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Abstract: An engineered fluid, called nanofluid, is expected to have better thermal conductivity 

than conventional working fluids. The superior heat transfer performance and various possible ap-

plications promote the analysis of nanofluids in different flow geometries. This paper studies the 

flow of non-Newtonian Burgers’ nanofluids over a permeable stretching/shrinking surface with a 

heat source/sink. In the current study, we highlight the use of the single-phase nanofluid model in 

studying the boundary layer flow. The basic partial differential equations are transformed into or-

dinary (similarity) differential equations. Then, the resulting equations and boundary conditions 

are solved numerically in MATLAB using the bvp4c package. Triple solutions are presented, and 

stability analysis certifies that the first solution is physically realizable in practice. It is found that 

the increment of the heat source parameter raised the temperature profile of the nanofluids. 

Al2O3/H2O and Cu/H2O nanofluids produced the highest skin friction coefficient in the flow over 

stretching and shrinking surfaces, respectively. Meanwhile, Cu/H2O nanofluid showed a better heat 

transfer performance when compared to Al2O3/ H2O and TiO2/ H2O nanofluids. The present study 

is novel and could serve as a reference to other researchers for further analysis of heat transfer per-

formance and the rheological behavior of nanofluids. 

Keywords: Burgers’ nanofluid; permeable surface; heat source/sink; numerical results 

MSC: 76A05; 76D10; 35Q35 

 

1. Introduction 

Every fluid that obeys Newton’s law of viscosity, i.e., viscosity is independent of 

shear stress, is termed a Newtonian fluid. Meanwhile, fluids such as toothpaste, ketchup, 

polymers, colloids, and tars with variable viscosity depending on the shear rate and shear 

stress are called non-Newtonian fluids. The non-Newtonian fluids are further classified 

into three sub-categories: the differential-type, integral-type, and rate-type. Fluid models 

such as Maxwell, Oldroyd-B, and Burgers are proposed to represent the rate-type fluids, 

characterized by the fluid relaxation and retardation time phenomena [1]. Among these 

models, only the Burgers’ fluid model expresses relaxation and retardation time proper-

ties simultaneously, which is suitable for describing the rheological properties of assorted 

viscoelastic materials; for example, asphalt, soil, cheese, and polymeric liquids (see Hayat 

et al. [2]; Rashidi et al. [3]). However, the Burgers’ model is less popular among research-

ers due to its complex constitutive equations and mathematical formulation. Some of the 
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studies on Burgers’ fluid are those by Alsaedi et al. [4], Hayat et al. [5–8], Ahmad et al. [9], 

Khan et al. [10], Imran et al. [11], Safdar et al. [12], Akram et al. [13], Jiang et al. [14], and 

Gangadhar et al. [15]. 

Rapid development in engineering applications and electronic devices demands a 

more efficient and advanced nanofluid to act as a coolant in removing excess heat from 

devices. Nanofluids are defined by Choi [16] as fluids containing particles with an average 

size of 10 nanometers (e.g., carbon nanotubes, carbides, metals, and oxides). These parti-

cles are dispersed in a conventional heat transfer fluid (e.g., water, oil, and ethylene gly-

col), called base fluid. The synthesis of nanofluids serves the purpose of finding superior 

heat transfer fluid with better performance than conventional fluids. Incorporating high 

thermal conductivity nanoparticles into the conventional fluids improves the heat transfer 

performance of the fluids (see Alghamdi [17]; Khan and Alzahrani [18]; Hayat et al. 

[19,20]; Iqbal et al. [21]). The processes of preparing nanofluids were elucidated by Xuan 

and Li [22], Das et al. [23], and Khattak et al. [24]. Due to various applications of nanoflu-

ids, for example, in manufacturing processes, microelectronics, biomedical field, food pro-

cessing, nuclear cooling system, and computer processor, it is interesting to study the flow 

of different nanofluids over diverse physical geometries and conditions. It is worth men-

tioning that references to nanofluids can be found in the books by Das et al. [25], Nield 

and Bejan [26], Minkowycz et al. [27], and Shenoy et al. [28], and in the review papers by 

Manca et al. [29], Myers et al. [30], Mahian et al. [31–33], and others. Khan and Khan [34] 

discussed the forced convection flow of Burgers’ nanofluid over a stretching sheet. 

Whereas Khan and Khan [35] studied the free convection flow of Burgers’ nanofluid in 

the presence of heat generation/absorption. The effects of the heat generation parameter 

on the temperature profile were the opposite of the heat absorption parameter. Then, 

Hayat et al. [19] analyzed the flow of Burgers’ nanofluid with convective boundary con-

dition and a magnetic field. The nanofluid velocity in hydromagnetic flow was shown to 

be slower than in the hydrodynamic flow due to the existence of Lorentz force. Mean-

while, the relaxation and retardation time parameters reduce and enhance the velocity of 

the nanofluid, respectively. The same results were reported by Hayat et al. [20] for mixed 

convection flow. The Buongiorno nanofluid model [36] was utilized in [19,20,34,35] with 

thermophoresis and Brownian motion considered in these studies. Rashidi et al. [3] found 

that the thermophoresis and Brownian motion parameters improve the molecular move-

ment that raises the nanofluid temperature. However, the nanofluid concentration de-

creases with the increment of the Brownian motion parameter. The semi-analytical solu-

tion for Burgers’ nanofluid flow between parallel channels was presented by Muhammad 

et al. [37]. Meanwhile, the study by Khan et al. [38] and Khan et al. [1] revealed that the 

enhancement of thermal and concentration boundary layers was achieved through the 

increase of Burgers’ material parameter. However, the augmentation of this parameter 

impedes the nanofluid velocity. Other recent studies on Burgers’ nanofluid were carried 

out by Iqbal et al. [21], Khan et al. [39], Waqas et al. [40], Ramzan et al. [41], and Wang et 

al. [42]. 

