The proposed application offloading
algorithm is compared with the following two benchmark algorithms:

Local Computing (LC) Algorithm: In this algorithm, all the IoT devices do not take
the offloading strategy. They compute their applications by using the computing resources
of their devices.

Edge Cloud (EC) Algorithm: In this algorithm, there is no local computation. All
the IoT devices take the offloading strategy, offload and process their applications in the
edge cloud.

5.1. Parameter Setting

Suppose that a MEC-assisted IoT system exists with N = 5 IoT devices, randomly
distributed over a region, with a BS being placed at the center of this region. There are
servers located near the BS, whose computation capacity F is set as 20 GHz, and the maxi-
mum computation capacity for the IoT device i is fi,m = 1 GHz. Each IoT device has one
multimedia application which needs computation resources to be executed. The data sizes
of multimedia applications have a uniform distribution in [0.42, 4.2] Mb, which corresponds
to the face recognition application. The requirement of the number of CPU cycles of these
applications have a uniform distribution in [0.1, 1] ×109 cycles. The transmission power
of each IoT device is set as 1 W. The allocated bandwidth for each IoT device is 1.6 MHz.
The channel gain is hi = 2.6× 10−7. The background noise power is set to be 10−7 W. The
weight coefficient coefficient values λi,t and λi,e are randomly chosen from {0.2, 0.5, 0.8}
and λi,t + λi,e = 1. The main simulation parameter values are listed in Table 3. These
parameter values are set according to [16,26].

Table 3. Simulation parameter values.

Parameters Values

The number of IoT devices N 5
The bandwidth allocation wi 1.6 MHz

The data sizes of multimedia applications Di [0.42, 4.2] Mb
The transmission power qi 1 W

The needed computation resources Ci [0, 1] × 109 cycles
ki 10−26

The channel gain hi 2.6× 10−7

The maximum processing rate fi,m 1 GHz
The background noise power v0 10−7 W

The computation capacity of the edge cloud F 20 GHz

5.2. Effect of Weight Coefficient Values

In this section, the effect of the values of weight parameters on the offloading decisions,
application completion time, and consumed energy of IoT devices are analyzed. The values
of λi,e are set to be 0.2, 0.5, and 0.8. Figure 3a shows the effect of weight parameter values
on the application offloading decisions for IoT users. It can be observed from Figure 3a that
as the data sizes of their applications are small, IoT users 1 and 2 compute their applications
by their own devices under different values. However, for the IoT users 3, 4, and 5, as
their applications have larger data sizes, they compute their applications by using the
computation resources of the edge cloud under the values of 0.2 and 0.5. Furthermore, all
the IoT users make the decisions on computing their applications on their own devices
when the value is 0.8. This is due to the reason that offloading these applications to the
edge cloud will consume more energy.
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Figure 3. The effect of the weight coefficient values.

Figure 3b,c show the effect of weight coefficient values on the application completion
time and the consumed energy, respectively. It can be obviously observed from Figure 3b
that the completion time of the applications of IoT devices increases with the value of λi,e
increasing. The IoT devices, whose applications are of larger data sizes, will cost more time
to complete their applications. Meanwhile, we have the observation from Figure 3c that
the energy consumed by the IoT devices will decrease if the weight coefficient value λi,e
increases. This is because with the weight coefficient increasing value of λi,e, IoT users
pay more attention to the factor of energy consumption in this scenario. Figure 3b,c also
indicates that we could tune the values of the weight coefficient in different scenarios to
meet the requirements of the MEC-assisted SIoT system.

5.3. Effect of the Edge Cloud Capacity

The effect of the edge cloud capacity on the offloading decisions of IoT users and
the computation cost is analyzed in this section. The simulation results are shown in
Figures 4–7. Figure 4a–c depict how the edge cloud capacity affects the offloading decisions
that IoT users will make versus the weight coefficient values. From Figure 4a, we observe
that when λi,e = 0.2, λi,t = 0.8, IoT devices 1 and 2 do not offload their applications even
if the capacity of the edge cloud increases. This is because these IoT devices pay more
attention to the completion time, and local processing will cost less execution time for
them. IoT devices 3, 4, and 5 will offload applications with the capacity of the edge cloud
increasing. Through Figure 4b, we find that the users of IoT devices would like to offload
their applications if the edge cloud capacity increases. In particular, all the users of IoT
devices offload their applications when F = 30 GHz. When λi,e = 0.8, λi,t = 0.2, we see
from Figure 4c that all the IoT devices are to complete their applications locally. This is
due to the reason that more attention is paid to the energy consumption in this scenario,
and offloading applications to the edge cloud may cost more energy than the consumed
energy in the local computing model. Therefore, IoT users would like to execute their
applications locally. Figure 4a–c demonstrate that the offloading decisions that the IoT
users make depend not only on the chosen weight coefficient values, but also the capacity
of the edge cloud.
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Figure 4. The effect of the edge cloud capacity on the offloading decisions.

