
����������
�������

Citation: Ai, X.; Liu, X.; Ding, Y.; Li,

H. Dynamic Analysis of a COVID-19

Vaccination Model with a Positive

Feedback Mechanism and

Time-Delay. Mathematics 2022, 10,

1583. https://doi.org/10.3390/

math10091583

Academic Editor: Dimplekumar N.

Chalishajar

Received: 28 March 2022

Accepted: 3 May 2022

Published: 7 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Dynamic Analysis of a COVID-19 Vaccination Model with a
Positive Feedback Mechanism and Time-Delay
Xin Ai 1, Xinyu Liu 1, Yuting Ding 1,* and Han Li 2

1 Department of Mathematics, Northeast Forestry University, Harbin 150040, China;
aixin010607@nefu.edu.cn (X.A.); lxy_lucky@nefu.edu.cn (X.L.)

2 College of Economics and Management, Northeast Forestry University, Harbin 150040, China; li@nefu.edu.cn
* Correspondence: dingyt@nefu.edu.cn

Abstract: As the novel coronavirus pandemic has spread globally since 2019, most countries in
the world are conducting vaccination campaigns. First, based on the traditional SIR infectious
disease model, we introduce a positive feedback mechanism associated with the vaccination rate,
and consider the time delay from antibody production to antibody disappearance after vaccination.
We establish an UVaV model for COVID-19 vaccination with a positive feedback mechanism and
time-delay. Next, we verify the existence of the equilibrium of the formulated model and analyze its
stability. Then, we analyze the existence of the Hopf bifurcation, and use the multiple time scales
method to derive the normal form of the Hopf bifurcation, further determining the direction of
the Hopf bifurcation and the stability of the periodic solution of the bifurcation. Finally, we collect
the parameter data of some countries and regions to determine the reasonable ranges of multiple
parameters to ensure the authenticity of simulation results. Numerical simulations are carried out
to verify the correctness of the theoretical results. We also give the critical time for controllable
widespread antibody failure to provide a reference for strengthening vaccination time. Taking two
groups of parameters as examples, the time of COVID-19 vaccine booster injection should be best
controlled before 38.5 weeks and 35.3 weeks, respectively. In addition, study the impact of different
expiration times on epidemic prevention and control effectiveness. We further explore the impact of
changes in vaccination strategies on trends in epidemic prevention and control effectiveness. It could
be concluded that, under the same epidemic vaccination strategy, the existence level of antibody is
roughly the same, which is consistent with the reality.

Keywords: COVID-19 model; vaccination willingness; failure time of vaccine antibody; Hopf bifurca-
tion; multiple time scales method; normal form

MSC: 34K18; 37L10

1. Introduction

COVID-19 is ravaging the world, affecting 212 countries and territories around the
world [1]. As of February 2022, it had infected more than 400 million people, with a mortal-
ity rate of about 6%. Within months of the coronavirus outbreak, there was effective control
of epidemics in some countries through rigorous screening and quarantine strategies [2].
However, in some other countries, the novel coronavirus pandemic has spread rapidly and
become a serious epidemic. The outbreak has not only affected human survival but also
the global economy [3]. As a result, COVID-19 has become a hot topic in global research
and has received wide attention worldwide.

At present, vaccines are currently the most effective strategy for preventing out-
breaks [4]. However, vaccination varies from country to country around the world [5,6].
Booster shots are becoming widespread in developed economies, but basic immunization
targets are not yet universally met in most emerging economies [7]. Since the outbreak in
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2019, countries have attached great importance to the development of a vaccine. Currently,
more than 160 candidate vaccines against SARS-CoV-2 are being developed globally. Re-
sults from the first human trial of a potential SARS-CoV-2 vaccine have been published [8].
Studies have shown that vaccines against COVID-19 in phase iii clinical trials have good
safety and immunogenicity. However, attention should be paid to adverse reactions and
long-term protection of the vaccine [9]. Among the four published vaccines, the protec-
tive efficacy of the inactivated vaccine was 79.34%, that of the vector vaccine was 62–90%,
and that of the mRNA vaccine was all above 90% [10]. Therefore, there are still uncertainties
about the protective efficacy and immune persistence of vaccines [11]. In the course of our
study, the effectiveness of the vaccine is noteworthy.

In recent years, many scholars have studied the transmission mode of COVID-19 from
different perspectives. In Olaniyi et al.’s study [12], an epidemic model based on a system
of ordinary differential equations is formulated by taking into account the transmission
routes from symptomatic, asymptomatic, and hospitalized individuals. Sensitivities of
the model to changes in parameters are explored, and safe regions at certain threshold
values of the parameters are derived. In addition, two time-dependent control variables,
namely preventive and management measures, are considered to mitigate the damaging
effects of the disease using Pontryagin’s maximum principle. Abdy et al. [13] used fuzzy
parameters to establish the SIR model of COVID-19. In the model analysis, the generation
matrix method was used to obtain the stability of basic regeneration number and the
model equilibrium. The evolution of diseases with extended incubation periods and the
presence of asymptomatic patients such as COVID-19 have been modeled in Bardina’s
research [14]. In Ref. [15], Bardina et al. also developed a SEIR infectious disease model for
COVID-19 based on some common control strategies. Algehyne et al. [16] investigated a
new mathematical SQIR model for COVID-19 by means of four dimensions. In Ref. [17],
Li et al. constructed a new (SEIHRD)-H-3-R-2 diffusion model was constructed in the
literature to generate the most likely scenario of an epidemic. In Ref. [18], Li et al. proved
the effectiveness of the EM algorithm by simulation. Peng et al. [19] plotted the causal cycle
of the COVID-19 transmission transportation system dynamics model and analyzed the
causal feedback loop. In particular, Cadoni et al. [20] investigated in detail how the size and
timescale of the epidemic can be changed by acting on the parameters characterizing the
model. In addition, they further compared the efficiency of different containment strategies
for contrasting an epidemic diffusion.

In the process of COVID-19 vaccination, we believe that there is a time delay between
antibody production and antibody disappearance. At present, some scholars have carried
out certain studies on the COVID-19 epidemic model with time-delay. Yang et al. [21]
considered that there were different infection delays among different populations, and es-
tablished two different types of fractional order (Caputo and Caputo-Fabrizio) COVID-19
models with distributed time-delay. Radha et al. [22] investigated the effect of time delay
in immune response based on the 2019 Universal SEIR model for coronavirus (COVID-
19). Chang et al. [23] introduced the factor of policies and regulations with time-delay,
and constructed an SIHRS model of COVID-19 pandemic with impulse and time-delay
under media coverage. In Ref. [24], Zhu et al. obtained a delayed reaction–diffusion model
that more closely approximates the actual spread of COVID-19 when the epidemic had
entered the normalization stage. In Ref. [25], Yang et al. investigated a novel Susceptible-
Exposed-Infected-Quarantined-Recovered (SEIQR) COVID-19 transmission model with
two delays.

Novel coronavirus is a single-stranded plus strand RNA virus that can constantly
mutate during the outbreak and development. A variety of novel coronavirus strains
emerged in different countries and regions around the world. However, more transmissible
and stealthy strains emerged [26], and questions such as the effectiveness and duration of
vaccines become increasingly prominent [27,28]. In 2020, Beta, Lambda, Delta, Gamma,
and other mutant strains emerged in various parts of the world [29], especially the Delta
variant strain, which rapidly spread around the world and caused a new round of COVID-
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19 outbreaks in many countries and regions, posing great challenges to global epidemic
prevention and control [30,31]. More recently, there has been the Omicron variant, which
appeared in several countries around the world [32]. The transmissibility of the virus also
changes depending on the type of the novel coronavirus variant. The Delta variant is
twice as transmissible as the original [33], and the infection rate of the Omicron variant is
much higher than that of the Delta variant [34]. Therefore, considering the vaccination rate,
failure rate, mortality rate, the time of the wide range of antibody failure and secondary
vaccination rate, and discussing the impact of mutated strains of COVID-19, it is of great
significance for epidemic prevention and control.