The present study will combine the Burgers’ fluid model and the single-phase Tiwari 

and Das [43] nanofluid model to depict the flow of nanofluids over a stretching/shrinking 

surface with heat generation/absorption. Flow with such geometry and conditions may 

have applications for heat exchangers, cooling of devices, nuclear reactors, automobiles, 

extrusion of plastic sheets, and many others. A previous study on Burgers’ nanofluid, con-

ducted by Khan and Khan [35], adopted the two-phase Buongiorno nanofluid model and 

only analyzed the stretching sheet case. Contrary to the Buongiorno model, the Tiwari 

and Das model considers the effects of nanoparticles volume fraction with the assumption 

of a no-slip condition between the nanoparticles and base fluid. The non-linear ordinary 

differential equations and boundary conditions will be solved numerically in MATLAB 

using the bvp4c package. The results, presented in tables and graphs, will be examined 

and discussed in detail. Through the authors’ knowledge, studies on Burgers’ fluid using 

the single-phase nanofluid model have not been carried out by other researchers. Thus, 
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the current study is an original work to be added to the limited literature and provides 

new information to the researchers working in the area of nanofluids. Three different 

nanofluids are considered, namely Cu/H2O, Al2O3/H2O, and TiO2/H2O. It should be men-

tioned that we are able to generate triple solutions for the shrinking case (𝜆 < 0), which 

doesn’t exist for many shrinking problems. 

2. Mathematical Model 

Consider the steady flow of Burgers’ fluid over a permeable stretching/shrinking sur-

face (sheet) with heat source/sink, as shown in Figure 1. 𝑥 and 𝑦 are the Cartesian coordi-

nates such that the 𝑥 −axis runs along the surface of the sheet while the 𝑦−axis is in the 

normal direction to the sheet with the flow being at 𝑦 ≥ 0. As a thermal enhancement, 

three different nanoparticles, namely Cu, Al2O3, and TiO2, are diluted in a base fluid (wa-

ter). Assumptions are made such that the velocity of the stretching/shrinking sheet is 

𝑈𝑤(𝑥), and the mass transfer is 𝑣𝑤 with 𝑣𝑤 < 0 for suction and 𝑣𝑤 > 0 for injection. The 

temperature of the sheet is constant 𝑇𝑤, while the working fluid temperature is 𝑇∞. 

  
(a) (b) 

Figure 1. Physical model for: (a) Stretching sheet (λ > 0); (b) Shrinking sheet (λ < 0) [44]. 

The equations governing the steady boundary layer flow of an incompressible Burg-

ers’ nanofluid with a heat source/sink are written in Cartesian coordinates (𝑥, 𝑦) as (see 

Khan and Khan [35]; Ejaz et al. [45]): 

𝜕 𝑢 

𝜕 𝑥
+ 
𝜕 𝑣 

𝜕 𝑦
= 0, (1) 

𝑢 
𝜕 𝑢

𝜕 𝑥
+ 𝑣 

𝜕 𝑢

𝜕 𝑦
+ 𝜆1 (𝑣

2  
𝜕2𝑢

𝜕 𝑦2
+ 2 𝑢 𝑣 

𝜕2𝑢

𝜕 𝑥 𝜕 𝑦
) +

𝜆2 [𝑣
3
𝜕3𝑢

𝜕 𝑦3
+ 3 𝑣2 (

𝜕 𝑣

𝜕 𝑦
 
𝜕2𝑢

𝜕 𝑦2
+ 
𝜕 𝑢

𝜕 𝑦
 
𝜕2𝑢

𝜕 𝑥 𝜕 𝑦
) +  3 𝑢 𝑣2

𝜕3 𝑢

𝜕 𝑥 𝜕 𝑦2
+

2 𝑢𝑣 
𝜕 𝑣

𝜕 𝑦
 
𝜕2𝑢

𝜕 𝑥 𝜕 𝑦
] =  

𝜇𝑛
𝜌𝑛
 

[
 
 
 
 
𝜕2𝑢

𝜕 𝑦2
+ 𝜆3  (𝑢 

𝜕3𝑢

𝜕 𝑥 𝜕 𝑦2
+ 𝑣 

𝜕3𝑢

𝜕 𝑦3
−

𝜕 𝑢

𝜕 𝑥
 
𝜕2𝑢

𝜕 𝑦2
−
𝜕 𝑢

𝜕 𝑦
 
𝜕2𝑣

𝜕 𝑦2
)

]
 
 
 
 

,

}
 
 
 
 

 
 
 
 

  (2) 

𝑢 
𝜕 𝑇

𝜕 𝑥
+ 𝑣 

𝜕𝑇

𝜕 𝑦
=  

𝑘𝑛

(𝜌 𝐶𝑝)𝑛

 
𝜕2𝑇

𝜕 𝑦2
+ 

𝑄

(𝜌 𝐶𝑝)𝑛

 (𝑇 − 𝑇∞), (3) 

along with the boundary conditions (see Hayat et al. [7]) 
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𝑣 = 𝑣𝑤 , 𝑢 = 𝑈𝑤(𝑥) 𝜆 = 𝑎 𝑥 𝜆,   𝑇 = 𝑇𝑤    at    𝑦 = 0

𝑢 → 0,    
𝜕𝑢

𝜕𝑦
→ 0,    𝑇 → 𝑇∞    as    𝑦 → ∞.

