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Abstract: Non-stationarity of EEG signals lead to high variability across sessions, which results in low
classification accuracy. To reduce the inter-session variability, an unsupervised domain adaptation
method is proposed. Arithmetic mean and covariance are exploited to represent the data distribution.
First, overall mean alignment is conducted between the source and target data. Then, the data in
the target domain is labeled by a classifier trained with the source data. The per-class mean and
covariance of the target data are estimated based on the predicted labels. Next, an alignment from
the source domain to the target domain is performed according to the covariance of each class in
the target domain. Finally, per-class mean adaptation is required after covariance alignment to
remove the shift of data distribution caused by covariance alignment. Two public BCI competition
datasets, namely the BCI competition III dataset IVa and the BCI competition IV dataset IIa were
used to evaluate the proposed method. On both datasets, the proposed method effectively improved
classification accuracy.

Keywords: electroencephalogram; motor imagery; mean and covariance; domain adaptation; linear
discriminant analysis

MSC: 68U04

1. Introduction

A brain–computer interface (BCI) provides an alternate link to the external world
for a subject using brain signals [1]. BCIs are especially useful for patients with impaired
peripheral nerve or muscle functions to rebuild connection to the real world. For healthy
people, BCIs can also provide a new control dimension, such as in games [2].

Motor imagery (MI)-based BCIs are the main type of BCIs. MI-BCIs are driven by
neural signals modulated by users’ voluntary movement imagination [3]. MI-related char-
acteristic changes occur in some regions of the brain, especially the primary sensorimotor
area and supplementary motor area [4]. These changes can be acquired through electroen-
cephalograms (EEG). MI information in EEG can be captured through spatial filtering
methods, such as common spatial pattern (CSP) [5], and then classified by machine learning
methods to identify the intention of BCI users.

In machine learning theory, the data distributions of the training and test sets are
supposed to be similar [6]. However, the non-stationarity of EEG leads to high variability
across different recording sessions [7], which becomes a major obstacle to the accurate
classification of EEG patterns. Studies indicate that the non-stationarity nature of EEG is
induced by several factors, including physiological artifacts, state of subjects, and instru-
mental artifacts over different sessions [8]. To overcome this problem, transfer learning
methods are proposed [9,10].

Transfer learning is widely investigated, including inductive transfer learning, trans-
ductive transfer learning, and unsupervised transfer learning [11]. Specifically, inductive
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transfer learning is employed when the source and target tasks are different [12]. In this
case, the source data is not labeled. Unsupervised transfer learning deals with the situa-
tion where the source and target tasks are similar, but labels of all data are unavailable.
Transductive transfer learning deals with the situation in which the source data are labeled
while the target data are unlabeled. Domain adaptation is related to transductive transfer
learning, which is implemented based on the assumption that the source and target data
are generated in the same task and distributed in different domains. Moreover, pre-trained
models (with [13] or without [14] fine-tuning) are also introduced to search the shared
feature patterns and reduce calibration with deep learning methods. Domain adaptation
methods can easily learn the knowledge of labeled data in the source domain and transfer
the knowledge to the target domain.

Recently, domain adaptation became a widely investigated approach to bridge the gap
between the training set (i.e., the source domain) and the test set (i.e., the target domain)
in the BCI field [15]. This technology aims at reducing the distribution shifting of the
source and target domains. [16]. However, two issues arise, namely, the measurement
of the discrepancy of different domains and the reduction of the discrepancy. Different
measurement criteria are used to estimate the discrepancy between the source and target
domains. Arithmetic mean, covariance, and correlation coefficients of data in source and
target domains are frequently used as the statistical characteristics of distributions when
performing alignment in data space [17–20]. Zheng et al. proposed a model based on
transfer learning in which the mean and variance were used as the statistical characteristics
shared across sessions [21]. Liang et al. aligned the tangent space mapping features
according to the Riemannian center to handle the instability of channel covariance across
sessions [22]. Azab et al. evaluated the distance between EEG data in the two domains
using Kullback–Leibler (KL) divergence [12]. The spatial projection filters were then
weighted by the divergence. In the regularized common spatial pattern (RCSP) method,
optimization was used to obtain the spatial project matrix of the source and target EEG
data simultaneously to minimize the distance between them [23]. The similarities between
the two domains were also evaluated using other distance metrics, such as the Frobenius
norm, Bhattacharyya distance, and cosine distance [24–26].

