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Abstract: The unsteady flow of biological liquid through non-uniform pumps under porosity impacts
is considered. The Jeffrey fluid is used as blood in the current study, which is also characterized as
viscoelastic fluid because of its dual characteristics: on the one hand, its viscosity in nature; on the
other hand, its elastic effect. Rheological equations are framed in a curvilinear coordinates system,
and porosity influences are simulated with the body force term in momentum equations. The flow
system has been transformed from fixed to wave frame using a linear–mathematical transformation
between these two frames. In the next mathematical steps, these transformed equations are given
in non-dimensional form using physical variables. The system of PDE is reduced to an ODE under
lubrication theory and long wavelength approximation. Solutions to reduced ordinary differential
equations are obtained numerically in MATLAB software via a BVP4C scheme. The physical impacts
of the involved parameters on flow features, such as curvature, porosity (Darcy’s number), non-
uniformity, and viscoelastic parameters, have been visualized graphically. Multi-sinusoidal waves
are used in the boundary wall of the curved pump for peristaltic pumping. The magnitude of velocity
profile for a saw-tooth wave (trapezoidal wave) is larger (smaller) than all other natures of peristaltic
waves. The larger intensity of Darcy’s number has a dynamic role in the reduction of peristaltic
pumping, whereas the opposite behavior is noticed when increasing the non-uniform nature of a
channel. A comparison between all multi-sinusoidal waves is also addressed. The results of the
present research shall be very productive for the manufacture of peristaltic pumps for drug delivery
and bio-medical systems.

Keywords: blood flow; pumping phenomenon; Jeffrey fluid; multi-sinusoidal waves; numerical
scheme