,

}
 
 

 
 

 (4) 

Here, 𝑢 and 𝑣 represent the velocity components along 𝑥 −and 𝑦 −axes, 𝑎 is a posi-

tive constant, 𝑇  is the temperature, 𝜆1  and 𝜆3 (≤ 𝜆1) are the relaxation and retardation 

times, respectively, 𝜆2 is the material parameter of the Burgers’ fluid, 𝑄0 is the heat gener-

ation/absorption parameter, and 𝜆 is the constant stretching/shrinking parameter with 

𝜆 < 0 for the shrinking sheet, 𝜆 = 0 for static sheet, and 𝜆 > 0 for the stretching sheet. 

Next, 𝜌𝑛 is the density, (𝜌𝐶𝑝)𝑛 is the heat capacity, 𝜇𝑛 is the dynamic viscosity, and 

𝑘𝑛 is the thermal conductivity of the nanofluid, given by (see Ho et al. [46]; Sheremet et 

al. [47]): 

𝜌𝑛 = (1 − 𝜙) 𝜌𝑓 +  𝜙 𝜌𝑠,

(𝜌𝐶𝑝)𝑛 =
(1 −  𝜙) (𝜌 𝐶𝑝)𝑓 +  𝜙 (𝜌 𝐶𝑝)𝑠,

𝜇𝑛
𝜇𝑓
=

1

(1 −   𝜙)2.5
,

𝑘𝑛
𝑘𝑓
=
𝑘𝑠  + 2 𝑘𝑓  − 2 𝜙 (𝑘𝑓  −  𝑘𝑠)

𝑘𝑠  + 2 𝑘𝑓   +  2 𝜙 (𝑘𝑓  −  𝑘𝑠)
.
}
 
 
 

 
 
 

 (5) 

Here, the suffixes 𝑓, 𝑛, and 𝑠 describe the base fluid, nanofluid, and nanoparticle, re-

spectively, 𝜙  is the nanoparticle volume fraction (𝜙 = 0 correspond to a regular fluid), 

and 𝐶𝑝 is the heat capacity at constant pressure. Table 1 describes the thermal and physical 

characteristics of base liquids and nanoparticles. 

Table 1. Thermal and physical characteristics for nanoparticles (see Oztop and Abu Nada [48]). 

Properties  𝝆 (kg/m3)      𝑪𝒑 (J/kg K) 𝒌 (W/m K) 𝑷𝒓 

Cu 8933 385 400 - 

Al2O3 3970 765 40 - 

TiO2 4250 686.2 8.9538 - 

H2O 997.1 4179 0.613 6.2 

Guided by the boundary conditions (4), we introduce the following similarity varia-

bles: 

𝜓 = √𝑎 𝜈𝑓 𝑥 𝑓(𝜂), 𝜃(𝜂) =  
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

,     𝜂 = 𝑦√
𝑎

𝜈𝑓
, (6) 

where 𝜓(𝑥, 𝑦)  is the Stokes stream function defined as 𝑢 = 𝜕𝜓/𝜕𝑦  and 𝑣 =  −𝜕𝜓/𝜕𝑥 . 

Thus, we have: 

𝑢 = 𝑎 𝑥 𝑓′(𝜂),     𝑣 =  − √𝑎 𝜈𝑓 𝑓(𝜂), (7) 

In addition, 

𝑣𝑤 = −  √𝑎 𝜈𝑓 𝑆, (8) 

where prime (′) denotes differentiation with respect to 𝜂, and the mass flux parameter is 

𝑆 with 𝑆 < 0 for injection and 𝑆 > 0 for suction. 

We obtain the following ordinary (similarity) differential equations after substituting 

(6) into Equations (2) and (3): 
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𝜇𝑛/𝜇𝑓

𝜌𝑛/𝜌𝑓
𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 + 𝛽1(2 𝑓 𝑓

′𝑓′′ − 𝑓2𝑓′′′) + 

𝛽2 (𝑓
3 𝑓𝑖𝑣 − 2𝑓𝑓′′𝑓′2 −  3 𝑓2𝑓′′2) +

𝜇𝑛/𝜇𝑓

𝜌𝑛/𝜌𝑓
𝛽3(𝑓′′

2 − 𝑓 𝑓𝑖𝑣) = 0
}
 
 

 
 

 (9) 

1

𝑃𝑟

𝑘𝑛
𝑘𝑓
 𝜃′′ +

(𝜌 𝐶𝑝)𝑛
(𝜌 𝐶𝑝)𝑓

𝑓 𝜃′ + 𝐾𝜃 = 0 (10) 

along with the boundary conditions 

         

   
 

