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Abstract: In this work, we study complex-valued data detection performance in massive multiple-
input multiple-output (MIMO) systems. We focus on the problem of recovering an n-dimensional
signal whose entries are drawn from an arbitrary constellation K ⊂ C from m noisy linear measure-
ments, with an independent and identically distributed (i.i.d.) complex Gaussian channel. Since
the optimal maximum likelihood (ML) detector is computationally prohibitive for large dimensions,
many convex relaxation heuristic methods have been proposed to solve the detection problem. In
this paper, we consider a regularized version of this convex relaxation that we call the regularized
convex relaxation (RCR) detector and sharply derive asymptotic expressions for its mean square
error and symbol error probability. Monte-Carlo simulations are provided to validate the derived
analytical results.

Keywords: asymptotic analysis; massive MIMO; mean square error; probability of error; convex
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1. Introduction

Detection of complex-valued data from noisy linear measurements appears often
in many communication applications, such as massive multiple-input multiple-output
(MIMO) signal detection [1], multiuser detection [2], decoding of space-time codes [3], etc.
In this work, we consider the problem of recovering an n-dimensional complex-valued
signal whose entries are drawn from an arbitrary constellation K ⊂ C from m noisy
linear measurements in a massive MIMO application. Although the maximum likelihood
(ML) detector can achieve excellent performance, its computational complexity becomes
prohibitive as the problem size increases [2]. To achieve an acceptable performance with
a low computing complexity, various convex optimization-based heuristics have been
developed. One popular convex relaxation approach of the ML is the box-relaxation used
in [4,5]. Regularization-based techniques have been employed in [6,7] to further improve
the performance of the box-relaxation in massive MIMO applications. Sparsity-aware
regularization methods based on ideas from compressed sensing were used in [8–10]. Sum
of absolute values (SOAV) optimization [11] uses a similar sparsity-based approach, and
has been applied in many wireless communication problems [12–14].

There are a few theoretical analysis approaches for the convex optimization-based
signal reconstruction problems. One of the main technical tool used in the sharp asymptotic
analysis of such problems is the convex Gaussian min-max theorem (CGMT)
framework [15,16]. The CGMT has been used to analyze the performance of various opti-
mization problems [4,6–8,12,15,17]. However, prior performance analysis using the CGMT
was only established for real-valued constellations such as binary phase-shift keying
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(BPSK) and pulse amplitude modulation (PAM) using the box-relaxation method [4]. For
the complex-valued constellations, to the best of our knowledge, the CGMT was only ap-
plied in one work [5], which considers the performance of convex-relaxation, but without
regularization.

The heuristic method proposed in this work is to relax the discrete set K to a convex
and continuous set V , and then solve the detection problem using a regularized convex
optimization program followed by hard-thresholding. We call this method the regularized
convex relaxation (RCR) detector, and we sharply analyze its asymptotic performance
in terms of its mean square error (MSE) and symbol error probability (SEP) in the limit
of m → ∞ and n → ∞ with a fixed rate. Furthermore, we will show the additional
performance gains attained by adding the convex relaxation constraint. We assume an
independent and identically distributed (i.i.d.) complex Gaussian channel matrix and
additive white Gaussian noise. Our results also enable us to select the optimal regularization
factor to further improve the detection performance. As a concrete example, we focus our
attention on studying the performance of the RCR detector for phase-shift keying (PSK)
and quadrature amplitude modulation (QAM) constellations. Monte-Carlo simulations are
provided to validate our analytical expressions.

2. Problem Formulation
2.1. Notation

The basic notations used throughout this article are gathered here. We use R and C
to represent the sets of real and complex numbers, respectively. In addition, Z+ is used
to indicate the set of positive integers. For a complex scalar z ∈ C, zR, and zI represent

the real and imaginary parts of z, respectively, and |z| =
√

z2
R + z2

I . We use the letter j

to denote the complex unit, i.e., j2 = −1. A real Gaussian distribution with mean µ and
variance σ2 is indicated by N (µ, σ2). Similarly, CN (µ, σ2) indicates a complex Gaussian
distribution with real and imaginary parts drawn independently from N (µR, σ2