Therefore, the motivations of this study are as follows: first, different countries have
different epidemic prevention strategies, population development trends and other indica-
tors, and the epidemic prevention and control effects are also different, so it is of practical
significance to study the impact of COVID-19 vaccination rate, failure rate and secondary
vaccination rate on the epidemic prevention and control effects. Second, vaccination rate is
affected by people’s vaccination willingness, so it is of certain significance to study how vac-
cination willingness affects vaccination rate, and then how it affects the vaccination process.
Third, there is a time delay between the generation of antibodies and the disappearance
of antibodies after vaccination, so it is of great significance for epidemic prevention and
control to provide a critical and controllable time for large-scale antibody failure, and also
provides a reference for future booster vaccination cycle. Fourth, the novel coronavirus
continues to mutate, giving rise to multiple mutated strains with higher transmissibility
and mortality, so it is necessary to discuss the ability to cope with mutant strains under
current control strategies. Based on the above questions, this paper studies a dynamic
vaccination process (U-Va-V) for COVID-19 vaccination, and introduces a positive feedback
mechanism for vaccination rate, taking into account the time delay in the process from
antibody generation to large-scale elimination of antibodies. In this paper, a novel dy-
namic differential equation model of COVID-19 vaccination with time delay is established,
and numerical simulations are carried out using MATLAB.

The innovation of this paper are as follows: first, in this paper, our model is established
by rational analysis. Second, we add the corresponding positive feedback mechanism to
construct a dynamically changing vaccination rate in the process of considering the model
parameters. Third, we include time delay regarding vaccine effectiveness and investigate
the effect of critical time delay on the stability of the model. Finally, the model we built is
generalizable within a reasonable range of parameters.

The remaining sections are arranged as follows: In Section 2, we present a time-delay
differential equation for COVID-19 vaccination, taking into account the time for the large-
scale failure of COVID-19 vaccines in the presence of antibodies. In Section 3, we study
the stability of positive equilibrium and the existence of Hopf bifurcation of the system (1).
In Section 4, we calculate the normal form of Hopf bifurcation of the formulated model
by using the multiple time scales method. In Section 5, we perform data analysis on the
parameters in the model and provide simulation results by substituting relevant parameters
to verify the correctness of theoretical analysis. In addition, the critical time for controllable
widespread antibody failure is given, and the influence of COVID-19 vaccination strategies
and COVID-19 mutant strain on the epidemic prevention and control effect is discussed.
Finally, conclusions are given in Section 6.

2. Mathematical Modeling

In Section 2, we will elaborate the model. The modeling in this paper is based on the
dynamic process of COVID-19 vaccination.

First, we divide and explain the research object. When studying the process, we divide
the sample population into three categories: The first type of sample U is an unvaccinated
group, that is, the first type of population U is unvaccinated and does not have antibodies,
which is recorded as unvaccinated population U. We do not consider that a small number of
people have antibodies against COVID-19, so the second type of sample Va is a vaccinated
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group, that is, the second type of population Va is vaccinated and has antibodies, which
is recorded as the vaccinated population Va . The third type of sample V is the vaccine
ineffective group, that is, the third type of population V has been vaccinated, but the
antibody has disappeared, which is recorded as the ineffective population V .

Then, we briefly analyze the role relationship between the groups. Since COVID-19
antibodies have no maternal genetic characteristics, newborn population B is transferred to
unvaccinated population U. Unvaccinated population U can become vaccinated population
Va by being vaccinated against COVID-19. The vaccinated population Va may become
ineffective population V due to the disappearance of antibodies after a period of time,
and the vaccinated population Va can be inoculated with booster injection to prolong the
time of antibody disappearance. Ineffective population V can also become vaccinated
population Va through secondary vaccination with the COVID-19 vaccine. We assume that
there is a vaccinated population Va that may contract COVID-19 but not die. Thus, we
obtain the relationship between three populations (unvaccinated population (U), vaccinated
population (Va), and ineffective population (V), as shown in Figure 1:

Figure 1. Flow chart for the UVaV model.

In Figure 1, U, Va, V represent the sample numbers of unvaccinated, vaccinated and
antibody disappearance, respectively, and parameters B and d represent natural increase of
population and death rate of the samples, respectively; c is mortality rate due to COVID-19;
α represents the secondary vaccination rate from V to Va; γ is the failure rate from Va to
V; a and b are the positive feedback coefficients and basic vaccination rate in the positive
feedback mechanism from U to Va. We need to emphasize that the parameters involved in
Figure 1 are all normal numbers. Finally, it is important to note that there is Va > V in the
vaccinated population.

Next, we analyze the meaning of time-delay τ. For the process from inoculated
population Va to ineffective population V, we analyze the existence of time delay from
two aspects. On the one hand, the novel coronavirus we are working on is very close to
influenza virus, and the half-life of influenza virus antibodies is only about six months [35].
On the other hand, studies have shown that the half-life of antibodies in patients with mild
new coronations is only 36 days [36]. Therefore, it can be concluded that COVID-19 vaccine
is a non-permanent immune vaccine and has the time τ of the wide range of antibody
failure, that is to say, most recipients (γ) will have the situation of antibody disappearance
after the time τ.

Furthermore, we construct a positive feedback mechanism on vaccine effectiveness to
characterize a dynamic COVID-19 vaccination rate. For a vaccination rate from unvacci-
nated population U to vaccinated population Va, we believe that a COVID-19 vaccination
rate is affected by the willingness of the population to vaccinate. Li et al. [37] conducted a
sample survey of patients in a tertiary hospital in a city, and concluded that worry about
the safety and effectiveness of the vaccine was the main reason of the unwillingness for the
vaccination. In Sarwar et al.’s [38] study, a multi-criteria decision-making method known
as an analytical hierarchical method was applied to determine the COVID-19 vaccination
willingness level of the public. The analysis revealed that the determinants of willingness
to uptake the COVID-19 vaccine were individual decision, vaccine origin, adapting to
change, and perceived barriers’ high obstacles to vaccinating. In Liu et al.’s [39] article,
it was shown that free vaccination significantly increased COVID-19 vaccination rates.
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Referring to the literature above, we use the ratio of the current ineffective population V
and the vaccinated population Va to characterize the effectiveness and safety of COVID-19:
a smaller ratio indicates that the vaccine is more effective and safe, whereas a larger ratio
indicates that the vaccine is less effective. Moreover, we denote the influence factor of the
effectiveness and safety of COVID-19 vaccines as a, and the combined influence of factors
includes vaccine source, vaccine cost, and vaccination barriers as b, and we can regard it as
the basic fixed vaccination rate b for a period of time. To sum up, we construct a positive
feedback mechanism for U to Va in the vaccination rate: a(Va−V)

Va
+ b.

Finally, combined with Figure 1, we give the following dynamic model of COVID-19
vaccination:

U̇(t) = B− (c + d)U(t)− aVa(t)−aV(t)
Va(t)

U(t)− bU(t),

V̇a(t) =
aVa(t)−aV(t)

Va(t)
U(t) + bU(t)− dVa(t)− γVa(t− τ) + αV(t),

V̇(t) = γVa(t− τ)− αV(t)− (c + d)V(t).

(1)

where U, Va, V are descriptive variables; B, a, b, c, d, α, γ are parameters; and τ is the
time-delay. The specific definitions are given in Table 1.

Table 1. Descriptions of variables and parameters in the model (1).

Symbol Descriptions

U Number of unvaccinated individuals without antibodies
Va Number of vaccinated individuals who develop antibodies
V Number of vaccinated individuals whose antibodies failed
B Natural increase of population
a Factor affecting vaccine safety and efficacy
d Natural mortality rate
b Basic fixed vaccination rate
c Mortality rate due to COVID-19
α Conversion rate from V to Va, secondary vaccination rate for COVID-19 vaccine
γ The conversion rate from Va to V, the COVID-19 vaccine failure rate
τ The time-delay between antibody production and antibody disappearance

3. Stability Analysis of Equilibrium and Existence of Hopf Bifurcation

In this section, we consider Equation (1) and determine the existence and stability of
the positive equilibrium. We consider the following assumption:

(H1) b(α + c + d) + a(α + c + d− γ) ≥ 0.
When (H1) holds, system (1) has one positive equilibrium P(U∗, V∗a , V∗), where

U∗ =
B

c + d
− B[b(α + c + d) + a(α + c + d− γ)]

(c + d)[(α + c + d)(b + c + d) + a(α + c + d− γ)]
,

V∗a =
(α + c + d)V∗

γ
,

V∗ =
Bγ[b(α + c + d) + a(α + c + d− γ)]

[(α + c + d)(b + c + d) + a(α + c + d− γ)][(c + d)(d + γ) + αd]
.