The single statistical characteristic that was investigated in previous studies may
not estimate the data distribution properly, which may further influence the discrepancy
minimization between the source and target domains. Furthermore, the estimation of the
data distribution of the unlabeled data in the target domain is difficult. Mean and covariance
are two important characteristics of data distribution. Due to the non-stationarity of EEG,
they may be quite different in the source and target domains of BCI [7]. For this reason, a
classifier trained with the source data may not perform well on the target data. Generally,
the performance of classification depends on the similarity of the two domains [27]. Thus,
transferring the data distribution of the source domain to the target domain may result in a
more accurate classification.

To minimize the discrepancy between the source and target domains, an unsupervised
method based on the alignment in Euclidean space is proposed in this paper. There are
two major contributions. First, the discrepancy of distribution between the two domains
is removed completely using this method. Second, the mean alignment and covariance
alignment for each class can be realized simultaneously. In this method, mean and covari-
ance are used to represent the center and dispersion of the data distribution in the two
domains. The alignment contains two stages, namely the mean alignment (MA) and the
per-class covariance and mean alignment (CMA). In the MA stage, considering that the
mean and covariance of each class in the source and target domains may vary enormously
and the data in the target domain remain unlabeled, the mean of the source data is aligned
with the data mean in the target domain. The data in the target domain remain unchanged.
After MA, a linear discriminant analysis (LDA) classifier is trained using the source data.
Then, the LDA classifier is used to classify the target data. According to the predicted
labels estimated by the classifier, the per-class basis covariance (CA) of the target data is
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calculated. The covariance of the source data is then transformed to be the same as the
covariance of target data for each class. After the covariance alignment, per-class basis MA
is conducted again.

The remainder of this paper includes four sections. Section 2 introduces the details
of the proposed method. In Section 3, the experimental datasets are introduced, and the
experimental results are given. Section 4 presents the discussions, and Section 5 presents
the conclusion.

2. Materials and Methods

A flowchart of the proposed method is shown in Figure 1. First, CSP is used for EEG
feature extraction. The EEG features extracted from the training and test data are treated
as the source and target data, respectively. Then, MA is performed in the source domain.
After that, the LDA classifier is trained with the data in the source domain. Next, the
trained classifier is used for the target data classification. CMA is then conducted in the
two domains for each class. Finally, the classifier is retrained using the aligned source data.
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2.1. CSP for Feature Extraction

CSP was first proposed by Ramoser [28]. When given an EEG dataset that contains
N trials in each class, the i-th trial of the l-th class (l = 1, 2) is represented as Ei ∈ RL×S,
where L is the number of channels, and S is the number of sample points. The normalized
covariance of the EEG per class is calculated by

Rl =
1
N

N

∑
i=1

EiET
i

trace(EiET
i )

(1)

where T is the transpose operator and trace (·) calculates the sum of the diagonal elements
of a matrix. A spatial filter can be found by solving an optimization problem given by [29].

max
W

J(W) =
WTR1W
WTR2W

, s.t.‖W‖2 = 1 (2)

where ‖ ∗ ‖2 denotes the l-2 norm. After solving the above optimization problem through
singular value decomposition, the spatial filter W can be obtained

R1W = λR2W (3)

The i-th trial Ei is then projected as

Zi = WEi (4)
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According to [28], the first and last n (usually, n = 3) rows of Zi are selected to calculate
the features. Since Zi and Ei have the same number of rows, the CSP feature of the i-th trial
can be represented as

fi = log
var(Zi,p)

2n
∑

p=1
var(Zi,p)

(5)

where var (·) denotes the covariance. Finally, six features can be obtained for each trial.

2.2. LDA for Classification

The aim of LDA is to find a projecting matrix to transform the data from different
classes into a 2-dimensional space in which the inter-class scatter is maximized and the
intra-class scatter is minimized [30]. First, the within-class scatter matrix Sw is calculated by

Sw = S1 + S2 (6)

where S1 and S2 denote the class-scatter matrix of class 1 and class 2, respectively. They can
be obtained by

Sl =
N

∑
i=1

(fi − cl)(fi − cl)
T , l = 1, 2 (7)

where cl denotes the per-class mean.
Then, the between class-scatter matrix Sb is calculated by

Sb = (c1 − c2)(c1 − c2)
T (8)

Finally, after solving the following optimal problem, the linear projecting matrix M
can be obtained.