MSC: 35Q20

1. Introduction

In bio-fluid mechanics, peristaltic pumping is an important transportation phenomenon
due to the continuous expansion and contraction of the boundary walls of flexible ves-
sels/tubes. Peristaltic pumping has played a dynamic role in numerous biological processes
and has been simulated by researchers and scientists for the manufacture of nano-industrial
instruments such as the small intestine, finger pumps, robotic pumps, and artificial heart-
lung machines [1–3]. All of these pumps perform mechanically under the peristaltic
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mechanism. Many researchers have performed productive investigations in this domain
after the remarkable work of Latham [4]. These investigations have also included both vis-
cous and non-viscous liquids. Mathematical modeling related to peristaltic pumping was
initially performed by Shapiro et al. [5]. Hayat et al. [6] studied the peristaltic transporta-
tion of Maxwell liquid under the creeping phenomena in a porous medium. Numerical
simulations of viscoelastic liquid in a curved channel have been studied by Javid et al. [7],
who used peristaltic waves at the boundary walls for pumping under creeping theory. The
authors highlighted the impact of a larger Weissenberg number (viscoelastic parameter) on
peristaltic pumping features. They highlighted a comparison between curved and straight
channels. Recently, Abbasi et al. [8] performed a numerical formulation of hybrid liquid in
the presence of an electric field due to peristalsis. The authors drew graphs of the various
features using the shooting technique under creeping theory. They also compared the
thermal efficiency of hybrid fluid with nanofluid. They noticed that the velocity profile
is reduced under a larger magnetic strength. A similar effect was observed in a velocity
profile by increasing the Helmholtz–Smoluchowski velocity. Abd-Alla and Abo-Dahab [9]
studied the peristaltic motion of Jeffrey fluid through an asymmetrical channel. They also
noticed physical impacts of the magnetic field and rotation on rheological characteristics
under biological assumptions. The impact of the Hall parameter and the magnetic field
on the motion of Jeffrey fluid in a non-uniform rectangular duct via peristaltic pumping
under lubrication theory has been studied by Ellahi et al. [10]. The biomimetic propulsion
of viscoelastic fluid in a non-uniform rectangular duct was studied by Bhatti et al. [11], who
used the Jeffrey fluid model as a viscoelastic fluid in their flow analysis. Additionally, they
also highlighted the impact of the magnetic field on various features related to peristaltic
pumping under long wavelength assumption. A mathematical formulation related to the
bio-rheological motion of viscoelastic liquid in an asymmetric nano-channel via peristaltic
pumping has been studied by Tripathi et al. [12], who also used an electronic device (an
axial electric field) to transport fluid under a low Reynold’s number approximation and
Debye–Hückel linearization. Their results are productive for drug designed micro-chips.
Numerical simulation related to the biomimetic rheology of viscoelastic liquid (blood) in a
non-uniform channel was studied by Javid et al. [13], who noted that the magnetic field
has a vigorous role in the enhancement of pumping phenomena. The electro-kinetic flow
of bio-rheological fluid in a convergent channel via peristaltic pumping was studied by
Javid et al. [14]. The authors observed the combined effects of porosity medium (Darcy’s
number), magnetic field (Hartmann number), and electric field (electroosmosis parameter)
on flow characteristics under long wavelength supposition. The peristaltic motion of couple
stress fluid through a non-uniform channel under porosity effects has been discussed by
Javid et al. [15], who noticed that the larger intensity of a porous medium has a remarkable
role in the escalation of the magnitude of the velocity profile and the pressure gradient.
Akram and Saleem [16] analyzed the flow of Carreau liquid in a rectangular duct via
peristaltic transport under the creeping assumption. Additionally, the physical impact of
heat transfer on biomimetic propulsion are also addressed. The authors used different
waveforms of peristaltic pumping in their analysis. Akram et al. [17] debated the physical
impacts of partial slip and lateral walls on the sinusoidal motion of a non-Newtonian
fluid through a rectangular duct. The authors used different waveforms in their flow
study under lubrication theory. They found exact solutions to rheological equations and
highlighted the impact of embedded parameters on different peristaltic features through
graphs. The numerical simulation of peristaltic motion in a curved channel was demon-
strated by Javid et al. [18]. The physical impact of the magnetic field and the time relaxation
parameter on the different flow features related to peristaltic pumping are discussed with
the help of graphs in wave frame. The main aim of this study was to observe the physical
behavior of flow features under a larger intensity of the magnetic field and viscoelastic
parameter. The authors noted these effects for five different wave frames under a low
Reynolds number assumption.
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Motivated by the wider applications of blood rheology and peristaltic pumping in
biomedical science, the current investigation looks at the physical influences of porosity
parameters and different wave frames on the flow of a viscoelastic fluid in a non-uniform
channel. The key purpose of the current formulation is to examine the influence of porous
media on the peristaltic transportation of a viscoelastic liquid through non-uniform curved
pumps. Additionally, five different types of peristaltic waves are used in the current
investigation under lubrication theory. The mathematical modeling of the waves and their
graphical analysis are given in the next two sections. The interesting findings and key
conclusions of the current modeling are given in the last section.

2. Mathematical Modeling of Blood Pumping

Let us consider two-dimensional blood flow in a curved pump having the half-width
A. The flow takes place due to the peristaltic propulsion under porosity effects. We
have taken curvilinear coordinates (η, ς) for the pump with η, which represents the axial
coordinate, and ς, which is the radial coordinate of the flow geometry (see Figure 1). Let
σ∗ represent the radius of curvature and ω be the wave speed. In the current study, we
have used multi-sinusoidal wave frames, such as a square wave, cosine wave, trapezoidal
wave, sin wave, and sawtooth wave for blood propulsion. The rheological geometry is
mathematically expressed as [18,19]:

− H
(
η, t
)
= −A− α

(
2π

ε

(
η −vt

))
, (1)

Square wave

H
(
η, t
)
= B

[
4
π ∑∞

j=1
(−1)j+1

(2j− 1)
cos
(

2π

ε
(2j− 1)

(
η −vt

))]
+ A + α

(
2π

ε

(
η −vt

))
, (2)

Sine wave

H
(
η, t
)
= Bsin

(
2π

ε

(
η −vt

))
+ A + α

(
2π

ε

(
η −vt

))
, (3)

Trapezoidal wave
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(
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π
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)
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(
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(
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(
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(
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Cosine wave
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(
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(
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(
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))
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(
2π

ε

(
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, (5)

Saw-tooth wave

H
(
η, t
)
= B

[
8

π3 ∑∞
j=1

(−1)j+1

(2j− 1)2 sin
(

2π

ε
(2j− 1)

(
η −vt

))]
+ A + α

(
2π

ε

(
η −vt

))
, (6)

where −H is the lower wall, H is the upper wall, ε is the wavelength, B is the wave
amplitude, t is the time, α is the non-uniform parameter, and v is the wave speed.