(2)

We calculate the characteristic equation for equilibrium P(U∗, V∗a , V∗) as follows:

e−λτ
[

A1λ2 + B1λ + C1

]
+ λ3 + D1λ2 + E1λ + F1 = 0, (3)
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where

A1 =γ,

B1 =

(
aU∗γ

V∗a
+ 2cγ + 2dγ + bγ +

aγ(V∗a −V∗)
V∗a

)
,

C1 =

(
c + d + b +

a(V∗a −V∗)
V∗a

)(
aU∗γ

V∗a
+ γc + γd

)
− aU∗γ

V∗a

(
a(V∗a −V∗)

V∗a
+ b
)

,

D1 =

(
2c + 3d + b + α +

a(V∗a −V∗)
V∗a

− aU∗V∗

(V∗a )
2

)
,

E1 =

(
c + d + b +

a(V∗a −V∗)
V∗a

)(
2d− aU∗V∗

(V∗a )
2 + α + c

)
+

(
d− aU∗V∗

(V∗a )
2

)
(α + c + d)

−
(

a(V∗a −V∗)
V∗a

+ b
)(

aU∗V∗

(V∗a )
2

)
,

F1 =

(
d− aU∗V∗

(V∗a )
2

)
(α + c + d)

(
c + d + b +

a(V∗a −V∗)
V∗a

)

−
(

a(V∗a −V∗)
V∗a

+ b
)[

aU∗V∗

(V∗a )
2 (α + c + d)

]
,

with U∗, V∗a , V∗ are given in Equation (2).
When τ = 0, Equation (3) becomes

λ3 + a1λ2 + a2λ + a3 = 0, (4)

where

a1 =− aU∗V∗

(V∗a )
2 + γ + 3d + 2c + b +

a(V∗a −V∗)
V∗a

+ α,

a2 =γ

(
aU∗

V∗a
− α

)
+

(
− aU∗V∗

(V∗a )
2 + 2d + α + c + γ

)(
c + d + b +

a(V∗a −V∗)
V∗a

)

− aU∗V∗

(V∗a )
2

(
a(V∗a −V∗)

V∗a
+ b
)
+ (α + c + d)

(
d + γ− aV∗U∗

(V∗a )
2

)
,

a3 =

(
c + d + b +

a(V∗a −V∗)
V∗a

)[
(α + c + d)

(
d + γ− aU∗V∗

(V∗a )
2

)
+ γ

(
aU∗

V∗a
− α

)]

−
(

a(V∗a −V∗)
V∗a

+ b
)[

aγU∗

V∗a
+

aU∗V∗

(V∗a )
2 (α + c + d)

]
.

According to the Routh–Hurwitz criterion, we consider the following assumption:
(H2) a1 > 0, a3 > 0, a1a2 − a3 > 0.
When (H2) holds, all the roots of Equation (4) have negative real parts, and the

equilibrium P(U∗, V∗a , V∗) is locally asymptotically stable when τ = 0.
When τ > 0, let λ = iω (ω > 0) be a root of Equation (3). Substituting λ = iω (ω > 0)

into Equation (3) and separating the real and imaginary parts, we have:{
ω2D1 − F1 = −ω2 A1 cos(ωτ) + C1 cos(ωτ) + ωB1 sin(ωτ),

ω3 − E1ω = ωB1 cos(ωτ) + ω2 A1 sin(ωτ)− C1 sin(ωτ).
(5)
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Equation (5) leads to 
cos(ωτ) = m2ω3+D1m1ω2−E1m2ω−F1m1

γ(m2
1+m2

2)
,

sin(ωτ) = −m1ω3+D1m2w2+E1m1ω−F1m2
γ(m2

1+m2
2)

,
(6)

where m1 = −A1ω2+C1
γ and m2 = B1ω

γ .
Adding the square of two equations of Equation (5) , and let ω2 = z, we can obtain

h(z) = z3 + c2z2 + c1z + c0, (7)

where c2 =
(

D2
1 − 2E1 − A2

1
)
, c1 = −

(
2F1D1 − 2A1C1 + B2

1 − E2
1
)
, c0 = F2

1 − C2
1 .

We calculate the derivative of h(z) to obtain h′(z) = 3z2 + 2c2z + c1. When ∆ =

4(c2)
2 − 12c1 > 0, and letting z̃1, z̃2 be the root of h′(z) = 3z2 + 2c2z + c1 = 0, suppose

z̃1 < z̃2, thus z̃1 =
−2c2+

√
c2

2−3c1
3 and z̃2 =

−2c2−
√

c2
2−3c1

3 .
Therefore, we give the following assumptions:
(H3) c0 < 0, and satisfies ∆ ≤ 0 or c1 ≤ 0 or c2 ≥ 0 or h(z̃1) · h(z̃2) ≥ 0.
If (H3) holds, then Equation (7) has only one positive root z1.
(H4) c0 > 0, ∆ > 0, c1 > 0, c2 < 0, h(z̃2) < 0 or c0 > 0, ∆ > 0, c1 < 0, h(z̃2) < 0.
If (H4) holds, then Equation (7) has two positive roots z2 and z3.
(H5) c0 < 0, ∆ > 0, c1 > 0, c2 < 0, h(z̃1) · h(z̃2) < 0.
If (H5) holds, then Equation (7) has three positive roots z4, z5 and z6.
In general, substituting ωk =

√
zk (k = 1, 2, · · ·, 6) into Equation (6), we obtain

τ
(j)
k =

{
1

ωk
[arccos(Pk) + 2jπ], Qk ≥ 0,

1
ωk
[2π − arccos(Pk) + 2jπ], Qk < 0, k = 1, 2, · · ·, 6; j = 0, 1, 2, · · · ,

(8)

where

Qk = sin(ωkτ
(j)
k ) =

−m1ω3
k + D1m2w2

k + E1m1ωk − F1m2

γ
(
m2

1 + m2
2
) ,

Pk = cos(ωkτ
(j)
k ) =

m2ω3
k + D1m1w2

k − E1m2ωk − F1m1

γ
(
m2

1 + m2
2
) .

We discuss the number of positive roots of Equation (7) of the characteristic equation
based on the above, and thus synthesize the following Lemma:

Lemma 1. If (H3) or (H4) or (H5) holds, then Equation (3) has a pair of pure imaginary roots
±iωk when τ = τ

(j)
k (k = 1, 2, · · ·, 6; j = 0, 1, 2, · · · ), and all the other roots of Equation (3) have

nonzero real parts.

Furthermore, let λ(τ) = α(τ) + iω(τ) be the root of Equation (3) satisfying α(τ
(j)
k ) = 0,

ω(τ
(j)
k ) = ωk (k = 1, 2, · · ·, 6; j = 0, 1, 2, · · · ). Then, we consider the

transversality condition.
Next, we derive both sides of the characteristic Equation (3) with respect to τ and

solve for

Re(
dτ

dλ
) =

3z2 + 2c2z + c1

B2
1z + (C1 − A1z)2 .

which gives us Re(dλ
dτ )
−1 = Re( dτ

dλ ) . Then, we have the following Lemma:
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Lemma 2. If (H3) or (H4) or (H5) holds, and zk = ω2
k , h′(zk) 6= 0, then we have the following

transversality conclusions:

Re(
dλ

dτ
)
−1
∣∣∣∣∣
τ=τ

(k)
j

= Re(
dτ

dλ
)

∣∣∣∣
τ=τ

(k)
j

=
h′(zk)

B2
1zk + (C1 − A1zk)

2 6= 0.

where k = 1, 2, · · ·, 6; j = 0, 1, 2, · · · and A1, B1 and C1 are given in Equation (3).

Based on the above conclusions, Lemmas 1 and 2, we obtain the following Theorem:

Theorem 1. Based on the assumptions (H1) and (H2) hold, we show the conclusion associated
with the equilibrium P(U∗, V∗a , V∗) of the system (1). If one of three assumptions (H3), (H4),
and (H5) holds, the equilibrium of system (1) undergoes the Hopf bifurcation at τ = τ

(j)
k (k =

1, 2, · · ·, 6; j = 0, 1, 2, · · · ), where τ
(j)
k is given by Equation (8), and

(1) If the assumptions (H1) and (H2) and (H3) hold, h(z) has one positive root, then, when
τ ∈ [0, τ

(0)
1 ), the equilibrium P(U∗, V∗a , V∗) is locally asymptotically stable, and the equilibrium

P(U∗, V∗a , V∗) is unstable when τ > τ
(0)
1 .