J(w) =
MTSbM
MTSwM

(9)

2.3. Overall Mean Alignment

The training and test features are treated as the source and target data, respectively.
The mean of the data in the source domain and the mean of the data in the target domain
are denoted as ms and mt, respectively, and can be utilized to measure the distance between
the two domains.

d = ms −mt (10)

Then, the source data is aligned by

fs
i(MA) = fs

i − d (11)

where fs
i is the i-th training feature calculated using CSP and fs

i(MA) represents the feature
after MA. Now the data in the source and target domains have the same center.

2.4. Per-Class Covariance and Mean Alignment

After overall MA, the data is aligned from the source domain to the target domain.
The aligned data of the l-th class is denoted as Fs

l(MA). Fs
l(MA) = [fs

i(MA)]
T, I = 1,2, . . . , N.

The mean and covariance of Fs
l(MA) are represented as ms

l(MA)
and Cs

l(MA), respectively.
The target data are labeled by LDA, which is trained with the source data after MA. The
data of the l-th class in the target domain is denoted as Ft

l , and its mean and covariance are
represented as mt

l and Ct
l , respectively. According to the label information, the per-class

basis covariance alignment (CA) can be conducted using a transform matrix Dl .

Fs
l(CA) = DlF

s
l(MA) (12)
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Let Cs
l(CA) and Cs

l(MA) represent the covariance of Fs
l(CA) and Fs

l(MA), respectively.
Cs

l(CA) can be represented using the method in [31].

Cs
l(CA) = DlC

s
l(MA)Dl

T (13)

The covariance of the source data is required to be the same as that of the target data,

Cs
l(CA) = Ct

l (14)

So the transform matrix Dl can be calculated as

Dl = Ct
l

1
2 Cs

l(MA)

−1
2 (15)

After covariance alignment, the covariances of the data for the corresponding classes
in the two domains are equal. However, it seems that the mean of the data in both domains
is considerably different for each class [32]. So, per-class MA needs to be performed to
achieve the mean alignment between the source and target data again. The per-class
distance between the two domains is

dl = ms
l(MA) −mt

l(MA) (16)

The i-th data of the l-th class in the source domain, which is represented by the i-th
row of Fs

l(CA), namely fs
i,l(CA), is aligned to the target data.

fs
i,l(CMA) = fs

i,l(CA) − dl (17)

After MA and CMA, the per-class mean and covariance of the data in the two domains
can be equal.

3. Results

Two datasets were used to evaluate the proposed method. The first dataset (dataset 1)
is the BCI competition III dataset IVa [33]. Five subjects were guided to make the left hand,
right hand, and right foot MI during EEG recording. For each subject, 280 EEG trials were
obtained. The BCI competition IV dataset IIa [34] was used as the second dataset (dataset 2).
Nine subjects participated in MI EEG recording. The recorded EEG data correspond to four
classes of MIs (i.e., left hand, right hand, both feet, and tongue MIs). There are two sessions
in dataset 2. Each session is comprised of 144 trials. The two sessions were recorded on
two days. In this study, only two-class MI data (left hand vs. right hand) for each dataset
were selected for classification. The EEG data were preprocessed by a band-pass filter
(8 Hz to 30 Hz). In addition, classification accuracy was calculated based on five-fold cross
validation.

The proposed CSP-MA-CMA method was compared with three competing methods,
namely CSP, CSP-MA, and CSP-MA-CA. In all four methods, CSP and LDA were used for
MI feature extraction and classification, respectively. In the CSP-MA method, after feature
extraction by CSP, overall mean alignment was conducted. As for CSP-MA-CA, overall
mean alignment and per-class covariance alignment were performed sequentially after
CSP feature extraction. All the methods were tested with MATLAB 2016b on a PC with a
3.5 GHz processor and 8.0 GB RAM.

Tables 1 and 2 show the classification accuracies of the four methods on the two
datasets. As shown in Table 1, compared with CSP, CSP-MA and CSP-MA-CMA improved
the average accuracy by 1.3% and 2.3%, respectively, on dataset 1. As shown in Table 2,
CSP-MA and CSP-MA-CMA improved the average accuracy by 3.1% and 3.3%, respectively,
on dataset 2 compared to CSP. However, the classification performances of CSP-MA-CA on
both datasets only reached the chance level. Moreover, an additional public EEG dataset
with two-class data (i.e., left hand and right hand MIs) from 52 subjects is used to evaluate
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the proposed method. For each subject, 200 trials were recorded during the experiment.
More information on this dataset is provided in [35]. The average accuracies of CSP and
CSP-MA-CMA (the proposed method) are 56.32% and 58.46%, respectively.