Mathematics 2022, 10, 1579 4 of 19Mathematics 2022, 10, x FOR PEER REVIEW 4 of 21 
 

 

Square wave Sine wave 

  
Trapezoidal wave Cosine wave 

  

Saw-tooth wave 

 

Figure 1. Peristaltic pumps. 
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The velocity field for the present rheological analysis is defined as (V
(
η, ς, t

)
,

W
(
η, ς, t

)
, 0). Here, V

(
η, ς, t

)
and W

(
η, ς, t

)
represent the radial and axial components

of the velocity field. Due to two-dimensional rheology, no velocity component exists in
perpendicular direction to the ης–plane. Here, it is important to note that no external force
is required to transport the liquid except the abovementioned peristaltic waves.

In the current investigation, the Jeffrey fluid model uses a blood liquid. The constitu-
tive equation related to the viscoelastic model is defined as [20–22]:

τ = −pI + ϕ, (7)

ϕ =
µ

1 + β

(
γ1 + β∗

Dγ1
Dt

)
, (8)

where µ is the dynamic viscosity, (β, β∗) are the material variables of Jeffrey fluid, γ1 is the
first Rivlin–Ericksen tensor, and D/Dt is the material derivative.

The mathematical definitions of γ1 and D/Dt are:

γ1 = gradU +
(

gradU
)T , (9)
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D
Dt

=
∂

∂t
+ U·∇, (10)

where U is the velocity field, ∇ is the Nabla operator, and T is the transpose.
The flow equations in terms of curvilinear coordinates dealing with the curved pumps

are described as [23–29]:
∂

∂ς

(
(σ∗ + ς)W

)
+ σ∗

∂V
∂η

= 0, (11)

∂W
∂t + W ∂W

∂ς + Vβ
ς+σ∗

∂W
∂η −

V2

ς+σ∗ = −
1
ξ

∂p
∂ς + Y

(
1

ς+σ∗
∂
∂ς

(
(ς + σ∗)ζςς

)
+(

σ∗
ς+σ∗

)
∂ζςη

∂η −
ζηη

ς+σ∗

)
−
(

σ∗
ς+σ∗

)2 µV
κ2 ,

(12)

∂V
∂t + W ∂V

∂ς + Vσ∗
ς+σ∗

∂V
∂η + VW

ς+σ∗ = −
1
ξ

σ∗

(ς+σ∗)
∂p
∂η + Y

(
1

(ς+σ∗)2
∂
∂ς

(
(ς + σ∗)2ζςη

)
+
(

σ∗
ς+σ∗

)
∂ζηη

∂η

)
−
(

σ∗
ς+σ∗

)2 µW
κ2 ,

(13)

where ξ is the fluid density, p is the pressure, ζςς, ζςη , ζηη are the extra stress tensor
components, κ is the porosity parameter, and Y = µ/ξ is the kinematic viscosity.

The rheological system that is defined in Equations (11)–(13) deals with the unsteady
state (the state in all rheological features strongly depends upon the time) using curvilinear
coordinates. In order to shift this rheological system from an unsteady to a steady state, we
use the following transformations:

η′ = η −vt, ς′ = ς, v′ = V, w′ = W −v, p′ = p. (14)

The transformed system of governing equations is given as:

∂

∂ς′
((

σ∗ + ς′
)(

w′ + v
))

+ σ∗
∂v′

∂η′
= 0, (15)

−v ∂w′
∂η′ + (w′ + v) ∂w′

∂ς′ +
v′β

ς′+σ∗
∂w′
∂η′ −

v′2
ς′+σ∗ = −

1
ξ

∂p′
∂ς′ + Y

(
1

ς′+σ∗
∂

∂ς′

(
(ς′ + σ∗)ζς′ς′

)
+(

σ∗
ς′+σ∗

) ∂ζς′η′
∂η′ −

ζη′η′
ς′+σ∗

)
−
(

σ∗
ς′+σ∗

)2 µv′

κ2 ,
(16)