𝑓(0) = 𝑆, 𝑓′(0) =  𝜆,     𝜃(0) = 1

𝑓′(𝜂) → 0,    𝑓′′(𝜂) → 0,     𝜃(𝜂) → 0    as      𝜂 → ∞

} (11) 

Here, 𝑃𝑟 is the Prandtl number, 𝛽1, 𝛽2 and 𝛽3  are the non-Newtonian parameters, 

and 𝐾 > 0 is the heat source and 𝐾 < 0 is the heat sink, which are defined as: 

𝑃𝑟 =
(𝜇 𝐶𝑝)𝑓

𝑘𝑓
,   𝛽1 = 𝑎 𝜆1,   𝛽2 = 𝑎

2 𝜆2,   𝛽3 = 𝑎 𝜆3,   𝐾 =
𝑄0

𝑎 (𝜌𝐶𝑝)𝑓
 (12) 

The quantities of physical interest are the skin friction coefficient (𝐶𝑓) and the local 

Nusselt number (𝑁𝑢𝑥): 

𝐶𝑓 = 
 𝜇𝑛

𝜌𝑓[𝑈𝑤(𝑥)]
2
 (
𝜕 𝑢

𝜕 𝑦
)
𝑦=0

,       𝑁𝑢𝑥 =
𝑥 𝑘𝑛

𝑘𝑓 (𝑇𝑤  −  𝑇∞)
 (−

𝜕 𝑇

𝜕 𝑦
)
𝑦=0

. (13) 

Using (7) and (13), we acquire: 

𝑅𝑒𝑥
1/2
𝐶𝑓 =

𝜇𝑛
𝜇𝑓
𝑓′′(0),          𝑅𝑒𝑥

−1/2
𝑁𝑢𝑥 = −

𝑘𝑛
𝑘𝑓
 𝜃′(0) (14) 

It is worth mentioning that for 𝜙 = 0 (classical viscous fluid) and 𝛽1 = 𝛽2 = 𝛽3 = 0, 

Equation (9) becomes identical with Equation (7) from the paper by Fang et al. [49], 

namely, 

𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 = 0 (15) 

along with the boundary conditions, 

𝑓(0) = 𝑆, 𝑓′(0) =  𝜆,     𝑓′(𝜂) → 0    as      𝜂 → ∞. (16) 

The exact solution of the boundary value problem (15,16) is given by Vajravelu and 

Rollings [50] or Cortell [51], as, 

𝑓(𝜂) = 𝑆 +  𝛼 (1 − 𝑒− 𝛽 𝜂),   𝛽 = 𝑆 +  𝛼 > 0 (17) 

where 𝛼 𝛽 = 𝜆, from the boundary condition 𝑓′(0) = 𝜆. The value β (>0) is given by the 

quadratic equation, 

𝛽2 − 𝑆 𝛽 −  𝜆 = 0 (18) 

and then, 

𝛽 =
𝑆  ±  √𝑆2  +   4 𝜆

2
 (19) 

Thus, we have, 

𝑓′′(0) = − 
𝜆

2
 (𝑆 ± √𝑆2 + 4 𝜆) (20) 

so that it gives, as it is expected, 𝜆𝑐 = − 𝑆
2/4 <  0, where 𝜆𝑐 is the critical value of 𝜆 (< 0) 

for which the boundary value problem (15) and (16) has a physical realizable problem. 
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Further, we notice that when 𝜆 = 1 (stretching sheet) and 𝑆 = 0 (impermeable surface), 

we acquire from (20) that 𝑓′′(0) =  −1, which is in agreement with the value first reported 

by Crane [52]. 

3. Stability Analysis 

The multiple solutions to the boundary value problem (9)–(11) are classified as stable 

or unstable by performing a stability analysis. Weidman et al. [53] and Roşca and Pop [54] 

have shown in their respective studies that the lower branch solutions are unstable (not 

realizable physically), while the upper branch solutions are stable (physically realizable). 

The stability analysis of multiple solutions had also been conducted in the papers by Wa-

hid et al. [55], Lund et al. [56], and Yahaya et al. [57]. As in Weidman et al. [53], we intro-

duce a new dimensionless time variable 𝜏 = 𝑎𝑡 with 𝑡 as time. The involvement of 𝜏 cor-

responds to an initial value problem and is suitable with the uncertainty of which solution 

is physically realizable. Numerical computations of boundary layer problem (9)–(11) may 

produce zero, unique, or multiple solutions. Therefore, the governing Equations (9) and 

(10) are replaced by unsteady boundary layer equations and new similarity variables con-

taining a dimensionless time variable 𝜏. Then, we obtain: 

𝜇𝑛/𝜇𝑓

𝜌𝑛/𝜌𝑓
 
𝜕3𝑓

𝜕 𝜂3
+ 𝑓

𝜕2𝑓

𝜕 𝜂2
− (

𝜕 𝑓

𝜕 𝜂
)
2

+ 𝛽1 [2 𝑓
𝜕 𝑓

𝜕 𝜂
 
𝜕2𝑓

𝜕 𝜂2
− 𝑓2

𝜕3𝑓

𝜕 𝜂3
] + 𝛽2 [𝑓

3 𝜕
4𝑓

𝜕 𝜂4
−

   3 𝑓2  (
𝜕2𝑓

𝜕 𝜂2
)
2

−2 𝑓 (
𝜕 𝑓

𝜕 𝜂
)
2 𝜕2𝑓

𝜕 𝜂2
] +

𝜇𝑛/𝜇𝑓

𝜌𝑛/𝜌𝑓
 𝛽3 [(

𝜕2𝑓

𝜕 𝜂2
)
2

− 𝑓
𝜕4𝑓

𝜕 𝜂4
] − 

𝜕2 𝑓

𝜕 𝜂 𝜕 𝜏
= 0,  

(21) 