Table 1. Comparison of accuracies (%) using different alignment methods on dataset 1.

AA AL AV AW AY Mean

CSP 72.14 93.57 66.43 92.14 91.43 83.14
CSP-MA 75 96.43 68.57 89.29 92.86 84.43

CSP-MA-CA 50 50 49.29 50 50 49.86
CSP-MA-CMA 75 96.43 70.71 92.14 92.86 85.43

Table 2. Comparison of accuracies (%) using different alignment methods on dataset 2.

A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean

CSP 90.97 56.94 92.36 64.58 56.25 71.53 73.61 97.22 88.89 76.93
CSP-MA 90.97 58.33 99.31 79.17 58.33 71.53 77.08 97.22 88.19 80.02

CSP-MA-CA 50 50 50.69 50 50 50 50 50 50 50.08
CSP-MA-CMA 89.58 59.03 99.31 77.08 59.03 72.22 79.86 97.22 89.58 80.32

To test the statistically significant differences between different alignment methods,
a paired t-test was used. There were no significant differences in classification accuracy
between CSP and CSP-MA on dataset 1 (p > 0.1) and dataset 2 (p = 0.09), although CSP-MA
increased the average accuracy. The performance of CSP-MA-CMA increased significantly
compared with CSP on dataset 1 (p = 0.03) and dataset 2 (p = 0.04), as well as the additional
dataset (p = 0.02).

Datasets 1 and 2 are commonly used for MI EEG classification, whereas only a few
methods not related to transfer learning are evaluated based on the above mentioned MI
dataset from 52 subjects. Thus, the comparison between the proposed method and the
methods in some previous studies was conducted only on datasets 1 and 2. As shown in
Tables 3 and 4, the best average accuracy was achieved by the proposed method.

Table 3. Comparison of accuracies (%) of the proposed method and three existing methods on
dataset 1.

Methods Year AA AL AV AW AY Mean

MSMV [36] 2021 79.64 94.64 75 78.57 94.64 84.51
p-LTCSP [37] 2020 77.68 100 71.94 92.41 74.21 83.25
MFCSP [38] 2021 77.68 100 73.98 84.82 88.1 84.91

Proposed 75 96.43 70.71 92.41 92.86 85.43

Table 4. Comparison of accuracies (%) of the proposed method and three existing methods on
dataset 2.

Methods Year A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean

SWCSP [39] 2021 86.11 64.58 95.83 64.58 68.06 68.75 81.94 97.22 90.97 79.78
CSCSP [40] 2019 88.89 63.89 95.14 69.44 74.31 65.97 72.92 92.36 88.19 79.01
DACSP [5] 2021 91.67 53.47 95.84 72.92 64.58 73.61 78.47 95.83 92.37 79.48
Proposed 89.58 59.03 99.31 77.08 59.03 72.22 79.86 97.22 89.58 80.32

The visualization of data distribution during the alignment process clearly shows
how the data distribution was modified by the proposed CSP-MA-CMA method. The
distribution of original features before and after different kinds of alignments in the two
domains for subject 3 in dataset 2 is shown in Figure 2. To facilitate visualization, the last
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two dimensions of the EEG features, namely the sixth and fifth dimensions, were used for
data distribution representation. The distribution before MA is shown in Figure 2a. The
dots in dark blue are the samples of class 1, and those in dark red are the samples of class 2
in the source domain. The grey dots represent the unlabeled samples in the target domain.
Two larger dots in dark grey and light grey show the overall centers in the two domains,
respectively. They are different from each other before MA.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 11 
 

 

The visualization of data distribution during the alignment process clearly shows 
how the data distribution was modified by the proposed CSP-MA-CMA method. The 
distribution of original features before and after different kinds of alignments in the two 
domains for subject 3 in dataset 2 is shown in Figure 2. To facilitate visualization, the last 
two dimensions of the EEG features, namely the sixth and fifth dimensions, were used for 
data distribution representation. The distribution before MA is shown in Figure 2a. The 
dots in dark blue are the samples of class 1, and those in dark red are the samples of class 
2 in the source domain. The grey dots represent the unlabeled samples in the target 
domain. Two larger dots in dark grey and light grey show the overall centers in the two 
domains, respectively. They are different from each other before MA. 