(2) If the assumptions (H1) and (H2) and (H4) hold, h(z) has two positive roots, we suppose
z2 < z3, then h′(z2) < 0, h′(z3) > 0, note that τ

(0)
2 > τ

(0)
3 . Then, there exists m ∈ N such

that 0 < τ
(0)
3 < τ

(0)
2 < τ

(1)
3 < τ

(1)
2 < · · · < τ

(m−1)
2 < τ

(m)
3 < τ

(m+1)
3 . When τ ∈ [0, τ

(0)
3 ) ∪

m⋃
l=1

(τ
(l−1)
2 , τ

(l)
3 ), the equilibrium P(U∗, V∗a , V∗) of the system (1) is locally asymptotically stable,

and, when τ ∈
m−1⋃
l=0

(τ
(l)
3 , τ

(l)
2 ) ∪ (τ

(m)
3 ,+∞), the equilibrium P(U∗, V∗a , V∗) is unstable.

(3) If the assumptions (H1) and (H2) and (H5) hold, h(z) has three positive roots, and
system (1) will generate stability switches similar to the above case (2).

4. Normal Form of Hopf Bifurcation

In this section, we calculate the normal form of Hopf bifurcation for the system (1)
by using the multiple time scales method. In this paper, τ is the time delay between
vaccination and vaccine failure, which has an important influence on model stability. Thus,
we choose the time-delay τ as a bifurcation parameter, denoting τ = τc + ετε, where τc is
the critical value of Hopf bifurcation give in Equation (8), τε is the disturbance parameter,
and ε is the dimensionless scale parameter. Note that, when τ = τc, the characteristic
Equation (3) has eigenvalue λ = iω, and system (1) undergoes a Hopf bifurcation near
equilibrium P(U∗, V∗a , V∗).

The system (1) can be written as Ẋ(t) = AX(t) + BX(t− τ) + F(X(t), X(t− τ)), and
let t→ t/τ, thus obtaining system (9):

Ẋ = τAX + BτX(t− 1) + τF(X, X(t− 1)). (9)

where A :=
(
aij
)

3×3 =


aV∗
V∗a
− a− b− c− d − aV∗U∗

(V∗a )
2

aU∗
V∗a

a + b− aV∗
V∗a

aU∗V∗

(V∗a )
2 − d α− aU∗

V∗a
0 0 −(α + c + d)

,

B =

0 0 0
0 −γ 0
0 γ 0

,
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F(X(t), X(t− τ)) :=

 FU
FVa

FV



=


−V∗UVa

(V∗a )
2 + aUV

V∗a
− aU∗VaV

(V∗a )
2 + aV∗U∗V2

a
(V∗a )

3 −
aV∗U∗V3

a
(V∗a )

4 + aV∗UV2
a

(V∗a )
3 + aU∗VV2

a
(V∗a )

3 − aUVaV
(V∗a )

2

V∗UVa
(V∗a )

2 − aUV
V∗a

+ aU∗VaV
(V∗a )

2 −
aV∗U∗V2

a
(V∗a )

3 + aV∗U∗V3
a

(V∗a )
4 −

aV∗UV2
a

(V∗a )
3 −

aU∗VV2
a

(V∗a )
3 + aUVaV

(V∗a )
2

0

.

We suppose h and h∗ are the eigenvector of the corresponding eigenvalue λ =
iωτc, λ = −iωτc, respectively, of system (1) for equilibrium P, and satisfies 〈h∗, h〉 =

(h∗)T · h = 1. By simple calculation, we can obtain:

h :=

 h1
h2
h3

 =


(

iω+

(
d− aV∗U∗

(V∗a )2

)
τc+γe−iωτc

)
(iω+(α+c+d)τc)+

(
aU∗
V∗a
−α
)

γτ2
c e−iω

γe−iω
(

a+b− aV∗
V∗a

)
τ2

c

iω+(α+c+d)τc
γe−iωτc

1

,

h∗ :=

 h∗1
h∗2
h∗3

 = d1


1

iω−
(

a+b+c+d− aV∗
V∗a

)
τc(

aV∗
V∗a
−a−b

)
τc(

aU∗
V∗a
−α
)(

iω−
(

a+b+c+d− aV∗
V∗a

)
τc

)
− aU∗τ2

c
V∗a

(
aV∗
V∗a
−a−b

)
(iω−(α+c+d)τc)

(
aV∗
V∗a
−a−b

)
τc

,

(10)

where

λ = iωτc,

d1 =
(λ− (α + c + d)τc)

(
aV∗
V∗a
− a− b

)
γeλτc

v1 + v2 + v3 + v4
,

v1 =

(
−2λ +

(
a + b + c + 2d− aV∗U∗

(V∗a )
2 −

aV∗

V∗a

)
τc + γeλ

)
(λ− (α + c + d)τc)

2,

v2 = γτceλ

(
α− aU∗

V∗a

)
(λ− (α + c + d)τc),

v3 = γeλ

(
aU∗

V∗a
− α

)(
λ−

(
a + b + c + d− aV∗

V∗a

)
τc

)
,

v4 = − aU∗τ2
c γeλ

V∗a

(
aV∗

V∗a
− a− b

)
.

We suppose the solution of system (4.1) as follows:

X(t) = X(T0, T1, T2, · · ·) =
∞

∑
k=1

εkXk(T0, T1, T2, · · ·). (11)

The derivative with respect to t is transformed into:

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · · = D0 + εD1 + ε2D2 + · · ·,

where Di =
∂

∂Ti
, i = 0,1,2· · ·.
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Note that

Xi = (Ui, Vai , Vi)
T = Xi

(
t, εt, ε2t, · · ·

)
,

Xi1 = (Ui1, Vai1 , Vi1)
T = Xi

(
t− 1, εt, ε2t, · · ·

)
, i = 1, 2, · · ·.

Then, we can obtain:

Ẋ(t) = εD0X1 + ε2D1X1 + ε3D2X1 + ε2D0X2 + ε3D1X2 + ε3D0X3 + · · ·. (12)

By Taylor expansion of X(t− 1) at Xi
(
t− 1, εt, ε2t, · · ·

)
, we obtain that

X(t− 1) = εX11 + ε2(X21 − D1X11) + ε3(X31 − D1X21 − D2X11) + · · ·, (13)

where Xi1 = Xi(T0 − 1, T1, T2, · · ·), i = 1, 2, 3, · · ·.
We consider that τ is the bifurcation parameter, and we set τ = τc + ετε, where τ

(j)
k is

the critical value of the Hopf bifurcation, τε is the perturbation parameter, and ε is the di-
mensionless parameter. Substituting Equations (11)–(13) into Equation (9), and comparing
the coefficients before ε, we obtain the following equation:

D0U1 − τc(a11U1 + a12Va1 + a13V1) = 0,
D0Va1 − τc(a21U1 + a22Va1 + a23V1) + τcVa11 γ = 0,
D0V1 − τca33V1 − τcVa11 γ = 0.

(14)

Then, we have the solution of Equation (14):

X1(T1, T2, T3, · · ·) = G(T1, T2, T3, · · ·)eiωτcT0 h + G(T1, T2, T3, · · ·)e−iωτcT0 h. (15)

where h is given in Equation (10).
The expression of the coefficient before ε2 is as follows:

D0U2 − τc(a11U2 + a12Va2 + a13V2)

=− D1U1 + τε(a11U1 + a12Va1 + a13V1)−
V∗

(V∗a )
2 U1Va1 τc

+
a

V∗a
U1V1τc −

aU∗

(V∗a )
2 Va1 V1τc +

aV∗U∗

(V∗a )
3 V2

a1
τc,

D0Va2 − τc(a21U2 + a22Va2 + a23V2) + τcVa21 γ

=− D1Va1 + τc

(
V∗U1Va1

(V∗a )
2 − aU1V1

V∗a
+

aU∗Va1 V1

(V∗a )
2 −

aV∗U∗V2
a1

(V∗a )
3 + γD1Va11

)
+ τε(a21U1 + a22Va1 + a23V1 − γVa11),

D0U2 − τca33V2 − τcγVa21 = −D1V1 + τεa33V1 − τcγD1Va11 + τεγVa11 .