1

𝑃𝑟
 
𝑘𝑛
𝑘𝑓
 
𝜕2𝜃

𝜕 𝜂2
 +  

(𝜌 𝐶𝑝)𝑛
(𝜌 𝐶𝑝)𝑓

 𝑓 
𝜕 𝜃

𝜕 𝜂
 + 𝐾 𝜃 − 

(𝜌 𝐶𝑝)𝑛
(𝜌 𝐶𝑝)𝑓

 
𝜕 𝜃

𝜕 𝜏
= 0, (22) 

                        

   

𝑓(0, 𝜏) = 0,     
𝜕 𝑓

𝜕 𝜏
(0, 𝜏) = 0,     𝜃(0, 𝜏) = 0
 

𝜕 𝑓

𝜕 𝜂
(𝜂, 𝜏) → 0,   

𝜕2𝑓

𝜕 𝜂2
(𝜂, 𝜏) → 0,    𝜃(𝜂, 𝜏) → 0   as   𝜂 → ∞

}
 
 

 
 

. (23) 

To test the stability of the steady flow solutions 𝑓(𝜂) = 𝑓0(𝜂) and 𝜃(𝜂) = 𝜃0(𝜂) satis-

fying the boundary-value problem (9)–(11), we can write (see Weidman et al. [53] and 

Roşca and Pop [54]), 

𝑓(𝜂, 𝜏) = 𝑓0(𝜂) + 𝑒
−𝛾𝜏 𝐹(𝜂, 𝜏)

𝜃(𝜂, 𝜏) = 𝜃0(𝜂) + 𝑒
−𝛾𝜏 𝐺(𝜂, 𝜏)

} (24) 

where 𝛾 is an unknown eigenvalue parameter related to the growth and decay distribu-

tions of disturbance, and 𝑓(𝜂) = 𝑓0(𝜂)  and 𝜃(𝜂) = 𝜃0(𝜂)  with 𝐹(𝜂, 𝜏) ≪ 𝑓0(𝜂)  and 

𝐺(𝜂, 𝜏) ≪ 𝜃0(𝜂). 

The stability of solutions is determined by detecting the presence of initial growth or 

decay of disturbance in the solutions. Thus, the value of 𝜏 is set to zero so that 𝐹(𝜂) =

𝐹0(𝜂) and 𝐺(𝜂) = 𝐺0(𝜂), and the following linear eigenvalue problem is obtained: 

𝜇𝑛/𝜇𝑓

𝜌𝑛/𝜌𝑓
 𝐹0
′′′ + 𝑓0 𝐹0

′′ + 𝐹0 𝑓0
′′ − 2 𝐹0

′ 𝑓0
′ + 𝛽1 [2 𝑓0 𝑓0

′ 𝐹0
′′ + 2 𝑓0 𝐹0

′ 𝑓0
′′ + 2 𝐹0 𝑓0

′ 𝑓0
′′  

           −𝑓0
2 𝐹0

′′′−2 𝑓0 𝐹0 𝑓0
′′′] + 𝛽2 [𝑓0

3 𝐹0
′′′′ + 3 𝑓0

2 𝐹0 𝑓0
′′′′ − 6 𝑓0

2 𝑓0
′′ 𝐹0

′′ − 6 𝑓0 𝐹0 𝑓0
′′2  

 −2 𝑓0 𝑓0
′2 𝐹0

′′−4 𝑓0 𝑓0
′ 𝑓0

′′ 𝐹0
′ − 2 𝐹0 𝑓0

′2 𝑓0
′′ ] +

𝜇𝑛/𝜇𝑓

𝜌𝑛/𝜌𝑓
 𝛽3 [2 𝑓0

′′ 𝐹0
′′ − 𝑓0 𝐹0

′′′′ −  𝐹0 𝑓0
′′′′] + 𝛾𝐹0

′ = 0, (25) 

1

𝑃𝑟
 
𝑘𝑛
𝑘𝑓
 𝐺0

′′ +
(𝜌 𝐶𝑝)𝑛
(𝜌 𝐶𝑝)𝑓

 [𝑓0 𝐺0
′ + 𝐹0 𝜃0

′ ] + 𝐾 𝐺0 +
(𝜌 𝐶𝑝)𝑛
(𝜌 𝐶𝑝)𝑓

  𝛾 𝐺0 = 0, (26) 
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with the linearized boundary conditions: 

𝐹0(0) = 0,    𝐹0
′(0) = 0,    𝐺0(0) = 0

𝐹0
′(∞) → 0,    𝐹0

′′(∞) → 0,    𝐺0(∞) → 0
}. (27) 