(a)Before MA (b)After MA (c)Before CA / CMA

(d)After MA-CA (e)After MA-CMA  
Figure 2. Visualization of data distribution during the alignment process for subject 3 on dataset 2. 
Data distribution (a) before MA, (b) after MA, (c) before CA/CMA, (d) after MA-CA, (e) after MA-
CMA. 

The data distribution after MA is shown in Figure 2b. The data in the source domain 
were aligned by MA to have the same center as the data in the target domain. The classifier 
was trained using the mean aligned data in the source domain and then used for data 
classification in the target domain. As shown in Figure 2c, the target data were divided 
into different classes by the pre-trained classifier, which are represented as class 1 in light 
blue and class 2 in light red, respectively. For each class, the mean and covariance of the 
data in the two domains were different. The data distribution after MA-CA and MA-CMA 
is shown in Figure 2d,e, respectively. In Figure 2d, although the per-class covariance in 
the two domains was forced to be equal after MA-CA, the difference between the means 
of the data in the two domains increased, which may be the reason for the low 
classification accuracy of the CSP-MA-CA method shown in Tables 1 and 2. Therefore, it 
is necessary to align the means of each class as the last step, which does not change the 
aligned class covariance in the two domains. 

The data distribution of subject 5 in dataset 2 is shown in Figure 3. Similar results 
after each alignment step can be observed. 

Figure 2. Visualization of data distribution during the alignment process for subject 3 on dataset 2.
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The data distribution after MA is shown in Figure 2b. The data in the source domain
were aligned by MA to have the same center as the data in the target domain. The classifier
was trained using the mean aligned data in the source domain and then used for data
classification in the target domain. As shown in Figure 2c, the target data were divided
into different classes by the pre-trained classifier, which are represented as class 1 in light
blue and class 2 in light red, respectively. For each class, the mean and covariance of the
data in the two domains were different. The data distribution after MA-CA and MA-CMA
is shown in Figure 2d,e, respectively. In Figure 2d, although the per-class covariance in the
two domains was forced to be equal after MA-CA, the difference between the means of
the data in the two domains increased, which may be the reason for the low classification
accuracy of the CSP-MA-CA method shown in Tables 1 and 2. Therefore, it is necessary
to align the means of each class as the last step, which does not change the aligned class
covariance in the two domains.

The data distribution of subject 5 in dataset 2 is shown in Figure 3. Similar results after
each alignment step can be observed.
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4. Discussion

The differences in the data distribution in the two domains before the MA step were
evaluated, including the overall mean difference and the per-class covariance difference.
The overall mean difference is indicated by the distance between the means of the data
in the source and target domains. Per-class covariance difference is represented by the
distance of class covariance in the two domains. The effect of MA was evaluated by the
accuracy improvement expressed as the difference in accuracy between CSP (before MA)
and CSP-MA (after MA). As shown in Table 5, the results are ranked from high to low
according to the degree of improvement in accuracy on both datasets. It seems that after
MA, a higher accuracy improvement can be achieved when the overall mean difference is
larger for all subjects, except for the subjects A08 and A01 in dataset 1.

Table 6 show the average training and test time across all subjects required for CSP-
MA-CMA and the three competing methods. Since there are no parameters for tuning in
the whole processing, only a little time is required for data alignment. For CSP-MA-CMA,
it took 1.038 s and 0.971 s for training on datasets 1 and 2, respectively. In the test phase,
CSP-MA-CMA only cost 0.0022 s.
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Table 5. The accuracy improvement after MA and the overall mean difference and per-class covari-
ance difference in the two domains before MA.

Improvement of
Accuracies (%)

Overall Mean
Difference

Per-Class Covariance
Difference

Dataset 1

A04 12.5 0.66 0.13
A03 6.94 0.64 0.17
A07 6.25 0.55 0.07
A05 2.78 0.45 0.06
A02 2.08 0.41 0.17
A06 0.69 0.40 0.22
A09 0.69 0.14 0.47
A08 0 0.26 0.09
A01 −1.39 0.33 0.23

Dataset 2

AV 4.30 0.43 0.36
AA 2.86 0.22 0.31
AL 2.86 0.29 0.46
AY 1.43 0.17 0.10
AW 0 0.14 0.29

Table 6. Average time cost (s) using different alignment methods.