(16)

Substituting Equation (15) into the right-hand side of Equation (16), the coefficient
vector of eiωT0 is denoted by m3. According to the solvability condition, the expression of
∂G
∂T1

can be obtained as follows:
∂G
∂T1

= KτεG, (17)

where K =
a11h1h∗1+a12h2h∗1+a13h3h∗1+a21h1h∗2+a22h2h∗2+a23h3h∗2−γe−iωτc h2h∗2+a33h3h∗3+γe−iωτc h2h∗3

1+γτc(h2h∗3−h2h∗2)e−iωτc
.
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τε is a small disturbance parameter, and it has little effect on the high order. Thus,
we only consider its effect on the linear part. We suppose the solution of Equation (16) is
as follows:

U2 = g1e2iωτcT0 G2 + g1e−2iωτcT0 G2
+ l1GG,

Va2 = g2e2iωτcT0 G2
+ g2e−2iωτcT0 G2

+ l2GG,

V2 = g3e2iωτcT0 G2 + g3e−2iωτcT0 G2
+ l3GG.

(18)

Substituting Equation (18) into Equation (16), we obtain: g1
g2
g3

 =
A∗2
|A2|

 y1
1

y1
2

y1
3

,

 l1
l2
l3

 =
A∗3
|A3|

 y2
1

y2
2

y2
3

, (19)

where

y1
1 = − V∗

(V∗a )
2 h1h2 +

a
V∗a

h1h3 −
aU∗

(V∗a )
2 h2h3 +

aV∗U∗

(V∗a )
3 h2

1,

y1
2 =

V∗

(V∗a )
2 h1h2 −

a
V∗a

h1h3 +
aU∗

(V∗a )
2 h2h3 −

aV∗U∗

(V∗a )
3 h2

1,

y1
3 = 0.

y2
1 =

V∗

(V∗a )
2

(
h1h2 + h1h2

)
− a

V∗a

(
h1h3 + h1h3

)
+

aU∗

(V∗a )
2

(
h2h3 + h2h3

)
− 2aV∗U∗

(V∗a )
3 h1h1,

y2
2 = − V∗

(V∗a )
2

(
h1h2 + h1h2

)
+

a
V∗a

(
h1h3 + h1h3

)
− aU∗

(V∗a )
2

(
h2h3 + h2h3

)
+

2aV∗U∗

(V∗a )
3 h1h1,

y2
3 = 0.

Ak =

xk
11 xk

12 xk
13

xk
21 xk

22 xk
23

xk
31 xk

32 xk
33


A∗k =

 xk
22xk

33 − xk
32xk

23 −xk
21xk

33 + xk
31xk

23 xk
21xk

32 − xk
31xk

22
−xk

12xk
33 + xk

32xk
13 xk

11xk
33 − xk

31xk
13 −xk

11xk
32 + xk

31xk
12

xk
12xk

23 − xk
22xk

13 −xk
11xk

23 + xk
21xk

13 xk
11xk

22 − xk
21xk

12


|Ak| = xk

11

(
xk

22xk
33 − xk

32xk
23

)
− xk

12

(
xk

21xk
33 − xk

31xk
23

)
+ xk

13

(
xk

21xk
32 − xk

31xk
22

)
, k = 1, 2, 3.

with

x1
11 = a + b + c + d− aV∗

V∗a
+ iω, x1

12 =
aV∗U∗

(V∗a )
2 , x1

13 = − aU∗

V∗a
,

x1
21 =

aV∗

V∗a
− a− b, x1

22 = d− aV∗U∗

(V∗a )
2 + iω + γe−iωτc , x1

23 =
aU∗

V∗a
− α,

x1
31 = 0, x1

32 = −γe−iωτc , x1
33 = α + c + d + iω,

x2
11 = a + b + c + d− aV∗

V∗a
+ 2iω, x2

12 =
aV∗U∗

(V∗a )
2 , x2

13 = − aU∗

V∗a
,

x2
21 =

aV∗

V∗a
− a− b, x2

22 = d− aV∗U∗

(V∗a )
2 + 2iω + γe−2iωτc , x2

23 =
aU∗

V∗a
− α,
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x2
31 = 0, x2

32 = −γe−2iωτc , x2
33 = α + c + d + 2iω,

x3
11 =

aV∗

V∗a
− a− b− c− d, x3

12 = − aV∗U∗

(V∗a )
2 , x3

13 =
aU∗

V∗a
,

x3
21 = a + b− aV∗

V∗a
, x3

22 =
aV∗U∗

(V∗a )
2 − d− γ, x3

23 = α− aU∗

V∗a
,

x3
31 = 0, x3

32 = γ, x3
33 = −α− c− d.

The expression of the coefficient before ε3 is:

D0U3 − τc(a11U3 + a12Va3 + a13V3)

=− D1U2D2U1 + τε(a11U2 + a12Va2 + a13V2)−
V∗

(V∗a )
2 (U1Va1 τε + U1Va2 τc + U2Va1 τc)

+
a

V∗a
(U1V1τε + U1V2τc + U2V1τc)−

aU∗

(V∗a )
2 (Va1 V1τε + Va1 V2τc + Va2 V1τc)−

aV∗U∗

(V∗a )
4 V3

a1
τc

+
aV∗U∗

(V∗a )
3

(
V2

a1
τε + 2Va1 Va2 τc

)
+

aV∗

(V∗a )
3 U1V2

a1
τc +

aU∗

(V∗a )
3 V2

a1
V1τc −

a

(V∗a )
2 U1Va1 V1τc,

D0Va3 − τc(a21U3 + a22Va3 + a23V3) + τcVa31 γ

=− D1Va2 − D2Va1 + τε(a21U2 + a22Va2 + a23V2) +
V∗

(V∗a )
2 (U1Va1 τε + U1Va2 τc + U2Va1 τc)

− a
V∗a

(U1V1τε + U1V2τc + U2V1τc) +
aU∗

(V∗a )
2 (Va1 V1τε + Va1 V2τc + Va2 V1τc) +

aV∗U∗

(V∗a )
4 V3

a1
τc

− aV∗U∗

(V∗a )
3

(
V2

a1
τε + 2Va1 Va2 τc

)
− aV∗

(V∗a )
3 U1V2

a1
τc −

aU∗

(V∗a )
3 V2

a1
V1τc +

a

(V∗a )
2 U1Va1 V1τc

+ τcγD1Va21 + τcγD2Va11 − τεγ(Va21 − D1Va11),

D0V3 − τca33V3 − τcγVa31

=− D1V2D2V1 + τεa33V2 − τcγ(D1Va21 + D2Va11) + τεγ(Va21 − D1Va11).

(20)

Substituting Equations (15), (18) and (19) into the right-hand side of Equation (20),
and m4 denotes the coefficient vector of eiωT0 . According to the solvability condition
〈h∗, m4〉 = 0 , and noting that τ2

ε is small enough for small unfolding parameter τε, we
ignore the term τ2

ε G. Then, we have:

∂G
∂T2

= HG2G, (21)

where

H =
τc

(
h∗1 − h∗2

)
∑4

i=1 Hi

1 + τcγe−iωτc h2

(
h∗3 − h∗2

) ,

H1 = − V∗

(V∗a )
2

(
h1l2 + g2h1 + h2l1 + h2G

)
+

a
V∗a

(
h1l3 + h1g3 + h3l1 + h3G

)
,

H2 = − aU∗

(V∗a )
2

(
h2l3 + h2g3 + h3l2 + h3g2

)
+

2aV∗U∗

(V∗a )
3

(
h2l2 + h2g2

)
,

H3 = −3aV∗U∗

(V∗a )
4 h2

2h2 +
aV∗

(V∗a )
3

(
2h1h2h2 + h1h2

2

)
,

H4 =
aU∗

(V∗a )
3

(
2h2h2h3 + h2

2h3

)
− a

(V∗a )
2

(
h1h2h3 + h1h2h3 + h1h2h3

)
,
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where gk ( k = 1, 2, 3 ) and lk ( k = 1, 2, 3 ) are given in Equation (19), and hj ( j = 1, 2, 3 )
and h∗j ( j = 1, 2, 3 ) are given in Equation (10).

Letting G 7→ (G/ε), we can obtain the normal form of Hopf bifurcation of system (1) as:

Ġ = KτεG + HG2G, (22)

where K is given in Equation (17), and H is given in Equation (21).
Letting G = reiθ and substituting it into Equation (22), and we can obtain the normal

form of the Hopf bifurcation in polar coordinates:{
ṙ = Re(K)τεr + Re(H)r3,
θ̇ = Im(K)τε + Im(H)r2,

(23)

where K is expressed in Equation (17), and H is expressed in Equation (21).
According to the normal form of the Hopf bifurcation by polar coordinates, we just

need to consider the first equation by system (23). Thus, there is the following theorem:

Theorem 2. For system (23), when Re(K)τε

Re(H)
< 0, there is a nontrivial fixed point r =√

−Re(K)τε

Re(H)
< 0, and system (1) has periodic solution:

(1) If Re(K)τε < 0, then the periodic solution reduced on the center manifold is unstable.
(2) If Re(K)τε > 0, then the periodic solution reduced on the center manifold is stable.