−−v ∂v′
∂η′ + (w′ + v) ∂v′

∂ς′ +
v′σ∗

ς′+σ∗
∂v′
∂η′ +

v′(w′+v)
ς′+σ∗ = − 1

ξ
σ∗

(ς′+σ∗)
∂p′
∂η′ + Y

(
1

(ς′+σ∗)2 ×

∂
∂ς′

(
(ς′ + σ∗)2

ζς′η′

)
+
(

σ∗
ς′+σ∗

) ∂ζη′η′
∂η′

)
−
(

σ∗
ς′+σ∗

)2 µ(w′+v)
κ2 .

(17)

This rheological system is difficult to handle directly. In order to overcome this
deficiency, researchers have introduced the scaling of physical variables. The key advantage
of these variables is to reduce the rheological equations from partial to ordinary DEQs.

We now introduce the following scaling transformation: ς = ς′/A is the radial
component, η = 2π/εη′ is the axial component, v = v′/v is the radial velocity, w = w′/v
is the axial velocity, Re = ξvA/µ is the Reynold’s number, p = 2πA/εvµ is the pressure,
δ = 2πA/ε is the delta (the wavelength ratio), σ = σ∗/A is the radius of curvature,
ζ = A/vµζ is the extra-stress tensor, h = H/A is the boundary wall, φ = B/A is the wave-
amplitude ratio, α = 2πα/ε is the non-uniform (divergent) parameter, and DA = κ/A2 is
the Darcy’s number (porosity parameter).

The velocity components can also be stated in forms of stream function (ψ), which are
defined as:

v = δ
σ

ς + σ

∂ψ

∂η
, w = −∂ψ

∂ς
. (18)
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After using these dimensionless variables, we apply the lubrication theory and long
wavelength approximations to obtain the reduced form of the rheological equations as:

dp
dς

= 0, (19)

− ∂p
∂η

+
1

σ(σ + ς)

∂

∂ς

(
(σ + ς)2της

)
− 1

DA
σ2

σ + ς

(
1− dψ

dς

)
= 0. (20)

Another form of Equation (20) is obtained using cross derivatives among these
equations as:

∂

∂ς

(
1

σ(σ + ς)

∂

∂ς

(
(σ + ς)2της

))
− σ2

DA
∂

∂ς

(
1

σ + ς

(
1− dψ

dς

))
= 0. (21)

where

της =
1

1 + β

(
−d2ψ

dς2 −
1

σ + ς

(
1− dψ

dς

))
, (22)

where β is the time relaxation (viscoelastic) parameter.
Substituting Equation (18) into Equation (21), we obtain

1
1 + β

∂

∂ς

(
1

σ(σ + ς)

∂

∂ς

(
(σ + ς)2

(
−d2ψ

dς2 −
1

σ + ς

(
1− dψ

dς

))))
− 1

DA2
∂

∂ς

(
σ2

σ + ς

(
1− dψ

dς

))
= 0. (23)

The boundary conditions (BCs) in terms of stream function are defined below [7,23]:

ψ = − q
2

,
∂ψ

∂ς
= 1 at ς = h, (24)

ψ =
q
2

,
∂ψ

∂ς
= 1 at ς = −h, (25)

where “q” is the time-average flow rate.
The mathematical equations of the multi-sinusoidal walls in the wave frame become:

− h(η) = −1− α(η), (26)

Square wave

h(η) = φ

[
4
π ∑∞

j=1
(−1)j+1

(2j− 1)
cos((2j− 1)η)

]
+ 1 + α(η), (27)

Sine wave
h(η) = φsin(η) + 1 + α(η), (28)

Trapezoidal wave

h(η) = φ

[
32
π2 ∑∞

j=1

sin
(

π
8ε (2j− 1)

)
(2j− 1)2 sin((2j− 1)η)

]
+ 1 + α(η), (29)

Cosine wave
h(η) = φcos(η) + 1 + α(η), (30)

Saw-tooth wave

(η) = φ

[
8

π3 ∑∞
j=1

(−1)j+1

(2j− 1)2 sin
(
(2j− 1)

(
η −vt

))]
+ 1 + α(η). (31)



Mathematics 2022, 10, 1579 7 of 19

Due to the complex nature of the differential equation, its exact solution is hard to
find. However, in the current analysis, we are interested in the numerical results of flow
equations using the BVP4C method in the MATLAB program.