Dataset 1 Dataset 2

Training Time (s) Test Time (s) Training Time (s) Test Time (s)

CSP 0.4523 0.0016 0.4063 0.0016
CSP-MA 0.5754 0.0016 0.5111 0.0016

CSP-MA-CA 0.8981 0.0021 0.7841 0.0020
CSP-MA-CMA 1.038 0.0022 0.9710 0.0022

5. Conclusions

The classification of EEG is confronted with difficulty due to the high variability of
EEG data recorded across different days. In this paper, CSP-MA-CMA was proposed
to handle this problem. The proposed CSP-MA-CMA method was tested on two public
MI datasets. CSP-MA-CMA significantly increased the performance compared with the
competing method without alignment in feature space. Additionally, no parameters need
to be determined in the proposed method.

Author Contributions: Conceptualization, M.C. and L.Z.; verification, C.L.; writing original draft,
C.L.; review and editing, M.C. and L.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Project
No. 51977020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available at https://www.bbci.de/competition/ (accessed on
4 July 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kubler, A.; Kotchoubey, B.; Kaiser, J.; Wolpaw, J.R.; Birbaumer, N. Brain-computer communication: Unlocking the locked in.

Psychol. Bull. 2001, 127, 358–375. [CrossRef] [PubMed]
2. Nijholt, A. BCI for Games: A ‘State of the Art’ Survey. In Proceedings of the 7th International Conference on Entertainment

Computing (ICEC 2008), Pittsburgh, PA, USA, 25–27 September 2008; pp. 225–228.

https://www.bbci.de/competition/
http://doi.org/10.1037/0033-2909.127.3.358
http://www.ncbi.nlm.nih.gov/pubmed/11393301


Mathematics 2022, 10, 1588 10 of 11

3. Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for communication and
control. Clin. Neurophysiol. 2002, 113, 767–791. [CrossRef]

4. Pfurtscheller, G.; Neuper, C. Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 1997, 239, 65–68.
[CrossRef]

5. Wang, B.; Wong, C.M.; Kang, Z.; Liu, F.; Shui, C.; Wan, F.; Chen, C.L.P. Common Spatial Pattern Reformulated for Regularizations
in Brain-Computer Interfaces. IEEE Trans. Cybern. 2021, 51, 5008–5020. [CrossRef] [PubMed]

6. Chai, X.; Wang, Q.; Zhao, Y.; Liu, X.; Bai, O.; Li, Y. Unsupervised domain adaptation techniques based on auto-encoder for
non-stationary EEG-based emotion recognition. Comput. Biol. Med. 2016, 79, 205–214. [CrossRef]

7. Jayaram, V.; Alamgir, M.; Altun, Y.; Schoelkopf, B.; Grosse-Wentrup, M. Transfer Learning in Brain-Computer Interfaces. IEEE
Comput. Intell. Mag. 2016, 11, 20–31. [CrossRef]

8. Bamdadian, A.; Guan, C.T.; Ang, K.K.; Xu, J.X. Improving session-to-session transfer performance of motor imagery-based BCI
using Adaptive Extreme Learning Machine. In Proceedings of the 35th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Osaka, Japan, 3–7 July 2013; pp. 2188–2191.

9. Al-Saegh, A.; Dawwd, S.A.; Abdul-Jabbar, J.M. Deep learning for motor imagery EEG-based classification: A review. Biomed.
Signal Processing Control 2021, 63, 102172. [CrossRef]

10. Huang, X.; Xu, Y.; Hua, J.; Yi, W.; Yin, H.; Hu, R.; Wang, S. A Review on Signal Processing Approaches to Reduce Calibration
Time in EEG-Based Brain-Computer Interface. Front. Neurosci. 2021, 15, 1066. [CrossRef]

11. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
12. Azab, A.M.; Mihaylova, L.; Ang, K.K.; Arvaneh, M. Weighted Transfer Learning for Improving Motor Imagery-Based Brain-

Computer Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1352–1359. [CrossRef]
13. Zhang, D.; Yao, L.; Chen, K.; Wang, S. Ready for Use: Subject-Independent Movement Intention Recognition via a Convolutional

Attention Model. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM),
Torino, Italy, 22–26 October 2018; pp. 1763–1766.