5. Numerical Simulations

In this section, since different countries have different prevention and control strategies
and basic national conditions, there are some differences in the parameters values taken
in the corresponding models. We will complete the numerical simulations in two parts:
the first part is the parameters analysis to estimate the required parameters range in the
model and select two sets of parameters values within a reasonable parameters range;
the second part is the numerical simulations and parameters discussion, using the two
sets of reasonable parameters selected in the first part as an example and MATLAB for
numerical simulations. In addition, based on the COVID-19 variant strains, the effect of
each parameter on the critical time τ

(0)
1 is discussed.

5.1. Parameter Analysis

In this part, we estimate some parameters used in numerical simulations to make
them closer to the actual parameters. Then, we give estimates of natural birth rate Br,
disease-related death rate c, and natural death rate d. At the same time, we also made some
reasonable assumptions about the large range of failure rate γ, the weight factor a, the fixed
vaccination rate b, and the secondary vaccination rate α.

First, for the natural birth rate, we select the natural birth rate of some countries in a
certain year of Central Intelligence Agency (CIA) as the study data, and after excluding the
outliers, we analyze the range of natural birth rate values roughly: Br ∈ (0.770, 1.250). Then,
from the perspective of time change, we specifically analyze the change of natural birth
rate Br in China in recent years by using the data from the National Bureau of Statistics of
the People’s Republic of China (NBSPRC) as an example, and obtain that its mean value is
within a reasonable interval. Analyze the world natural birth rate Br from two dimensions
of region and time. Finally, we consider the population base as unit 1, and the natural
increase of population B and the natural birth rate Br are numerically equal. Thus, the birth
rate B = 1.120% is selected as the simulations parameter.

Second, for COVID-19 disease-related mortality c, we select the data of Johns Hopkins
University (https://coronavirus.jhu.edu/map.html, accessed on 12 December 2021) to
observe the mortality due to illness, and then we find that different countries have large
fluctuations. Therefore, we select some representative countries in a balanced way and
analyze the value range of disease-related mortality c. Here, the data mean is used as the

https://coronavirus.jhu.edu/map.html
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parameters in the next section, and the disease-related mortality c = 4.6550% is obtained
with general significance. It is important to note that the model applies equally to other
reasonable values of the parameter c.

Next, as for the natural mortality rate d, the natural mortality rate of a country can
be influenced by many aspects and varies greatly from country to country in practice.
Therefore, when analyzing the natural mortality rate d, we select data from different
countries in a balanced way for the analysis, and we take the data from the Intelligent
Data Platform (https://mobile.hellobi.com, accessed on 14 December 2021) as an example,
and excluding the abnormal mortality data in that year, we consider a reasonable interval
for the natural mortality rate d: d ∈ (4.5500, 14.5000). For a better fit, the birth rate Br refers
to the data from National Bureau of Statistics of the People’s Republic of China (NBSPRC),
so the mortality rate is also selected partially from NBSPRC, as shown in Figure 2. Due
to the large range of intervals, we select d = 0.6904% and d = 1.4170% for subsequent
numerical simulations.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Years
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6.95

7

7.05

7.1

7.15

7.2

Figure 2. Annual natural mortality d in a low mortality country.

Finally, for parameters without numerical support, we select parameters values in
the way of reasonable assumptions to carry out numerical simulations in the next section.
In this model, for other assumed parameters, the model has stability and can give the
model conclusion under reasonable parameters.

For large-range failure rate γ, the large-range is a catch-all term. Here, we believe
that a failure rate greater than 0.5 and less than 1 is identified as a large-scale failure rate.
In the future numerical simulations, we will take the vicinity of γ = 0.67 as an example
for simulations.

As for the impact factor a and the fixed vaccination rate b, the values of a and b are
greatly influenced by personal subjective consciousness and are also related to the publicity
and encouragement policies of a country or region, but the relationship between a and b
should be guaranteed: a + b ≤ 1. In the following simulations, we take both a and b near
0.5 as an example.

For the secondary vaccination rate α, we can make assumptions, the significance
of which is to study the epidemic prevention and control effects under different sec-
ondary vaccination rate α. In the simulations, we take α near 0.9 as an example for
numerical simulations.

In summary, the two groups of parameters used in the simulations results in the next
section are as follows:

I : B = 0.0112, d = 0.0069, c = 0.04655, γ = 0.675, a = 0.49, b = 0.5, α = 0.9.
I I : B = 0.0112, d = 0.01417, c = 0.04655, γ = 0.685, a = 0.49, b = 0.5, α = 0.92.

https://mobile.hellobi.com


Mathematics 2022, 10, 1583 15 of 24

5.2. Numerical Simulation Results

In this section, we take the two groups of parameters given in Section 5.1 as examples
for numerical simulations, and analyze the epidemic prevention and control effects in the
sense of this group of parameters, and then provide a critical time τ

(0)
1 for controllable

widespread antibody failure, which provides a reference for the inoculation time of booster
injection. In order to explore the effect of different epidemic prevention and control
measures, we discuss the influence of fixed vaccination rate b, secondary vaccination
rate α and failure rate γ on the critical time τ

(0)
1 of controllable widespread antibody

failure. Finally, considering the frequent mutation of COVID-19 virus, we analyze the
impact on epidemic prevention and control from the disease-related mortality rate c of the
mutated strains.

For the first group parameters I:

B = 0.0112, d = 0.0069, c = 0.04655, γ = 0.675, a = 0.49, b = 0.5, α = 0.9.

Obviously, the assumption (H1) holds, system (1) only has one nonnegative equi-
librium P. After calculation, the assumption (H2) holds. Thus, the equilibrium P =
(U∗, V∗a , V∗) ≈ (0.016079, 0.231125, 0.163626) is locally asymptotically stable when τ = 0.

Using MATLAB, we can obtain ω0 = 0.005233, Q0 ≈ 0.225625, P0 ≈ 0.947214, τ
(0)
1 ≈

38.2901 by plugging parameters group I into Equations (6)–(8). According to Theorem 1,
the equilibrium P is locally asymptotically stable at τ ∈ [0, τ

(0)
1 ), and the Hopf bifurcation

occurs near the equilibrium P when τ = τ
(0)
1 . Then, we obtain Re(K) > 0, Re(H) < 0 from

Equations (17) and (21). Thus, according to Theorem 2, the system (1) has forward periodic
solution and the bifurcating periodic solution is stable when τε > 0.

When τ=0, we choose the initial value (0.02,0.2,0.2) and the equilibrium P of system (1)
is locally asymptotically stable (see Figure 3).

When τ = 6 ∈
(

0, τ
(0)
1

)
, we choose initial values (0.015, 0.12, 0.2), and the equilibrium

P of system (1) is locally asymptotically stable (see Figure 4).
When τ = 38.4 > τ

(0)
1 = 38.2901 is near τ

(0)
1 , we choose initial values (0.012, 0.232, 0.162),

and system (1) has stable forward periodic solution near the equilibrium P (see Figure 5).
It can be seen from Figures 3–5, and the equilibrium P of system (1) is locally asymp-

totically stable when τ ∈ [0, τ
(0)
1 ) as shown in Figures 3 and 4. The periodic solution of

system (1) near equilibrium P is stable when τ is near τ
(0)
1 as shown in Figure 5. The equi-

librium P of system (1) is unstable when τ ∈ (τ
(0)
1 ,+∞).
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Figure 3. When τ = 0, the equilibrium P of system (1) is locally asymptotically stable.
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Figure 4. When τ = 4, the equilibrium P of system (1) is locally asymptotically stable.

Figure 5. When τ = 38.4, the periodic solution of system (1) near equilibrium P is stable.