Figure 5a,b depict how the edge cloud capacity affects the application completion
time under different values of weight coefficient. We see that the application completion
time for each IoT device will decrease if the edge cloud capacity increases. By comparing
Figure 5a,b, we find that the application completion time for each IoT device in Figure 5b is
smaller than that in the Figure 5a under fixed edge cloud capacity. This is owing to the fact
that the coefficient value of λi,t is smaller in Figure 5a.
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Figure 5. The effect of the edge cloud capacity on the application completion time.

Figure 6a,b depict how the edge cloud capacity affects the consumed energy under
different values of weight coefficient. By comparing the two figures, we observe that the
consumed energy for each IoT device in Figure 6a is lower than that in Figure 6b. This is
owing to the fact that the coefficient value of λi,e is bigger in Figure 6a.
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Figure 6. The effect of the edge cloud capacity on the consumed energy.
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Figure 7a,b show how the edge cloud capacity impacts the computation cost with
different values of weight parameters. The proposed algorithm is compared with two
baseline algorithms. It is obviously shown in these figures that the computation costs
under the EC Algorithm and the Proposed Algorithm decrease with the increase in the
edge cloud capacity. As the edge cloud capacity does not affect the local computation cost,
the computation cost in the LC Algorithm has the constant value. From Figure 7a,b,
as anticipated, the Proposed Algorithm can achieve less computation cost compared
with the LC Algorithm and the EC Algorithm. By comparing Figure 7a,b, it can also
be obviously observed that the computation cost is lower when λi,e = λi,t = 0.5. Moreover,
the two figures show that the computation cost in the LC Algorithm is lower than that
in the EC Algorithm until the edge cloud capacity reaches a threshold value. When
λi,e = 0.5, λi,t = 0.5, the threshold value is comparatively smaller.
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Figure 7. The effect of the edge cloud capacity on the computation cost.

There are several factors that could potentially affect the simulation results. For
example, the weight coefficient values of λi,e and λi,t should be selected properly. In
addition, the computing resources provided by the edge cloud provider should be adjusted
according to data sizes of applications and the number of IoT users. Otherwise, there will
be biases in the experimental results.

6. Conclusions

This paper has investigated resource allocation and multimedia applications offloading
in a MEC-assisted SIoT system. Specifically, we analyzed the allocation of computation
resources and the adoption of the DVS technology to minimize the computation cost in
the measure of the application completion time and consumed energy for the processing
of multimedia applications of IoT devices. We formulated the application completion
time and consumed energy of IoT devices as an optimization problem. As the formulated
problem is MINP, it is non-convex and NP-hard. The problem is decomposed into three sub-
problems, and the solution for each one has been analyzed and solved. Theoretic analysis
and simulation results have demonstrated the performance of the proposed algorithm by
comparing the two baseline methods. The proposed method is beneficial for the efficient
allocation of computation resource and application offloading in the MEC-assisted SIoT
system. The experiment results highlight that the weight coefficient values and the edge
cloud capacity impact the offloading decisions IoT users dramatically. In contrast to the
two benchmark algorithms, the proposed algorithm reveals its advantages in terms of
application completion time, consumed energy, and computation cost.

Several research issues should be studied in the future works. First, we will extend our
study to consider the allocation of the caching resources [48] and apply the deep learning
algorithms to solve the objective problem [49]. Second, as the backscatter communication
(BackCom) can improve the transmission rate [50], we will combine the BackCom with
computation offloading in MEC. Third, the Software Defined Network (SDN) technique
will be integrated into the application offloading [51]. In addition, the security issue in the
MEC-assisted SIoT system is also an interesting research topic [52].
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