The mathematical term ∂p/∂η represents the partial derivative of pressure (p) with
respect to the axial coordinate (η). Its numerical integration from 0 to 2π yields the pressure-
rise per wavelength:

∆p =
∫ 2π

0

dp
dη

dη. (32)

Procedure of BVP4C Numerical Technique: The BVP4C technique based upon a
collocation method for finding the numerical solution of BVP of the special form

F′ = s(x, F, o), a1 ≤ x ≤ a2 (33)

Concerned with nonlinear two-point BCs,

χ(F(a1), F(a2), o) = 0. (34)

where o represents embedded parameters in the vector-form. For simplification, the
governing equations and boundary conditions (BCs) are transformed into a linear system
using the following rules:

Firstly, transform the whole flow system from a higher order to a first-order ODE.
Secondly, a similar procedure is adopted to transform the higher order BCs to first-order
BCs. The initial guess used should satisfy the BCs (or the Newtonian solution for the current
problem). The main advantage in using this technique is that it is a very accurate method as
compared with the shooting method, because sometimes the shooting method is unstable
at initial points. The entire above procedure is created using MATLAB software. MATLAB
is a programming language that deals with the multi-paradigm function/programming
language. This language deals with all physical models in mathematical frameworks by
developing a numeric computing environment. This mathematical tool is also produc-
tive to plot, analyze, and manipulate any numerical data and function. To obtain more
information about the BVP4C technique, we direct readers to the research paper given in
references [26,27].

Figure 2 is plotted for the comparison of the numerical result with the analytical solu-
tion of viscous fluid given by Ali et al. [28]. This graph clearly validates the authenticity and
accuracy of our numerical results. This figure is plotted using the following substitutions:
α = β = 0 and DA→ ∞ .
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3. Physical Interpretation of Outcomes