Remark 1. Under the first group parameters I, it can be found by numerical simulations that
the time τ = 0 of the wide range of antibody failure, that is, most people produce antibodies after
vaccination and lose them in a short time. As the secondary vaccination rate α in the parameter
is ideal, system (1) at this time is also stable, and the epidemic can be maintained even when the
vaccine cost is high. When τ ∈ [0, τ

(0)
1 ), the shorter the time τ of the wide range of antibody failure

is, the faster the antibody tends to stabilize, which also indicates that the number of secondary
vaccinations is bigger, and the cost of controlling the epidemic is higher, but finally stabilizes near
the equilibrium P. When τ > τ

(0)
1 is near τ

(0)
1 , the time τ of the wide range of antibody failure will

change in a small range, and the antibody presence level will also show periodic changes. At this time,
the epidemic prevention and control effect are controllable. When τ ∈ (τ

(0)
1 ,+∞), the antibody

distribution level cannot be controlled effectively. The fluctuation range of antibody distribution
increases with the increase of time. According to the actual situation, the effectiveness of vaccines
will have a certain period of time; generally, there is no permanent effective situation. Therefore,
the time τ of a wide range of antibody failure is finite. Although there are periods when the antibody
level is ideal, there are also periods when the antibody level is low. In this case, the antibody level
cannot be controlled to be stable, and the low antibody level may lead to the outbreak of the epidemic,
and the epidemic prevention and control effect are not ideal. Based on the above analysis, we can
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conclude that the optimal time τ
(0)
1 = 38.2901 of controllable widespread antibody failure, which

provides a reference for the second vaccination time of COVID-19 vaccine in medicine.
Next, we consider a group of parameters with higher mortality. In order to compare with the

first group parameters I, we also idealize the secondary vaccination rate α, and select the secondary
vaccination rate α under the future vaccination level. For the second group parameters I I:

B = 0.01231, d = 0.01417, c = 0.04655, γ = 0.685, a = 0.49, b = 0.5, α = 0.92.

Obviously, the assumption (H1) holds, substituting these parameters values into Equation (2),
we obtain that system (1) only has one nonnegative equilibrium P = (U∗, V∗a , V∗) ≈ (0.017375,
0.198918, 0.138938). After calculation, the assumption f

¯
(H2) holds. Thus, the equilibrium P is

locally asymptotically stable when τ = 0.

When τ = 0, we choose the initial values (0.01, 0.1, 0.2), and the equilibrium P of
system (1) is locally asymptotically stable (see Figure 6).
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Figure 6. When τ=0, the equilibrium P of system (1) is locally asymptotically stable.

Substituting these parameters’ values into Equation (7), we obtain c0 ≈ −0.000081, c1 ≈
0.254617, c2 ≈ 1.033500. By derivation of Equation (7), ∆ ≈ 1.217044, z̃1 ≈ −0.505131, z̃2 ≈
−0.872863, we further calculate h(z̃1) ≈ 0.006119, h(z̃2) ≈ −0.099943. It satisfies as-
sumption (H4). Using MATLAB, according to Equations (7) and (8), we obtain ω1 ≈
0.017865, Q0 ≈ 0.62373, P0 ≈ 0.78164, τ

(0)
1 ≈ 35.2992.

Thus, according to Theorem 1, the equilibrium P is locally asymptotically stable when
τ ∈ [0, τ

(0)
1 ), and the Hopf bifurcation occurs near the equilibrium P when τ

(0)
1 . According

to Equation (17), Equation (21), and Theorem 2, we conclude that Re(K) > 0, Re(H) < 0;
thus, system (1) has a forward periodic solution and the bifurcating periodic solution is
stable when τε > 0.

When τ = 6 ∈ [0, τ
(0)
1 ), we choose the initial value (0.01, 0.2, 0.2), and the equilibrium

P of system (1) is locally asymptotically stable (see Figure 7).
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Figure 7. When τ = 6, the equilibrium P of system (1) is locally asymptotically stable.

When τ = 35.5 > τ
(0)
1 = 35.2992, we choose the initial value (0.01, 0.2, 0.15), the

model (1) has a stable forward periodic solution near the equilibrium P (see Figure 8).

Figure 8. When τ = 35.5, the periodic solution of system (1) near equilibrium P is stable.

It can be seen from Figures 6–8, the equilibrium P of system (1) is locally asymptotically
stable as shown in Figures 6 and 7. The equilibrium P of system (1) is unstable when
τ ∈ (τ

(0)
1 ,+∞). The equilibrium P of system (1) exhibits periodic fluctuation and bifurcates

stable periodic solutions when τ approaches the critical time τ
(0)
1 as shown in Figure 8.

With the increase of τ, the fluctuation tendency of the system (1) at the same time level
also increases.

Remark 2. According to the above numerical simulations, it can be found that, when the time
τ < τ

(0)
1 of the wide range of antibody failure, it will eventually stabilize to the same antibody

presence level after a certain time. According to our analysis, the smaller the time delay τ is,
the faster it tends to be stable. However, according to the actual situation, the smaller the failure
time is, the more total inoculated doses will increase, resulting in the increase of epidemic prevention
cost, and ultimately maintain the same epidemic effect. Therefore, the ideal situation of epidemic
prevention and control is that antibody levels are stable and controllable, the validity of vaccines is
longer, and the cost of epidemic prevention can be saved and the cost of epidemic prevention can be
reduced. When τ ∈ (τ

(0)
1 ,+∞) and τ varies in a small range near τ

(0)
1 , the antibody levels will

show periodic changes, but the overall situation of epidemic prevention and control is roughly stable.
When τ > τ

(0)
1 , the antibody presence level is high and low, and epidemic prevention and control is

uncertain, which may lead to the outbreak of epidemic at the low antibody presence level.



Mathematics 2022, 10, 1583 19 of 24

Remark 3. In the process of numerical simulations, we take the first group parameters I and the
second group parameters II as examples and give the critical time τ

(0)
1 of controllable widespread

antibody failure of 38.5 weeks and 35.3 weeks, respectively, which can provide a reference for the
vaccination time of COVID-19 vaccine booster injection in medical aspect to prolong the time of
antibody disappearance.

Through the analysis of the simulations results of the two groups of parameters data,
the antibody presence level is used to measure the epidemic prevention and control effect.
Taking the time of six weeks of the wide range of antibody failure in the simulations as
an example, the three groups population is roughly stable at 0.016, 0.231, and 0.164 (unit:
million) for the first group parameters I, while the three groups population is stable at
0.017, 0.624, and 0.139 (unit: million) for the second group parameters II, and the propor-
tions of antibody are 56.34% and 56.21%, respectively. It can be concluded that, under the
same epidemic vaccination strategy, the existence level of antibody is roughly the same,
which is consistent with the reality.

In terms of the critical time τ
(0)
1 for controllable widespread antibody failure, the group

with lower mortality has better critical time τ
(0)
1 for controllable widespread antibody

failure than the group with higher mortality. The shorter the time τ of the wide range
of antibody failure, the more vaccinations per person, the higher the cost of quarantine,
and the greater the impact on normal life. Through the above theoretical analysis, we can
know that the antibody existence level will be the same if the antibody failure time τ is
appropriately increased within the critical time τ for controllable widespread antibody
failure. Therefore, we can achieve the ideal of epidemic prevention and control through
more effective and longer-lasting vaccines.

Next, we discuss the impact of different epidemic prevention and control strategies on
the epidemic prevention and control. We use the combination of discrete and continuous
variables to investigated the influence on the critical time τ

(0)
1 of controllable widespread

antibody failure. We will discuss the effects of validity factor a, fixed vaccination rate b,
failure rate γ, and disease-related mortality c on the critical time τ

(0)
1 in detail below. Finally,

the impact of a sudden increase in disease-related mortality c and antibody failure rate γ
due to the emergence of a mutant strain of COVID-19 is analyzed.

We first analyze the impact factor a on vaccine effectiveness on the vaccination
rate, and thus affect the critical time τ

(0)
1 of controllable widespread antibody failure

in system (1), and add the secondary vaccination rate α of a discrete case as shown in
Figure 9:

0.474 0.476 0.478 0.48 0.482 0.484 0.486 0.488 0.49 0.492
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43.6
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44.2

44.4

44.6

=0.87

=0.88

=0.89

=0.90
=0.91

Figure 9. The influence of positive feedback factor a on the critical time τ
(0)
1 .
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In Figure 9, it observes that the increase of influence factor a has a significant pro-
moting effect on the critical time τ

(0)
1 , and the promoting relationship between them is

approximately linear. Therefore, in the context of this discussion, we can promote the safety
and effectiveness of COVID-19 vaccines by strengthening publicity, so as to improve the
impact of vaccine effectiveness on vaccination, which also provides some suggestions for
future epidemic prevention and control.

When other parameters are fixed, the influence of fixed vaccination rate b in the
continuous case and secondary vaccination rate α in the discrete case on the critical time
τ
(0)
1 is investigated in Figure 10.