2 ) and
N (µI , σ2

2 ), respectively. X ∼ pX implies that the random variable X has a density pX.
Bold lower-case letters are reserved for vectors, e.g., x, with xi denoting its i-th entry. The
Euclidean norm of a vector is denoted by ‖ · ‖. Matrices are represented by bold upper-case
letters, e.g., A, while (·)> represents the transpose operator. We reserve the letters G and Z
to denote independent real standard Gaussian random variables. Similarly, Gc is reserved
to denote a complex CN (0, 2) Gaussian random variable. Notations E[·] and P(·) indicate

the expectation and probability operators, respectively. Symbols “ d
=” and “ P−→” are used to

designate equivalence in distribution, and convergence in probability, respectively. Finally,
for a closed and nonempty convex set V ⊂ C, and for any vector x ∈ Cn, we define its
distance and projection functions, respectively, as follows

D(x;V) = min
a∈Vn

‖x− a‖, (1)

Π(x;V) = arg min
a∈Vn

‖x− a‖. (2)

2.2. Problem Setup

We need to recover an n-dimensional complex-valued transmit vector s0 ∈ Kn ⊂ Cn,
where K is the discrete transmit modulation constellation (e.g., PSK, QAM, etc.). The
received signal vector r ∈ Cm is given by

r = Hs0 + v, (3)

where H ∈ Cm×n is the MIMO channel matrix that has CN (0, 1
n ) i.i.d. entries and v ∈ Cm

is the noise vector with CN (0, σ2) i.i.d. entries. Under the current setup, the signal-to-noise
ratio (SNR) is SNR = 1/σ2.
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Detector: The optimum detector that minimizes the error rate is proven to be the maximum
likelihood (ML) detector [2], which solves the following optimization problem

ŝML := arg min
s∈Kn

1
2
‖Hs− r‖2. (4)

This is computationally prohibitive in the considered massive MIMO setup; due to
the discreteness nature of the constraints set K. Instead, in this paper, we consider the
regularized convex relaxation (RCR) detector. The RCR recovers s following the next two
steps:

ŝ := arg min
s∈Vn

1
2
‖Hs− r‖2 +

ζ

2
‖s‖2, (5a)

s?i := arg min
c∈K
|c− ŝi|, i = 1, 2, · · · , n, (5b)

where in the first step (5a), the discrete set K is relaxed to a convex set V , and then we solve
a regularized version of this relaxed problem with ζ > 0 being the regularization factor. In
the second step (5b), each entry of ŝ is mapped to its closest point in K to produce the final
estimate s?.

2.3. Performance Measures

In this paper, we provide sharp performance analysis of the RCR detector in terms
of the problem parameters such as SNR, ζ, m, n, K and V . We will consider two different
performance measures, namely the MSE and the SEP discussed next.

Mean Square Error (MSE): this metric is used to quantify the performance of the estimation
step in (5a). It is defined as follows:

MSE :=
1
n
‖s0 − ŝ‖2. (6)

Another important performance metric is the symbol error probability.

Symbol Error Probability (SEP): the symbol error rate (SER) analyzes the performance of
the second (detection) step in (5b), and it is defined as:

SER :=
1
n

n

∑
i=1

1{s?i 6=s0,i}, (7)

where 1{·} represents the indicator function.
Another interesting related measure is the symbol error probability (SEP) that is

given as

SEP := E[SER] =
1
n

n

∑
i=1

P(s?i 6= s0,i), (8)

where the expectation is taken over the channel, the noise and the signal constellation.
Next, we introduce the notation Vx for x ∈ K, as the set of all points in V that will be

mapped to x in (5b). Equivalently

Vx :=
{

b ∈ V : ∀a ∈ K, |b− x| < |b− a|
}

. (9)

With this notation at hand, we can rewrite the SEP in (8) as

SEP =
1
n

n

∑
i=1

P
(
ŝi /∈ Vs0,i

)
, (10)

where ŝi is a minimizer of (5a).
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2.4. Technical Assumptions

We assume that the entries of s0 are sampled i.i.d. from a probability density function
ps0 , with P(b1 + jb2) = P(b2 + jb1), ∀b1, b2 ∈ R. Furthermore, we assume that s0 is
normalized to have zero-mean and unit-variance, i.e., E[S0] = 0, and E[S2

0] = 1. The convex
set V is assumed to be symmetric, i.e., if (b1 + jb2) ∈ V , then (b2 + jb1) ∈ V as well. Finally,
we assume a high-dimensional regime in which m→ ∞, and n→ ∞ with a proportional
rate κ := m

n ∈ (0, ∞).

3. Asymptotic Performance Analysis
3.1. Main Asymptotic Results

This section provides our main results on the performance evaluation of the RCR
detector in the considered high dimensional setting.