The free-stream boundary condition 𝐹0
′(∞) → 0 is relaxed so that a possible range of 

eigenvalues, with the smallest eigenvalue of 𝛾1, can be generated in the numerical com-

putation (see Harris et al. [58] and Zainal et al. [59]). Hence, Equations (25) and (26) are 

solved numerically with a new set of boundary conditions: 

𝐹0(0) = 0,    𝐹0
′(0) = 0,    𝐹0

′′(0) = 1,    𝐺0(0) = 0

𝐹0
′′(∞) → 0,    𝐺0(∞) → 0

}  (28) 

4. Results and Discussion 

All numerical computations are conducted using the bvp4c package containing finite 

difference code that utilizes the three-stage Lobatto IIIa formula. Equations (9), (10), (25), 

and (26) with the boundary conditions (11) and (28) are converted into the bvp4c algo-

rithm. The examples are shown by Khashi’ie et al. [60] and Yahaya et al. [61]. Most of the 

time, the controlling parameters are kept constant with values of 𝜙 = 0.2, 𝜆 = −1, 𝑆 =

3, 𝐾 = 0.2, 𝛽1 = 0.4, 𝛽2 = 0.3 and 𝛽3 = 0.1. The finite value for the free-stream boundary 

conditions (11) (i.e., 𝜂 → ∞) is adjusted such that 𝜂max = 7 to match the specified values of 

the controlling parameters. All profiles successfully achieve the free-stream condition (11) 

within the range of the stated 𝜂max. Following Pantokratoras [62], the velocity and tem-

perature profiles should reach the free-stream boundary condition with asymptotic be-

havior to satisfy the boundary layer flow. Thus, ensuring the correctness of the numerical 

computations and results. To be confident, we compared the present numerical results 

with a published study, as shown in Table 2. Again, the results show a good agreement. 

Table 2. Comparison on the values of −𝑓′′(0) when 𝜙 = 0, 𝜆 = 1, 𝑆 = 0, 𝐾 = 0 and 𝛽2 =

𝛽3 = 0. 

𝜷𝟏 −𝒇′′(𝟎) 

 Present Study Hayat et al. [8] 

0 1.000000 1.000000 

0.2 1.051890 1.051889 

0.4 1.101903 1.101903 

0.6 1.150137 1.150137 

At the value of 𝜆 = −1, which denotes a shrinking sheet case, triple solutions are 

found and assigned as the first, second, and third solutions following the arrival of each 

to the free-stream boundary condition (11). The numerical results of the linear eigenvalue 

problem (25), (26), and (28) for the smallest eigenvalue, 𝛾1, are tabulated in Table 3. Based 

on these results, there is an initial decay of disturbance (i.e., 𝛾1 > 0) in the first solution, 

whereas an initial growth (i.e., 𝛾1 < 0) is detected in the second and third solutions (see 

Yahaya et al. [57]). Therefore, the first solution is stable, while the second and third solu-

tions are unstable. The first solution will be meaningful and realizable in real-life applica-

tions. Hence, the discussion in this section will focus on the first solution. Nevertheless, 

the other solutions are still recorded due to their mathematical importance. 
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Table 3. Values of 𝛾1 for various nanofluid when 𝜙 = 0.2, 𝜆 = −1, 𝑆 = 3, 𝐾 = 0.2, 𝛽1 = 0.4, 𝛽2 = 0.3 

and 𝛽3 = 0.1. 

Nanofluid 
𝜸𝟏 

First Solution Second Solution Third Solution 

Cu/H2O 0.3009 −0.2486 −0.3246 

Al2O3/H2O 0.5468 −0.1424 −0.4223 

TiO2/H2O 0.5254 −0.1544 −0.3289 

In this study, different nanoparticles are dispersed in a base fluid to form three dif-

ferent nanofluids, named Cu/H2O (copper-water), Al2O3/H2O (aluminum oxide-water), 

and TiO2/H2O (titanium dioxide-water) nanofluids. The skin friction coefficient (𝑅𝑒𝑥
1/2
𝐶𝑓) 

and Nusselt number (𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥) of these nanofluids are compared in Table 4. At the se-

lected values of controlling parameters, the skin friction coefficient varies slightly between 

the nanofluids. However, Al2O3/H2O and Cu/H2O nanofluids are perceived to have the 

largest value of 𝑅𝑒𝑥
1/2
𝐶𝑓 in the stretching and shrinking cases, respectively. In addition to 

that, the skin friction coefficient is higher in the shrinking sheet case than in the stretching 

sheet case, and 𝑅𝑒𝑥
1/2
𝐶𝑓 > 0 indicates the fluid exerts a drag force on the sheet. Meanwhile, 

the Nusselt number, related to heat transfer rate, is enhanced significantly when Cu na-

noparticle is used for the nanofluid. It is observed that Cu/H2O nanofluid has the highest 

value of 𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥  compared to other nanofluids, and the rate of heat transfer in the 

stretching sheet case is slightly higher than in the shrinking sheet case. The comparison of 

the Nusselt number produced by these nanoparticles when dispersed in a Newtonian base 

fluid (water) was performed by Rahman and Ariz [63] and Dawar et al. [64]. The combi-

nation Cu/H2O nanofluid also displays the highest Nusselt number in these studies. As 

tabulated in Table 1, Cu nanoparticles has the highest thermal conductivity (𝑘), which 

explains the largest increment of 𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥 (= −
𝑘𝑛

𝑘𝑓
 𝜃′(0)) occurred with the mixture of 

water and Cu nanoparticles. However, the combination of water and Cu nanoparticles 

augments the skin friction coefficient in the shrinking sheet case. Whereas Cu/H2O 

nanofluid produces the lowest skin friction coefficient in the stretching sheet case. 

