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Abstract: A mathematical model of the nutrient-phytoplankton-zooplankton associated with viral
infection in phytoplankton under the Atangana-Baleanu derivative in Caputo sense is investigated
in this study. We prove the theoretical results for the existence and uniqueness of the solutions by
using Banach’s and Sadovskii’s fixed point theorems. The notion of various Ulam’s stability is used
to guarantee the context of the stability analysis. Furthermore, the equilibrium points and the basic
reproduction numbers for the proposed model are provided. The Adams type predictor-corrector
algorithm has been applied for the theoretical confirmation to establish the approximate solutions.
A variety of numerical plots corresponding to various fractional orders between zero and one are
presented to describe the dynamical behavior of the fractional model under consideration.

Keywords: Atangana-Baleanu-Caputo fractional derivative; fixed-point theorems; numerical
simulations; nutrient-phytoplankton-zooplankton; Ulam-Hyres stability

MSC: 26A33; 34A08; 34A12; 34C60; 47H10

1. Introduction

In nature, the basis of all aquatic food chains is plankton, which can be categorized
into dual types, namely, phytoplankton and zooplankton [1,2]. Plankton that transforms
mineral nutrients into ancient biotic material handling exterior energy from the sun is called
phytoplankton, whereas plankton that needs to survive by eating phytoplankton or small
aquatic animals is called zooplankton [3]. The succession and society of phytoplankton
could impact the environmental circumstances of the ecosystem. On the one hand, plankton
species have positive effects on the environment, such as giving food to sea life, oxygenation,
controlling and improving the quality of the water and circulating the nutrients, especially
nitrogen and phosphorus, that are natural sections of aquatic ecosystems and encourage the
growth of algae and aquatic plants [4,5]. On the other hand, plankton has harmful effects,
such as economic losses to fisheries and tourism due to plankton blooms that happen when
the number of phytoplankton species increases very fast until they cover the surface of the
ocean or river. This means that they block sunlight from reaching other organisms. This
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phenomenon affects the depletion of oxygen levels in the water and can ultimately lead to
aquatic plant and fish die-offs [6–11]. Furthermore, nutritional availability, as a result of the
enhanced nutrient response to the increasing phytoplankton population, is one of the major
variables impacting phytoplankton concentration. Another factor is viruses in natural
aquatic ecosystems, which have a significant impact on the phytoplankton population.

Real-world mathematical modeling is an effective method for forecasting some of their
ecological and biological components. The model’s validity determines the applicability of
this mathematical approximation. There are many researchers who are interested in the
interaction between phytoplankton, zooplankton, nutrients, and viruses. The dynamic
interaction between them has fascinated scientific and mathematical ecology’s curiosity. A
variety of mathematical models, which consist of differential equations, are constructed
to study the dynamics. In 2002, The dynamics of nutrient-driven phytoplankton blooms
were reported by Huppert et al. [12], who utilized the initial conditions to predict how
the peak of the bloom would be determined. In 2004, the phytoplankton-zooplankton
system was modeled as a predator-prey system by Singh et al. [13]. The dynamical
behavior of their system was studied both analytically and numerically in terms of stability
and persistence. In 2007, Chakraborty et al. [14] investigated a mathematical model of
nutrient-phytoplankton to better understand the dynamics of repeating bloom occurrences
in the attendance of harmful toxins emitted by toxin-building phytoplankton. Recently, in
2019, Nath et al. [15] analyzed the stability of different stationary points for the system
of nutrient–phytoplankton–zooplankton (NPZ) with the viral disease of phytoplankton
individuals. In a later year, Nath et al. [16] extended their work to construct and analyze a
mathematical model for plankton dynamics in NPZ model affected by a viral infection in
the population of phytoplankton. They verified the basic reproduction number and also
obtained the sufficient condition of Hopf-Bifurcation of the model. See [17–20] for a list of
further works and references.