Theorem 1 (Asymptotics of the RCR). Let MSE, and SEP be the mean square error and symbol
error probability of the RCR detector in (5), respectively, for an unknown signal s0 ∈ Kn with
entries sampled i.i.d. from a distribution ps0 . Let V be a convex relaxation of K that satisfies the
assumption of Section 2.4. For fixed ζ ≥ 0, and κ > 0, if following optimization problem

min
α>0

max
β>0

καβ− β2

2
− αβ2

β + 2ζα
+

β

2α

(
σ2 + 1

)
− β2

2αβ + 4ζα2

+

(
β

2α
+ ζ

)
E
[
D2
(

β

β + 2ζα
(S0 − αGc);V

)]
(11)

has a unique solution (α∗, β∗), then it holds in probability that

lim
n→∞

MSE = 2κα2
∗ − σ2, (12)

and

lim
n→∞

SEP = P
(

Π
(

β∗
β∗ + 2ζα∗

(S0 − α∗Gc);V
)

/∈ VS0

)
, (13)

where the expectation and probability in the above expressions are taken over S0∼ps0 and Gc∼CN (0, 2).
Here, D(·) and Π(·) are the distance and projection functions defined in (1) and (2), respectively. In
addition, the set VS0 is as defined in (9).

Proof. See Section 5.

Theorem 1 provides high dimensional asymptotic expressions to calculate the MSE
and SEP of the RCR detector under an arbitrary complex-valued constellation.

Remark 1. The objective function in (11) is convex-concave and only includes scalar variables.
Thus, first-order optimality conditions may be used to efficiently calculate α∗ and β∗ numerically.

3.2. Modulation Schemes

Using Theorem 1, we can sharply characterize the performance of the RCR detector for
a general complex-valued constellation K, which can be relaxed to an arbitrary convex set
V . To better comprehend our result and demonstrate how to adapt it to different schemes,
we will concentrate on two conventional schemes, PSK and QAM constellations, which
will be addressed next.

3.2.1. M-PSK Constellation

In an M-PSK constellation, where M = 2k, for some k ∈ Z+, each entry of s0 is
randomly drawn from the set

K =

{
exp

(
2πi
M

)
, i = 0, 1, · · · , M− 1

}
, M ≥ 4.
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Note that this work focuses on complex-constellations, but the “M = 2”-case corresponds
to the real-valued BPSK constellation, which has already been studied in [6]. The elements
of K are uniformly distributed over the unit circle in the complex plane, and therefore we
suggest the use of the so-called circular-relaxation (CR), where we choose the set

VCR = {x ∈ C : |x| ≤ 1} (14)

as the convex relaxation set in (5a). The projection function on this set has the following form:

Π(x;VCR) =

{
x, if |x| ≤ 1
x
|x| , otherwise.

(15)

Due to the symmetric nature of the M-PSK constellation, the asymptotic SEP can be
derived in the following closed-form:

lim
n→∞

SEP = P
(∣∣∣∣∣ Z

G− 1
α∗

∣∣∣∣∣ ≥ tan
( π

M

))
, (16)

where Z and G are i.i.d. N (0, 1) random variables.

3.2.2. M-QAM Constellation

In this paper, we will only consider square QAM constellations, where M = 22k, such
as 4-QAM, 16-QAM, 64-QAM, etc. Then, the constellation set is given by

K =

{
(a + jb) ∈ C : a, b ∈

{
−(
√

M− 1)√
Eavg

,
−(
√

M− 3)√
Eavg

, · · · ,

√
M− 1√
Eavg

}}
, (17)

where we normalize the constellation points by Eavg := 2(M−1)
3 ; to have unit average power.

(Eavg represents the average power of the non-normalized M-QAM symbols.) The convex
relaxation that is often used for this modulation is known as the box-relaxation (BR) [4]
which is given as

VBR =

{
(a + jb) ∈ C : |a| ≤

√
M− 1√
Eavg

, |b| ≤
√

M− 1√
Eavg

}
. (18)

Similar to the preceding subsection, to apply Theorem 1, we must first construct the
projection and distance functions of VBR, which is straightforward for a box set. Then, the
SEP can be calculated using (13). In this scenario, unlike in the M-PSK case, the SEP of the
detector is not the same for various symbols in K; this is due to the fact that an M-QAM
constellation includes distinct types of points, namely inner, edge, and corner points.

4. Numerical Simulation Results

In Figure 1, we plotted the MSE and SEP performances as functions of the regularizer
ζ for a 16-QAM constellation with BR. These figures verify the accuracy of the prediction
of Theorem 1 when compared to Monte-Carlo (MC) empirical simulations. In addition,
from those figures we can see a clear minimum value of ζ that gives the best MSE and SEP
performance. Thus, Theorem 1 can be used to select the optimum value of the regularizer.