Table 4. Values of 𝑅𝑒𝑥
1/2
𝐶𝑓 and 𝑅𝑒𝑥

−1/2
𝑁𝑢𝑥 for various nanofluid when 𝜙 = 0.2, 𝑆 = 3, 𝐾 =

0.2, 𝛽1 = 0.4, 𝛽2 = 0.3 and 𝛽3 = 0.1. 

𝝀 Nanofluid 𝑹𝒆𝒙
𝟏/𝟐
𝑪𝒇 𝑹𝒆𝒙

−𝟏/𝟐
𝑵𝒖𝒙 

  
First  

Solution 

Second  

Solution 

Third  

Solution 

First  

Solution 

Second  

Solution 

Third  

Solution 

1 

Cu/H2O 0.174834 - - 18.530621 - - 

Al2O3/H2O 0.184990 - - 18.148114 - - 

TiO2/H2O 0.184073 - - 17.977145 - - 

−1 

Cu/H2O 0.834006 0.813087 0.537593 16.965115 16.963347 16.939337 

Al2O3/H2O 0.823040 0.800393 0.640871 16.639103 16.637469 16.625451 

TiO2/H2O 0.820846 0.798131 0.628143 16.647590 16.646339 16.636665 

The velocity and temperature profiles of various nanofluids are presented in Figures 

2 and 3. From Figure 2, it is found that Al2O3/H2O and Cu/H2O have the highest and lowest 

velocity profiles, respectively. Meanwhile, the thermal boundary layer of Cu/H2O 

nanofluid is thicker than the other nanofluids, as depicted in Figure 3. The high thermal 

conductivity of Cu nanoparticles is enough to increase the Nusselt number of the 

nanofluid even with a small temperature gradient (−𝜃′(0)). 
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(a) 

 

(b) 

Figure 2. Velocity profiles of different nanofluids for: (a) Stretching case; (b) Shrinking case. 
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(a) 

 

(b) 

Figure 3. Temperature profiles of different nanofluids for: (a) Stretching case; (b) Shrinking case. 

Next, the effects of nanoparticle volume fraction (𝜙) are presented in Figures 4 and 

5. In both cases of stretching and shrinking sheets, the rise of 𝜙 improves the velocity and 

temperature profiles of the nanofluids. Physically, the addition of 𝜙 raises the collision of 

nanoparticles and base fluid which accelerates the nanofluid velocity [64]. As the value of 

𝜙 increases, the momentum and thermal boundary layers enlarge. Then, the temperature 

gradient (−𝜃′(0))  decreases. However, the increment of nanoparticle volume fraction 

boosts the thermal conductivity of the nanofluids that augments the Nusselt number 

(𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥 = −
𝑘𝑛

𝑘𝑓
 𝜃′(0)) associated with the heat transfer rate. 
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(a) 

 

(b) 

Figure 4. Effect of nanoparticle volume fraction on velocity profiles for: (a) Stretching case; (b) 

Shrinking case. 
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(a) 

 

(b) 

Figure 5. Effect of nanoparticle volume fraction on temperature profiles for: (a) Stretching case; (b) 

Shrinking case. 

The temperature profiles with various values of heat source/sink parameter (𝐾) are 

shown in Figure 6. It is observed that the increment of heat source parameter (𝐾 > 0) 

raises the temperature profiles of the nanofluids. The presence of a heat source yields extra 

heat to the nanofluids and raises the temperature. The thermal boundary layer thickness 

is also increased by 𝐾(> 0). However, the enhancement in the heat sink parameter (𝐾 <

0) reduces the temperature profiles and thermal boundary layer thickness. These agree 

with the results obtained by Khan and Khan [35]. 
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(a) 

 

(b) 

Figure 6. Effect of heat source/sink parameter on temperature profiles for: (a) Stretching case; (b) 

Shrinking case. 

Meanwhile, Figures 7–12 show the effects of non-Newtonian parameters (𝛽1, 𝛽2 and 

𝛽3) on the velocity and temperature profiles of the nanofluids. The augmentation of the 

fluid relaxation time parameter (𝛽1) reduces the velocity profile near the surface of the 

stretching sheet. The increase in 𝛽1, which implies the rise in the ratio of relaxation to ob-

servation times, enhances the resistance between the fluid elements and diminishes the 

velocity profile. After some distance from the sheet, the velocity profile increases with 𝛽1. 

Since resistance generates heat, the temperature profile rises with the increment of 𝛽1. 