0.492 0.494 0.496 0.498 0.5 0.502 0.504 0.506 0.508 0.51
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44.8

=0.88

=0.89

=0.87

=0.91
=0.90

Figure 10. Influence of fixed vaccination rate b (continuous case) and secondary vaccination rate α

(discrete case) on the critical time τ
(0)
1 .

In Figure 10, we find that the critical time τ
(0)
1 will be suppressed by fixed vaccination

rate b in a linear manner. In comparison with Figure 9, in order to increase the vaccination
rate of COVID-19, to improve the final antibody presence level, and to promote the critical
time τ

(0)
1 , we should properly regulate the vaccination strategy from two aspects: on the one

hand, we should appropriately improve the role of effectiveness in vaccination willingness;
on the other hand, the fixed vaccination rate b brought about by other factors should be
appropriately reduced.

As the COVID-19 virus continues to mutate, it has created multiple mutated strains
with higher transmissibility and mortality. Then, we consider the effects of the failure rate
γ (see Figure 11) and mortality rate c (see Figure 12) on the critical time τ

(0)
1 .

0.665 0.67 0.675 0.68

37.65

37.7

37.75

37.8

37.85

37.9

=0.920
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=0.924

=0.918

=0.916

Figure 11. The influence of continuous antibody failure rate γ and discrete secondary vaccination

rate α on the critical time τ
(0)
1 .
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From Figure 11, it can be concluded that the smaller the antibody failure rate γ is,
the larger the critical time τ

(0)
1 is. The influence of failure rate γ on the critical time τ

(0)
1

decreases with the increase of failure rate γ. When the failure rate γ > 0.68, the effect of γ

on τ
(0)
1 is almost zero. When the failure rate γ < 0.68, the smaller γ is, the more obvious

the effect of increasing the critical time τ
(0)
1 is. Therefore, from the perspective of epidemic

control, we have confirmed the need to reduce the vaccine’s own failure rate γ from the
perspective of epidemic control.

0.934 0.936 0.938 0.94 0.942 0.944 0.946 0.948 0.95
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c=0.04855

c=0.05055

c=0.05255

c=0.05455

c=0.04655

Figure 12. The influence of continuous secondary vaccination rate α and discrete mortality rate c on

the critical time τ
(0)
1 .

In the case of the COVID-19 mutant strains, the mutant strains cause a spike in
antibody failure rate γ. If the failure rate γ of the primary antibody is less than 0.68, the γ

surge will cause the shortening of the critical time τ
(0)
1 . If the failure rate γ of the original

antibody is high, the effect of γ surge may be relatively small. Therefore, we should keep τ

at a distance τ
(0)
1 to prevent the risk of uncertainty due to mutant strains.

From Figure 12, comparing the influence of disease mortality rate c and secondary
vaccination rate α on the critical time τ

(0)
1 , we can find that the influence of disease mortality

rate c on the critical time τ
(0)
1 is significantly higher than that of secondary vaccination rate

α on the critical time τ
(0)
1 .

From the perspective of the COVID-19 mutant strains, the COVID-19 mutant strains
may cause discrete changes in disease mortality rate c. We consider the effect of the discrete
change of c on τ

(0)
1 in Figure 12. Small changes in disease mortality rate c caused by the

mutated strains may lead to large changes in the critical time τ
(0)
1 of controllable widespread

antibody failure, leading to instability in the vaccination system. After a certain period of
time, antibody levels rise and fall, and the COVID-19 mutated strains may trigger a new
outbreak. Therefore, we should pay attention to the variation trend of mutant strains and
change the inoculation strategy in time when necessary. Before it becomes a mainstream
mutant strain, countermeasures should be taken to ensure the effect of epidemic prevention
and control.

Remark 4. According to Figures 9–12, we find that the secondary vaccination rate α has a turning
point α0 around 0.91. In a certain range before α0, as shown in Figures 9 and 10, the increase of the
secondary vaccination rate α leads to the decrease of the critical time τ

(0)
1 , and the closer it is to 0.91,

the less the effect is. In a certain range after α0, the increase of secondary vaccination rate α will
increase the critical time τ

(0)
1 , and the change relationship between the two is approximately linear,

as shown in Figures 11 and 12.
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6. Conclusions

In this paper, an UVaV vaccination model with time-delay was constructed for COVID-
19 vaccination based on the transmission characteristics of COVID-19 vaccine antibodies.
Compared with the traditional SIR model, this paper paid more attention to the presence
of antibodies in the population and the vaccination situation of vaccines. At the same
time, the effect of vaccination intention on vaccination rate was added into the model. We
also analyzed the existence and stability of equilibrium, and studied the existence and
stability of the Hopf bifurcation associated with existing equilibrium. Then, we derived
the normal form of the Hopf bifurcation in the vaccination model by using the multiple
time scales method. Finally, according to the parameters estimations and the data given
in the literature, it was divided into two groups of parameters. One group is the small
natural mortality parameters, and the other is the natural mortality parameters. Numerical
simulations were carried out to verify the correctness of the theoretical analysis.

In [40], Lu et al. studied the impact of critical treatment time on epidemic prevention
and control. In this paper, we considered the impact of the large-scale failure time of
critical antibodies on epidemic prevention and control from the perspective of failure time.
Numerical simulations showed that, when the time τ < τ

(0)
1 of the wide range of antibody

failure was obtained in the sense of two parameters, after a certain time, the antibody
would eventually approach the same level of existence, and the epidemic prevention and
control effects were basically the same. Different failure time τ would produce different
critical time τ

(0)
1 ; the shorter the failure time τ, the faster the critical time τ

(0)
1 . However,

the shorter the lapse, the greater the total number of vaccinations. Obviously, on the one
hand, frequent vaccination would inevitably bring a great impact on people’s life and
work, but also seriously hindered the development of society and the country; on the other
hand, frequent vaccinations increased the cost of prevention. When τ changed in a small
range near τ

(0)
1 , we believed that the antibody level changed periodically and the epidemic

prevention and control situation was under control. When τ > τ
(0)
1 , the antibody presence

level was high and low, and there was a risk of causing a new epidemic. Therefore, taking
these two groups of parameters as examples, we gave the critical time τ

(0)
1 of controllable

widespread antibody failure of 38.5 weeks and 35.3 weeks, respectively, and the stability of
the system would be greatly affected before and after the critical time τ

(0)
1 . This provided a

medical reference for the time of COVID-19 vaccine booster injection to prolong the time of
antibody disappearance.

In addition, according to Wang’s et al. [41] research, the protection rate, the infection
rate, and the average quarantine time had a significant impact on the prevention and the
control of the epidemic. We discussed the impact of different vaccination strategies on
the time τ

(0)
1 for controllable widespread antibody failure, and considered the influence of

COVID-19 mutated strains on epidemic prevention and control. We also provided some
suggestions for epidemic prevention and control from the perspective of mathematical
model and dynamic property analysis as follows:

(1): In the positive feedback mechanism, the effect factor a on vaccine effectiveness had
a significant promoting effect on the critical time τ

(0)
1 . We can increase the impact of vaccine

effectiveness on vaccination by increasing awareness about the safety and effectiveness of
COVID-19 vaccines.

(2): In the positive feedback mechanism, the relatively fixed vaccination rate b inhib-
ited the critical time τ

(0)
1 . Combined with (1), vaccination strategies were appropriately

regulated from two aspects: on the one hand, the role of effectiveness in vaccination inten-
tion was appropriately increased; on the other hand, the fixed vaccination rate b brought
about by other factors should be appropriately reduced.

(3): Considered that the mutant strains of COVID-19 may cause a sudden increase in
the antibody failure rate γ and thus reduced the critical time τ

(0)
1 . In addition, the smaller

the failure rate γ is, the more obvious the effect of critical time is. Therefore, from the
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perspective of model sensitivity, we confirmed the necessity of reducing vaccine failure
rate γ.

(4): Considered that mutated strains of COVID-19 may caused mutations in disease-
related mortality c. A small change in disease-related mortality c may cause a large change
in the critical time τ

(0)
1 , which may change the system (1) stability. We should pay attention

to the variation trend of mutant strains and change the inoculation strategy in time when
necessary. Before the mutated strains cause a new outbreak, analysis showed that we can
take measures such as vaccination boosters to reduce vaccine failure rates, thus reducing
mortality due to disease and ensuring that the outbreak is within manageable limits.
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