The key purpose of this section is to scrutinize the physical impacts of embedded
parameters such as the curvature parameter, the time relaxation (viscoelastic) parameter,
the non-uniform parameter, and Darcy’s number (porosity) on the pressure gradient,
peristaltic pumping, axial velocity, and streamline. The graphical results related to the
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pressure gradient, peristaltic pumping, axial velocity, and streamline are plotted with the
MATLAB program. These results are shown in Figures 3–7. The flow is observed under the
multi-sinusoidal wave effects.
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Figure 3. (a) The velocity distribution w(ς) for curvature parameter (σ) at q = −3, DA = 0.01,
α = 0.1, β = 0.1, and φ = 0.2. (b) The velocity distribution w(ς) for viscoelastic parameter (β) at
q = −3, DA = 1, α = 0.1, σ = 1.5, and φ = 0.2. (c) The velocity distribution w(ς) for non-uniform
parameter (α) at q = −3, DA = 0.01, σ = 1.5, β = 0.1, and φ = 0.2. (d) The velocity distribution
w(ς) for porosity parameter (DA) at q = −3, β = 0.1, α = 0.1, σ = 1.5, and φ = 0.2.
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Figure 4. (a) The pressure gradient dp/dη for curvature parameter (σ) at q = −1.5, DA = 0.01,
α = 0.1, β = 0.5, and φ = 0.2. (b) The pressure gradient dp/dη for viscoelastic parameter (β) at
q = −1.5, DA = 0.01, α = 0.1, σ = 3 & φ = 0.2. (c) The pressure gradient dp/dη for non-uniform
parameter (α) at q = −1.5, DA = 0.01, σ = 3, β = 0.5, and φ = 0.2. (d) The pressure gradient
dp/dη for porosity parameter (DA) at q = −1.5, β = 0.5, α = 0.1, σ = 3, and φ = 0.2.
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Figure 5. (a) The pressure-rise ∆p for curvature parameter (σ) at DA = 0.01, α = 0.1, β = 0.5,
and φ = 0.2. (b) The pressure-rise ∆p for viscoelastic parameter (β) at DA = 0.01, α = 0.1, σ = 3,
and φ = 0.2. (c) The pressure-rise ∆p for non-uniform parameter (α) at DA = 0.01, σ = 3, β = 0.5,
and φ = 0.2. (d) The pressure-rise ∆p for porosity parameter (DA) at β = 0.5, α = 0.1, σ = 3,
and φ = 0.2.
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Figure 6. Trapping phenomena for curvature parameter (σ = 3, ∞) using (a,f) square wave, (b,g) sine
wave, (c,h) trapezoidal wave, (d,i) cosine wave, (e,j) saw-tooth wave at q = −2, DA = 10, α = 0.1,
β = 0.1, and φ = 0.2.
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α = 0.1, σ = 2, and φ = 0.2.
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Figure 3a–d presents the physical behavior of the axial velocity versus the radial
parameter with variation in the curvature parameter (σ), time relaxation parameter (β),
non-uniform parameter (α), and Darcy’s number (DA), respectively. We have plotted
these graphs for multi-sinusoidal waves. Figure 3a is plotted for the physical impacts of
the curvature parameter on the axial velocity (w(ς)) under larger porosity effects at the
cross-sectional area q = −3. This figure shows that the magnitude of w(ς) decreases when
increasing the numeric value of the curvature parameter from 1.5 to ∞. The asymmetric in
w(ς) is observed for the curved channel at σ = 1.5, and symmetry is observed for a straight
channel at σ→ ∞ . Sharp changes (boundary layers, BL) are predicted in the velocity
profile due to the larger effects of a porous medium. Figure 3b shows that, by increasing the
time relaxation parameter from 0.5 to ∞, the w(ς) shifts from the lower to the upper half.
This figure is plotted under porosity and curvature effects. According to a literature survey,
w(ς) shifts toward the upper half, and BL is predicted near the boundary walls for a larger
strength of the viscoelastic parameter, e.g., β = ∞. The asymmetric in w(ς) is observed
due to curvature effects. Another important element is the parabolic shape in w(ς), which
is noted for a smaller strength of the viscoelastic parameter, e.g., β = 0.5. The physical
impacts of a non-uniform parameter on w(ς) are displayed in Figure 3c. This figure shows
that, by increasing the numeric value of the non-uniform parameter from 0 to 0.1, w(ς)
increases significantly. This figure is plotted under the combined effects of porosity medium
and viscoelasticity. Physically, these results show that the non-uniform parameter has a
remarkable role in enhancing the magnitude of w(ς). A similar pattern in the magnitude
of w(ς) is observed in all multi-sinusoidal wave-frames. The magnitude of w(ς) does not
increase or shift from the lower to the upper half with greater porosity effects, as shown in
Figure 3d. Furthermore, the larger strength of the porosity effects has a vigorous effect to
develop a BL pattern in w(ς) for all multi-sinusoidal wave frames. Additionally, it can be
seen that the parabolic nature of the velocity profile is strongly affected under the larger
strength of a porous medium. In all the above figures, it is predicted that the sawtooth
wave has a larger magnitude of w(ς) as compared with all other waveforms (square wave,
sine wave, trapezoidal wave, and cosine wave). A smaller magnitude of w(ς) is observed
for the trapezoidal wave.