However, the opposite behaviors are observed for the shrinking sheet case illustrated in 

Figures 7b and 8b. The Burgers’ fluid parameter (𝛽2) exhibits the same effects as 𝛽1 on the 

velocity and temperature profiles of the nanofluids. According to Hayat et al. [6], 𝛽1 and 

𝛽2 demonstrate both viscous and elastic effects, which give rise to tensile stress that re-

duces the velocity and momentum boundary layer thickness, as obtained in Figure 9a. 
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Furthermore, 𝛽2 is also dependent on relaxation time which raises the temperature profile 

displayed in Figure 10a. In contrast, the profiles for the shrinking sheet case, in Figures 9b 

and 10b, revealed different behaviors from the stretching sheet case. In Figures 11a and 

12a, the fluid retardation time parameter (𝛽3) boosts the velocity profile of the nanofluids 

but lowers the temperature profile. Retardation time implies the specific time needed to 

build shear stress in the fluid (see Iqbal et al. [21]). Hence, the increase in 𝛽3 yields more 

shear stress and improves the fluid velocity. The thinning of the thermal boundary layer 

raises the temperature gradient for a better heat transfer rate. However, the opposite oc-

curred for the shrinking sheet case in Figures 11b and 12b. 

 

(a) 

 

(b) 

Figure 7. Effect of fluid relaxation time parameter on velocity profile for: (a) Stretching case; (b) 

Shrinking case. 
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(a) 

 

(b) 

Figure 8. Effect of fluid relaxation time parameter on temperature profiles for: (a) Stretching case; 

(b) Shrinking case. 
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(a) 

 

(b) 

Figure 9. Effect of Burgers’ fluid parameter on velocity profiles for: (a) Stretching case; (b) Shrinking 

case. 



Mathematics 2022, 10, 1580 17 of 23 
 

 

 

(a) 

 

(b) 

Figure 10. Effect of Burgers’ fluid parameter on temperature profiles for: (a) Stretching case; (b) 

Shrinking case. 
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(a) 

 

(b) 

Figure 11. Effect of fluid retardation time parameter on velocity profiles for: (a) Stretching case; (b) 

Shrinking case. 
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(a) 

 

(b) 

Figure 12. Effect of fluid retardation time parameter on temperature profiles for: (a) Stretching case; 

(b) Shrinking case. 

5. Conclusions 

The flow of various Burgers’ nanofluids over a stretching/shrinking sheet in the pres-

ence of a heat source/sink is studied. The effects of nanoparticle volume fraction on the 

nanofluid flow are investigated by incorporating the Tiwari and Das nanofluid model in 

the problem formulation. Then, a built-in bvp4c package in MATLAB is utilized for nu-

merical computation of the flow problem. The following are the significant findings of this 

study: 

1. A unique solution is found for the stretching sheet case, while triple solutions are 

generated for the shrinking sheet case. 

2. Stability analysis of solutions determined that only the first solution is stable and 

realizable in practice. 
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3. Three different nanofluids are considered, and Cu/H2O nanofluid has the highest 

heat transfer rate compared to Al2O3/H2O and TiO2/H2O nanofluids. 

4. The application of Al2O3/H2O and Cu/H2O nanofluids in the flow over stretching and 

shrinking surfaces yield the highest skin friction coefficient, respectively. 

5. The inclusion of more nanoparticles into the base fluid boosts the velocity and tem-

perature profiles of the nanofluids. 

6. The temperature profile is also augmented by the increment of the heat source pa-

rameter but diminished with the heat sink parameter. 

7. The non-Newtonian parameters related to Burgers’ fluid have different effects on the 

velocity and temperature profiles of the nanofluids for both cases of stretching and 

shrinking sheets. 

This study can be extended to different flow geometries, such as Burgers’ nanofluids 

flow over a stretching cylinder or between a cone and disk, and other physical conditions, 

such as entropy generation, variable concentration, and chemical reaction. Furthermore, 

this study can be expanded to suit the current application of heat transfer fluid, for exam-

ple, in double pipe heat exchangers. Since this is a theoretical study, the experimental in-

vestigation of this flow problem is also encouraged. 
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Nomenclature 

𝑎 constant 

𝐶𝑓 skin friction coefficient 

𝐶𝑝 heat capacity (J/kgK) 

𝑓 dimensionless velocity 

𝑘 thermal conductivity (W/m∙K) 

𝐾 heat source/sink parameter 

𝑵𝒖𝒙 local Nusselt number 

𝑃𝑟 Prandtl number 

𝑄0 heat generation/absorption 

𝑅𝑒𝑥 local Reynolds number 

𝑆 mass flux parameter 

𝑡 time (s) 

𝑇 fluid temperature (K) 

𝑥, 𝑦 Cartesian coordinates along the sheet and normal to it, respectively (m) 

𝑢, 𝑣 velocity components along the 𝒙-and 𝒚-directions, respectively (m/s) 

𝑈𝑤 velocity of the stretching/shrinking sheet (m/s) 

𝑣𝑤 mass transfer velocity (m/s) 

Greek symbols  

𝛽1, 𝛽2, 𝛽3 non-Newtonian parameters 

𝜆 stretching/shrinking parameter 

𝜆1 relaxation time 

𝜆2 material parameter 

𝜆3 retardation time 

𝛾 unknown eigenvalue 

𝜂 similarity variable 

𝜌 fluid density (kg/m3) 
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𝜇 dynamic viscosity (kg/m2s) 

𝜏 dimensionless time variable 

𝜈 kinematic viscosity (m2/s) 

𝜓 stream function 

𝜃 dimensionless temperature 

𝜙 nanoparticle volume fraction 

Superscript  

′ differentiation with respect to 𝜂 

Subscripts  

𝑓 base fluid 

𝑛 nanofluid 

𝑠 nanoparticle 

𝑤 sheet surface 

∞ free stream 
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