14. Zhang, R.; Zong, Q.; Dou, L.; Zhao, X.; Tang, Y.; Li, Z. Hybrid deep neural network using transfer learning for EEG motor imagery
decoding. Biomed. Signal Processing Control 2021, 63, 102144. [CrossRef]

15. Saha, S.; Baumert, M. Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review. Front.
Comput. Neurosci. 2020, 13, 87. [CrossRef] [PubMed]

16. Fazli, S.; Daehne, S.; Samek, W.; Biessmann, F.; Mueller, K.-R. Learning From More Than One Data Source: Data Fusion Techniques
for Sensorimotor Rhythm-Based Brain-Computer Interfaces. Proc. IEEE 2015, 103, 891–906. [CrossRef]

17. Abdi, L.; Hashemi, S. Unsupervised Domain Adaptation Based on Correlation Maximization. IEEE Access 2021, 9, 127054–127067.
[CrossRef]

18. Li, P.; Ni, Z.; Zhu, X.; Song, J. Inter-class distribution alienation and inter-domain distribution alignment based on manifold
embedding for domain adaptation. J. Intell. Fuzzy Syst. 2020, 39, 8149–8159. [CrossRef]

19. Zhang, W.; Zhang, X.; Lan, L.; Luo, Z. Maximum Mean and Covariance Discrepancy for Unsupervised Domain Adaptation.
Neural Processing Lett. 2020, 51, 347–366. [CrossRef]

20. Lee, B.-H.; Jeong, J.-H.; Lee, S.-W. SessionNet: Feature Similarity-Based Weighted Ensemble Learning for Motor Imagery
Classification. IEEE Access 2020, 8, 134524–134535. [CrossRef]

21. Zheng, M.; Yang, B.; Xie, Y. EEG classification across sessions and across subjects through transfer learning in motor imagery-based
brain-machine interface system. Med. Biol. Eng. Comput. 2020, 58, 1515–1528. [CrossRef]

22. Liang, Y.; Ma, Y. A Cross-Session Feature Calibration Algorithm for Electroencephalogram-Based Motor Imagery Classification. J.
Med. Imaging Health Inform. 2019, 9, 1534–1540. [CrossRef]

23. Cheng, M.; Lu, Z.; Wang, H. Regularized common spatial patterns with subject-to-subject transfer of EEG signals. Cogn. Neurodyn.
2017, 11, 173–181. [CrossRef]

24. Xu, Y.; Wei, Q.; Zhang, H.; Hu, R.; Liu, J.; Hua, J.; Guo, F. Transfer Learning Based on Regularized Common Spatial Patterns
Using Cosine Similarities of Spatial Filters for Motor-Imagery BCI. J. Circuits Syst. Comput. 2019, 28, 1950123. [CrossRef]

25. Khalaf, A.; Akcakaya, M. A probabilistic approach for calibration time reduction in hybrid EEG-fTCD brain-computer interfaces.
Biomed. Eng. Online 2020, 19, 295–314. [CrossRef] [PubMed]

26. Zheng, Q.; Zhu, F.; Qin, J.; Heng, P.-A. Multiclass support matrix machine for single trial EEG classification. Neurocomputing 2018,
275, 869–880. [CrossRef]

27. Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for
EEG-based brain-computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [CrossRef]

28. Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement.
IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [CrossRef]

29. Zhang, L.; Wen, D.; Li, C.; Zhu, R. Ensemble classifier based on optimized extreme learning machine for motor imagery
classification. J. Neural Eng. 2020, 17, 026004. [CrossRef]

30. Tao, D.; Li, X.; Wu, X.; Maybank, S.J. Geometric Mean for Subspace Selection. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31,
260–274.

31. Li, Y.; Wei, Q.; Chen, Y.; Zhou, X. Transfer Learning Based on Hybrid Riemannian and Euclidean Space Data Alignment and
Subject Selection in Brain-Computer Interfaces. IEEE Access 2021, 9, 6201–6212. [CrossRef]