Figure 4a–d presents the physical behavior of the pressure gradient (dp/dη) versus the
axial parameter with a variation in the curvature parameter (σ), time relaxation parameter
(β), non-uniform parameter (α), and Darcy’s number (DA), respectively. We have plotted
these graphs for multi-sinusoidal waves. Figure 4a is plotted for physical influences of
the curvature parameter on dp/dη under larger porosity effects at the cross-sectional area
q = −1.5. This figure shows that the magnitude of dp/dη increases with an increasing
numerical value of the curvature parameter from 1.5 to ∞. The smooth lines represent
the graph of a curved pump, and the dotted lines symbolize a straight pump. Figure 4b
illustrates that, by increasing the time relaxation parameter from 0.5 to ∞, the magnitude
of dp/dη is enhanced. This figure is plotted under porosity and curvature effects. This
diagram is plotted for multi-sinusoidal wave frames. A similar nature of behavior is
predicted in all these wave frames. The graphical effects of a non-uniform parameter on
dp/dη are displayed in Figure 4c. This figure reveals that, with an increasing numerical
value of the non-uniform parameter from 0 to 0.1, dp/dη increases significantly. This figure
is plotted under the combined effects of porosity medium and viscoelasticity. Physically,
these results show that the non-uniform parameter has a remarkable role in enhancing
the magnitude of dp/dη. A similar pattern in the magnitude of dp/dη is observed in all
multi-sinusoidal wave frames. The magnitude of dp/dη decreases with greater porosity
effects, as shown in Figure 4d. Additionally, it can be seen that the wave nature of the
pressure gradient is strongly affected under the larger strength of a porous medium. In
all the above figures, it is predicted that the saw-tooth wave has a smaller magnitude of
the pressure gradient as compared with all other waveforms (square wave, sine wave,
trapezoidal wave, and cosine wave), and the largest magnitude of the pressure gradient is
observed for the trapezoidal wave.
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Figure 5a–d presents the physical behavior of pressure rise versus dimensionless flow
rate with variation in curvature parameter (σ), time relaxation parameter (β), non-uniform
parameter (α), and Darcy’s number (DA), respectively. We have plotted these graphs
for multi-sinusoidal waves. Figure 5a is plotted for the physical impact of the curvature
parameter on the pressure rise under larger porosity effects. This figure shows that the
magnitude of the pressure rise decreases with an increase in the numeric value of the
curvature parameter from 1.5 to ∞. Figure 5b illustrates that, with an increase in the
time relaxation parameter from 0.1 to ∞, the magnitude of the pressure rise decreases.
This figure is plotted under porosity and curvature effects. This diagram is plotted for
multi-sinusoidal wave frames. Similar behavior is predicted in all these wave frames. The
physical impact of a non-uniform parameter on the pressure rise is displayed in Figure 5c.
This figure reveals that, with an increasing numeric value of the non-uniform parameter
from 0 to 0.1, the pressure rise increases significantly. This figure is plotted under the
combined effects of porosity medium and viscoelasticity. Physically, these results show that
the non-uniform parameter has a remarkable role in the enhancement of the magnitude of
the pressure rise. A similar pattern in the magnitude of the pressure rise is observed in all
multi-sinusoidal wave frames. The magnitude of pressure increases with greater porosity
effects, as shown in Figure 5d. Additionally, it can be seen that the wave nature of the
pressure rise is strongly affected under the larger strength of a porous medium. In all the
above figures, it is predicted that the trapezoidal wave has a larger magnitude of pressure
rise as compared with all other waveforms (square wave, sine wave, sawtooth wave, and
cosine wave), and a smaller magnitude of pressure rise is observed for the sawtooth wave.