Furthermore, Figure 2 verifies the accuracy of the MSE and SEP predictions of
Theorem 1 as functions of the SNR, for a 16-PSK modulation scheme with circular re-
laxation. It is worth noting that, while the theorem requires m → ∞ and n → ∞, the
theoretical predictions already are precise for moderate size of the problem, in this simula-
tion n = 128. In this figure, we also plotted the unconstrained regularized least-squares
(RLS) (without convex relaxation, i.e., V = R). Besides, it can be seen that the RCR detector
outperforms the RLS.
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Furthermore, under a box-relaxation, we apply Theorem 1 to sharply characterize the
MSE and SEP of a 16-QAM modulated system as functions of the SNR. The result is shown
in Figure 3, which again illustrates the high accuracy of our results, as well as that RCR
detector outperforms the RLS.

Finally, we should point out that in all of the numerical simulations illustrated above,
we considered overdetermined systems, i.e., κ > 1. We conclude this section by presenting
another simulation example for an underdetermined system, with κ = 0.8, while all other
parameters are the same as in the previous example. The MSE performance is summarized
in Table 1. This table confirms the sharpness of our predictions for underdetermined
systems as well.

0 2 4 6 8 10
0.1

0.15

0.2

0.25

ζ

M
SE

Analytical

Empirical

(a)

0 2 4 6 8 10
10−3

10−2

10−1

ζ

SE
P

Analytical

Empirical

(b)
Figure 1. MSE and SEP versus the regularizer for 16-QAM with Box-Relaxation (BR), with κ = 1.5, n =

128, SNR = 15 dB. The analytical curve is based on Theorem 1. The data are averaged over 50
independent MC trials. (a) MSE performance vs. the regularizer. (b) SEP performance vs. the
regularizer.

−5 0 5 10 15
0

0.2

0.4

0.6

0.8

SNR (dB)

M
SE

RCR: Analytical

RCR: Empirical

RLS: Empirical

(a)

−5 0 5 10 15
10−2

10−1

100

SNR (dB)

SE
P

RCR: Analytical

RCR: Empirical

RLS: Empirical

(b)
Figure 2. Performance of the Circular-Relaxation (CR) for a 16-PSK signal vector as a function
of the SNR. The analytical curve is based on Theorem 1. For the empirical simulations, we used
κ = 2, n = 128, and data are averaged over 50 independent MC iterations. (a) MSE performance.
(b) SEP performance.

Table 1. MSE performance of RCR and RLS detectors. We used a 16-QAM signal vector with BR. We
set κ = 0.8, n = 128, and the data are averaged over 50 independent MC iterations.

SNR (dB) MSE (RCR): Analytical MSE (RCR): Empirical MSE (RLS): Empirical

0 0.4932 0.4894 0.6446

5 0.3323 0.3411 0.3801

10 0.2104 0.2085 0.2993

15 0.1212 0.1295 0.2395

20 0.0492 0.0513 0.2227
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(a)

−5 0 5 10 15

10−3

10−1

SNR (dB)

SE
P

RCR: Analytical

RCR: Empirical

RLS: Empirical

(b)
Figure 3. Box-Relaxation (BR) performance for 16-QAM. The analytical prediction is based on
Theorem 1. We used κ = 2, n = 128 and data are averaged over 50 independent MC trials. (a) MSE
performance vs. SNR. (b) SEP performance vs. SNR.

5. Sketch of the Proof

In this section, we provide a sketch of the proof of Theorem 1. For the reader’s
convenient, we summarize the main tool used in our analysis, namely the CGMT, in the
next subsection.

5.1. CGMT: An Analysis Tool

We must first identify the analysis’s key component, which is the CGMT. We only
summarize the theorem’s formulation here, and we recommend the reader to [4,15] for
the full technical prerequisites. In particular, let us consider the following (stochastic)
optimization problems, which are called the primal optimization (PO) problem and the
auxiliary optimization (AO) problem, respectively.