Alternatively, as we know, the mathematical models ignore the memory effect since
they are only integer order derivatives, whereas the concept of differentiation with a
non-local operator also known as fractional differentiation has been recognized as a very
powerful mathematical instrument able to understand memory and hereditary features in
most biological systems. In addition, The response of the system is determined not only by
its current state but also by its entire history. Therefore, the ordinary integer-order derivative
does not cover this memory effect because it is a local operator. Concurrently, fractional
calculus has been widely interested by many researchers. It is an arbitrary order generalized
differential and integral operator. Various definitions of fractional derivative and integral
operators like Caputo–Liouville (CL), Caputo–Katugumpola (CK), Caputo–Fabrizio (CF),
Atangana–Baleanu–Riemann (ABR), Atangana–Baleanu–Caputo (ABC), and so on. They
have been defined and used in conjunction with differential systems in many works of
literature, including the NPZ problems. For example, in 2018, Ghanbar et al. [21] studied the
model of NPZ with variable order fractional differential operators of CL, CF, and Atangana-
Baleanu (AB). The dynamical effect of the interaction between nutrients and phytoplankton
with zooplankton was described in their work. In 2020, Shi et al. [22] used the fractional-
order stability theory to investigate the existence, stability of equilibrium points, and Hopf
bifurcation for an arbitrary order mathematical model with the CL operator under the
delay of nutrient–phytoplankton–toxic phytoplankton–zooplankton, Furthermore, we offer
the reader to explore the interesting other problems using the fractional derivative as in
2020, Thabet et al. [23] studied and analyzed the fractional model under ABC derivative
of a novel Coronavirus disease (COVID-19). In the same year, Kumar et al. [24], used the
fractional derivative which contains the Mittag–Leffler type of kernel to present an analysis
of the fractional model of the Klein–Gordon (K-G) equation. In 2021, Rahman et al. [25]
studied the ABC derivative of the fractional model for drinking behavior. They proved the
existence and uniqueness of the solution and illustrated the numerical simulation of the
model, see more works [26–30] and references cited therein.
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Motivated by the previous description to the best of our knowledge, the main aim of
this research is to develop a mathematical model governed by fractional-order differential
equations for investigating the impact of memory on the NPZ model. Moreover, the
mathematical model of NPZ on ABC–fractional derivative operator has not been discussed.
Therefore, in this paper, the ABC–fractional derivative operator will be applied to the NPZ
model proposed by [16], which is the paper’s originality and ingenuity (the ABC-FNPZ
model). Furthermore, we are interested in covering this margin by taking this model under
the ABC–fractional derivative with order α.

The paper is organized as follows: fundamental knowledge of ABC-fractional oper-
ators and definitions of fixed point theorems are provided in part 2. Part 3 is devoted to
proving the uniqueness of solutions for the ABC-FNPZ model (3) via fixed point theory
of Banach’s type, while the existence result forthe ABC-FNPZ model (3) are investigated
via Sodovskii’s fixed point theorem. The Ulam-Hyers stability and Ulam-Hyers-Rassias
stability of the ABC-FNPZ model (3) are extensively obtained in part 4. Further, simu-
lation results are demonstrated to confirm the theoretical results. The discussions of the
ABC-FNPZ model are studied in part 5 to offer better learning of the obtained results.
Finally, part 6 concludes by explaining the conclusions and italicizing the results obtained
in this paper.

2. Mathematical Backgrounds

Before moving on to model formulation, it is important to review several key defini-
tions related to the Atangana-Baleanu fractional operators [31].

2.1. Basic Definitions

Definition 1 ([31]). Assume that g ∈ H1(a, b) is a function with a < b. Then the ABC-fractional
derivative of g of order α ∈ [0, 1] is given by

ABC
t Dα

a g(t) =


AB(α)
1− α

∫ t

a
Eα

[
− α

1− α
(t− s)α

]
g′(s)ds, 0 < α < 1,

dg(t)
dt

, α = 1,
(1)

where AB(α) = 1− α + α/Γ(α) with AB(0) = AB(1) = 1, and

Eα(u) =
∞

∑
n=0

un

Γ(αn + 1)
, u, α ∈ C, Re(α) > 0.