Figures 6–9 depict streamlined visualizations for the impact of numerous flow param-
eters in biomimetic rheology. The physical impacts of the curvature parameter (σ), time
relaxation parameter (β), non-uniform parameter (α), and Darcy’s number (DA) on the
trapping phenomena related to blood rheology, respectively, are presented in Figures 6–9.
We have plotted these graphs for multi-sinusoidal wave frames at a cross-sectional area,
e.g., q = −2. Figure 6a–e is plotted for a small numeric value of the radius of curvature,
e.g., σ = 3, and the result of a curved pump is obtained. Figure 6f–j is plotted for the
largest numeric value of a radius of curvature, e.g., σ→ ∞ , and the results of a straight
pump are obtained. These figures are plotted under the combined effects of non-uniform
parameter, porous medium, and time relaxation parameter. These figures are plotted for
multi-sinusoidal wave frames and are clearly observed from the wave present in each
figure of the stream function. The physical behavior of streamlines in both straight and
curved pumps is almost the same in shape. Figure 7a–e is plotted for a small numeric value
of the viscoelastic parameter, e.g., β = 0.1, for a curved pump. Figure 7f–j is plotted for a
large numeric value of the viscoelastic parameter, e.g., β→ ∞ . These figures are plotted
under the combined effects of non-uniform parameter, porous medium, and curvature
parameter. These figures are plotted for multi-sinusoidal wave frames and are clearly ob-
served from the wave present in each figure of the stream function. The physical behavior
of streamlines in both a smaller and larger strength of the time relaxation parameter on
the curved pumps is almost the same in shape. The results of viscous liquid are obtained
from β = 0. Figure 8a–e is plotted for a uniform parameter, e.g., α = 0. Figure 8f–j is
plotted for a non-uniform parameter, e.g., α = 0.1. These figures are plotted under the
combined effects of a viscoelastic parameter (time relaxation parameter), porous medium,
and curvature parameter. These figures are plotted for multi-sinusoidal wave frames and
are clearly observed from the wave present in each figure of the stream function. These
graphs show that the non-uniform parameter has a dynamic impact in enhancing the length
of the streamlines. Figure 9a–e is plotted for a small numeric value of Darcy’s number,
e.g., DA = 0.01, for a curved pump. Figure 9f–j is plotted for a large numerical value of
Darcy’s number, e.g., DA = 10.
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Figure 8. Trapping phenomena for non-uniform parameter (α = 0, 0.1) using (a,f) square wave,
(b,g) sine wave, (c,h) trapezoidal wave, (d,i) cosine wave, (e,j) saw-tooth wave at q = −2, DA = 10,
α = 0.1, σ = 3, and φ = 0.2.
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These figures are plotted under the combined effects of non-uniform, viscoelastic, and
curvature parameters. These figures are plotted for multi-sinusoidal wave frames and are
clearly observed from the wave present in each figure of the stream function. The physical
behavior of streamlines in both a smaller and larger strength of porosity parameter on the
curved pumps are almost the same in shape.

4. Conclusions

A mathematical formulation of the biomimetic rheology in a non-uniform curved
pump was performed. The whole mathematical formulation was performed under the
creeping phenomena and long wavelength assumption. The transportation of blood
through a curved pump was controlled by forces such as a porous medium, the strength of
viscoelastic parameter, and a non-uniform parameter. Due to the non-uniform nature of the
rheological regime, curvilinear coordinates were used to derive the equations of motion.
We have plotted all the figures for multi-sinusoidal wave frames such as square wave, sine
wave, trapezoidal wave, cosine wave, and sawtooth wave. Some numerical computations
are given below:

ã The axial velocity is strongly affected with the increasing strength of the porous
medium and the viscoelastic nature of fluid. The parabolic shape in the velocity
profile is observed for a smaller strength of a porous medium and a smaller numeric
value of the time relaxation parameter. BL is predicted for a larger strength of a porous
medium and greater numeric values of time relaxation parameter. The sawtooth wave
has a larger magnitude of axial velocity as compared with all other wave frames in
curved and straight pumps. The non-uniform parameter played a large role in the
augmentation of the magnitude of the velocity profile.

ã Each form of sinusoidal wave can easily be predicted in the graphs of pressure
gradients. The straight pump has a larger pressure gradient in magnitude as compared
with the curved pump. The magnitude of the pressure gradient is strongly affected
under larger strength porosity effects. The non-uniform curved pump has a larger
pressure gradient as compared with the uniform curved pump.

ã The curved pumps have a larger magnitude of peristaltic pumping as compared
with the straight pump. The larger strength of the porous medium and non-uniform
parameter have a vital role in enhancing peristaltic pumping. Reverse behavior is
noticed for a larger strength of viscoelastic effects.

ã The magnitude of streamlines for a trapezoidal wave is much larger as compared with
all other peristaltic wave frames. The length of streamlines is increased by increasing
the non-uniform parameter. Similar behavior in the streamlines is noticed for both
straight and curved pumps.

ã The physical results of a non-uniform straight pump are retrieved at smaller values
of σ.

ã The physical results of a uniform straight pump are retrieved at smaller values of σ at
α = 0.

ã The results of viscous liquid are attained at β = 0.
ã The results of Tanveer et al. [28] are obtained using a cosine wave frame only at

α = β = 0 and DA→ ∞ .

Some more recent contributions are mentioned in references [27–29].
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