http://doi.org/10.1016/S1388-2457(02)00057-3
http://doi.org/10.1016/S0304-3940(97)00889-6
http://doi.org/10.1109/TCYB.2020.2982901
http://www.ncbi.nlm.nih.gov/pubmed/32324587
http://doi.org/10.1016/j.compbiomed.2016.10.019
http://doi.org/10.1109/MCI.2015.2501545
http://doi.org/10.1016/j.bspc.2020.102172
http://doi.org/10.3389/fnins.2021.733546
http://doi.org/10.1109/TKDE.2009.191
http://doi.org/10.1109/TNSRE.2019.2923315
http://doi.org/10.1016/j.bspc.2020.102144
http://doi.org/10.3389/fncom.2019.00087
http://www.ncbi.nlm.nih.gov/pubmed/32038208
http://doi.org/10.1109/JPROC.2015.2413993
http://doi.org/10.1109/ACCESS.2021.3111586
http://doi.org/10.3233/JIFS-189136
http://doi.org/10.1007/s11063-019-10090-0
http://doi.org/10.1109/ACCESS.2020.3011140
http://doi.org/10.1007/s11517-020-02176-y
http://doi.org/10.1166/jmihi.2019.2755
http://doi.org/10.1007/s11571-016-9417-x
http://doi.org/10.1142/S0218126619501238
http://doi.org/10.1186/s12938-020-00765-4
http://www.ncbi.nlm.nih.gov/pubmed/32299441
http://doi.org/10.1016/j.neucom.2017.09.030
http://doi.org/10.1088/1741-2552/aab2f2
http://doi.org/10.1109/86.895946
http://doi.org/10.1088/1741-2552/ab7264
http://doi.org/10.1109/ACCESS.2020.3048683


Mathematics 2022, 10, 1588 11 of 11

32. Ma, L.; Crawford, M.M.; Zhu, L.; Liu, Y. Centroid and Covariance Alignment-Based Domain Adaptation for Unsupervised
Classification of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2305–2323. [CrossRef]

33. Dornhege, G.; Blankertz, B.; Curio, G.; Muller, K.R. Boosting bit rates in noninvasive EEG single-trial classifications by feature
combination and multiclass paradigms. IEEE Trans. Bio-Med. Eng. 2004, 51, 993–1002. [CrossRef]

34. Fatourechi, M.; Bashashati, A.; Ward, R.K.; Birch, G.E. EMG and EOG artifacts in brain computer interface systems: A survey.
Clin. Neurophysiol. 2007, 118, 480–494. [CrossRef] [PubMed]

35. Cho, H.; Ahn, M.; Ahn, S.; Kwon, M.; Jun, S.C. EEG datasets for motor imagery brain-computer interface. GigaScience 2017, 6, 1–8.
[CrossRef] [PubMed]

36. Padfield, N.; Ren, J.; Qing, C.; Murray, P.; Zhao, H.; Zheng, J. Multi-segment Majority Voting Decision Fusion for MI EEG
Brain-Computer Interfacing. Cogn. Comput. 2021, 13, 1484–1495. [CrossRef]

37. Yu, Z.; Ma, T.; Fang, N.; Wang, H.; Li, Z.; Fan, H. Local temporal common spatial patterns modulated with phase locking value.
Biomed. Signal Processing Control 2020, 59, 101882. [CrossRef]

38. Hou, Y.; Chen, T.; Lun, X.; Wang, F. A novel method for classification of multi-class motor imagery tasks based on feature fusion.
Neurosci. Res. 2021, 176, 40–48. [CrossRef]

39. Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R.B.; Wang, H. A Sliding Window Common Spatial Pattern for
Enhancing Motor Imagery Classification in EEG-BCI. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [CrossRef]

40. Raza, H.; Rathee, D.; Zhou, S.-M.; Cecotti, H.; Prasad, G. Covariate shift estimation based adaptive ensemble learning for handling
non-stationarity in motor imagery related EEG-based brain-computer interface. Neurocomputing 2019, 343, 154–166. [CrossRef]

http://doi.org/10.1109/TGRS.2018.2872850
http://doi.org/10.1109/TBME.2004.827088
http://doi.org/10.1016/j.clinph.2006.10.019
http://www.ncbi.nlm.nih.gov/pubmed/17169606
http://doi.org/10.1093/gigascience/gix034
http://www.ncbi.nlm.nih.gov/pubmed/28472337
http://doi.org/10.1007/s12559-021-09953-3
http://doi.org/10.1016/j.bspc.2020.101882
http://doi.org/10.1016/j.neures.2021.09.002
http://doi.org/10.1109/TIM.2021.3051996
http://doi.org/10.1016/j.neucom.2018.04.087

	Introduction 
	Materials and Methods 
	CSP for Feature Extraction 
	LDA for Classification 
	Overall Mean Alignment 
	Per-Class Covariance and Mean Alignment 

	Results 
	Discussion 
	Conclusions 
	References