Ψ(X) := min
a∈Sa

max
b∈Sb

b>Xa + T (a, b), (19a)

ψ(g1, g2) := min
a∈Sa

max
b∈Sb

‖a‖g>1 b + ‖b‖g>2 a + T (a, b), (19b)

where X ∈ Rm̃×ñ, g1 ∈ Rm̃, and g2 ∈ Rñ all have i.i.d. standard Gaussian elements. The sets
Sa ⊂ Rñ,Sb ⊂ Rm̃ are assumed to be be convex and compact sets, and T : Rñ ×Rm̃ 7→ R.
Moreover, we assume that the function T is independent X. Let aΨ := aΨ(X), and
aψ := aψ(g1, g2) be any optimizers of (19a) and (19b), respectively. In addition, let T (a, b)
be convex-concave continuous on Sa × Sb.

Based on the assumptions stated above, the CGMT shows an asymptotic equivalence
between the PO and AO problems, which is explicitly expressed in the following theorem.
This theorem’s proof may be found in [15].

Theorem 2 (CGMT [4]). Suppose S is an arbitrary open subset of Sa, and S c = Sa \ S . Let
ψS c(g1, g2) be the optimal objective of the optimization in (19b), when the minimization over a is
constrained over a ∈ S c. Suppose that there exist positive constants η < δ, such that in the limit of

ñ→ ∞: ψ(g1, g2)
P−→ η, and ψS c(g1, g2)

P−→ δ. Then, it holds

lim
ñ→∞

P(aΨ ∈ S) = 1. (20)

It also holds that limñ→∞ P(aψ ∈ S) = 1.
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5.2. Asymptotic Analysis

In this part, we provide an outline of the ideas used to prove our main results based
on the CGMT framework. We start by rewriting (5a) by a simple change of variables from s
to the error vector w := s− s0, to get:

ŵ := arg min
w∈Vn−s0

1
2
‖Hw− v‖2 +

ζ

2
‖w + s0‖2. (21)

Next, let H̃ :=
[

HR −H I
H I HR

]
∈ R2m×2n, and ṽ :=

[
vR
vI

]
∈ R2m, where HR, vR (H I , vI)

are the real (imaginary) parts of H and v, respectively. With this, and normalizing (21) by
1
n , we have

ŵ := arg min
w̃∈R2n

w̃i+jw̃i+n∈V−s0,i

1
2n
‖ 1√

2n
H̃w̃− ṽ‖2 +

ζ

2n
‖w̃ + s̃0‖2, (22)

where s̃0 :=
[

s0,R
s0,I

]
∈ R2n. Because of the dependence between the entries of H̃, the above

optimization is difficult to analyze and the CGMT framework cannot be used directly here.
However, as discussed in [5], one can use Lindeberg methods as in [18] to replace H̃ with a
Gaussian matrix that has i.i.d. entries without affecting the asymptotic performance, then
we obtain

ŵ = arg min
w̃∈R2n

w̃i+jw̃i+n∈V−s0,i

1
2n
‖ 1√

2n
Aw̃− ṽ‖2 +

ζ

2n
‖w̃ + s̃0‖2, (23)

where A ∈ R2m×2n has i.i.d. N (0, 1) components, and ṽ has i.i.d. N (0, σ2

2 ) elements. Next,
we proceed to apply the CGMT by rewriting (23) as the following min-max optimization:

min
w̃∈R2n

w̃i+jw̃i+n∈V−s0,i

max
u∈R2m

u>Aw̃
2n
√

2n
− u>ṽ

2n
− ‖u‖

2

8n
+

ζ

2n
‖w̃ + s̃0‖2. (24)

A remaining technical caveat is that the maximization over u appears unconstrained,
i.e., the feasibility set over u is not compact. For this, we can follow the approach in [15]
(Appendix A), by assuming that the maximizer of (24) satisfies ‖û‖ ≤ Bu, for a sufficiently
large constant Bu > 0, that is independent of n. This will not affect the optimization
problem with high probability. Thus, we get the following problem

min
w̃∈R2n

w̃i+jw̃i+n∈V−s0,i

max
‖u‖≤Bu

u>Aw̃
2n
√

2n
− u>ṽ

2n
− ‖u‖

2

8n
+

ζ

2n
‖w̃ + s̃0‖2. (25)

The above problem is in the form of a PO of the CGMT. Thus, the associated simplified
AO problem is given as:

min
w̃∈R2n

w̃i+jw̃i+n∈V−s0,i

max
‖u‖≤Bu

‖w̃‖g>1 u

2n
√

2n
+
‖u‖g>2 w̃

2n
√

2n
− u>ṽ

2n
− ‖u‖

2

8n
+

ζ

2n
‖w̃ + s̃0‖2, (26)

where g1 ∈ R2m and g2 ∈ R2n have i.i.d. N (0, 1) entries. With some abuse of notation on
g1, we can see that (

‖w̃‖√
2n

g1 − ṽ
)>

u d
= g>1 u

√
‖w̃‖2

2n
+

σ2

2
. (27)
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Hence, (26) becomes

min
w̃∈R2n

w̃i+jw̃i+n∈V−s0,i

max
‖u‖≤Bu

g>1 u

√
‖w̃‖2

2n
+

σ2

2
+
‖u‖g>2 w̃

2n
√

2n
− ‖u‖

2

8n
+

ζ

2n
‖w̃ + s̃0‖2. (28)

Fixing β := ‖u‖√
2n

, the optimization over u simplifies to

min
w̃∈R2n

w̃i+jw̃i+n∈V−s0,i

max
β>0

β‖g1‖√
2n

√
‖w̃‖2

2n
+

σ2

2
+

βg>2 w̃
2n

− β2

4
+

ζ

2n
‖w̃ + s̃0‖2. (29)

The square root in the above problem can be expressed using the following identity
(Note that at optimality, τ∗ = χ.)

χ = min
τ>0

1
2

(
χ2

τ
+ τ

)
, for χ > 0, (30)

which yields the following optimization problem

min
τ>0

max
β>0

τβ‖g1‖
2
√

2n
+

σ2‖g1‖β
4τ
√

2n
− β2

4

+ min
w̃∈R2n

w̃i+jw̃i+n∈V−s0,i

{
β‖g1‖
2τ
√

2n
‖w̃‖2

2n
+

βg>2 w̃
2n

+
ζ

2n
‖w̃ + s̃0‖2

}
. (31)

Using the weak law of large numbers (WLLN): ‖g1‖√
2n

P−→
√

κ, then the previous
problem reduces to

min
τ>0

max
β>0

τβ
√

κ

2
+

σ2β
√

κ

4τ
− β2

4

+ min
w̃∈R2n

w̃i+jw̃i+n∈V−s0,i

{
β
√

κ

2τ

‖w̃‖2

2n
+

βg>2 w̃
2n

+
ζ

2n
‖w̃ + s̃0‖2

}
. (32)

Defining α := τ√
κ

, and by a completion of squares in the minimization over w̃, and
using the WLLN, we obtain the following scalar (deterministic) optimization problem

min
α>0

max
β>0

αβκ

2
+

σ2β

4α
− β2

4
− β2

2β
α + 4ζ

+
1
2

 β

2α
−

β2

4α2

β
2α + ζ


+

1
2

(
β

2α
+ ζ

)
E
[
D2

(
β

2α
β

2α + ζ
S0 −

β
β
α + 2ζ

Gc;V
)]

, (33)

where the expectation in the above expression is taken over S0 ∼ ps0 and Gc ∼ CN (0, 2).The
SEP of ŵ in (23) can be derived in a similar way to the proof of [5] to get

SEP P−→ P
(

Π

( β∗
2α∗

β∗
2α∗

+ ζ
S0 −

β∗
β∗
α∗

+ 2ζ
Gc;V

)
/∈ VS0

)
, (34)

where α∗ and β∗ are optimizers of (33). Simplifying (33) and (34) concludes the proof of the
SEP part of Theorem 1.
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The MSE expression can be proven in a similar way by noting that

‖w̃‖2

2n
+

σ2

2
= τ̂2

n , (35)

where τ̂n is the solution of (32). Hence, using α̂n = τ̂n√
κ

, and α̂n
P−→ α∗, where α∗ is the

solution of (33), we conclude, by applying the CGMT, that

‖ŵ‖2

n
P−→ 2κα2

∗ − σ2, (36)

which completes the proof of the MSE part of Theorem 1.

6. Discussion and Conclusions

In this article, we provided sharp performance analysis of the regularized convex
relaxation detector when used in complex-valued data detection. In particular, we studied
its MSE and SEP performance in a massive MIMO application with arbitrary constella-
tion schemes such as QAM and PSK. Numerical simulations show a close match to the
obtained asymptotic results. In addition, the derived results can be used to optimally select
the detector’s parameters such as the regularization factor. Furthermore, note that the
asymptotic results of Theorem 1 depend only on the parameters of the problem such as the
regularization factor ζ, the SNR, the ratio of receive to transmit antennas κ, etc. Thus, given
the derived asymptotic MSE or SEP expressions, one may predict the error performance of
a wireless communication system as a function of these hyper-parameters in advance. This
may lead to the design of efficient communication systems in an optimal manner. Further-
more, we showed that this convex relaxation outperforms the unconstrained regularized
least-squares detector.
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