Remark 1. Definition 1 will be productive for investigating real-world problems, and it would also
have great dominance when applying the Laplace transform to solve various physical problems with
initial conditions. However, when α = 0 we do not recover the initial function except when at the
origin the function disappears.

To escape previous problem, we present the following definition:

Definition 2 ([31]). Assume that g ∈ H1(a, b) is a function with a < b. Then the ABR-fractional
derivative of g of order α ∈ [0, 1] is given by

ABR
t Dα

a g(t) =
AB(α)
1− α

d
dt

∫ t

a
Eα

[
− α

1− α
(t− s)α

]
g(s)ds. (2)

Remark 2. Definitions 1 and 2 have a non-local kernal. Furthermore, in Definition 1 when the
function is the constant we obtain zero.
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Definition 3 ([31]). The ABC-fractional integral of a function g ∈ C1(a, b) is given by

AB
t Iα

a g(t) =
1− α

AB(α) g(t) +
α

AB(α)Γ(α)

∫ t

a
(t− s)α−1g(s)ds.

Remark 3. In Definition 3, when we take α = 0 we recover the initial function, and if α = 1, we
get the classical integral operator.

Lemma 1 ([31]). The relation between the ABC-fractional derivative and the AB-fractional inte-
gral of a function g ∈ H1(a, b) is

AB
t Iα

a (
ABC
t Dα

a g(t)) = g(t)− g(a).

2.2. Some Fixed Point Theorems

Definition 4 ([32]). Assume that E is a Banach space. Hence the operator K : E → E is a
contraction if

‖Ku−Kv‖ ≤ L‖u− v‖, ∀u, v,∈ E , L ∈ (0, 1).

Lemma 2 ([32]). Assume that B is a non-empty closed subset of E where E is a Banach space.
Hence any contraction mapping K from B into itself has a unique fixed point.

Definition 5 ([32]). Assume that E is a Banach space and K : E → E is a mapping. K is called a
nonlinear contraction if there is a continuous non-decreasing function Φ : R+ → R+ such that
Φ(0) = 0 and Φ(ε) < ε, for any ε > 0 with

‖Ku−Kvs.‖ ≤ Φ(‖u− vs.‖), ∀u, vs. ∈ E .

Definition 6 ([33]). Consider a bounded subset B of (X, d). The Kuratowski measure of non-
compactness, α(B), is given by

α(B) := inf

{
ε > 0 : there exits finitely many sets Bi such that B =

n⋃
i=1

Bi and M(Bi) ≤ ε

}
,

where M(Bi) = sup{|u− u| : u, u ∈ Bi}.

Definition 7 ([33]). Consider a bounded and continuous function K : Dom(K) ⊆ B → B on B.
For an arbitrary bounded set D ⊂ Dom(K), the map K is condensing if α(K(D)) < α(K), in
which α is defined previous part.

Lemma 3 ([34]). Assume that K1, K2 : B ⊆ E → E . The operator K1 +K2 is condensing if
satisfies the following assumptions (i) K1 is L-contraction; that is, for any u, v ∈ B and there
exists L ∈ (0, 1), such that ‖K1x−K1vs.‖ ≤ L‖u− vs.‖; (ii) K2 is compact.

Lemma 4 ([35]). Consider the bounded, closed and convex subset D of E and the condensing
mapping K : D → D. Then K has a fixed point.

2.3. Model Construction

As stated afore, this paper is based on the proposed model [16], where the populations
are separated into four groups representing concentration status. They are the concen-
tration of the nutrient at time t presented by nutrient group; N (t), the concentration of
susceptible phytoplankton at time t presented by susceptible group; S(t), the concentration
of infected phytoplankton at time t presented by infected group; I(t), and the concen-
tration of zooplankton at time t presented by zooplankton group; Z(t). Initially, for the
model under consideration, we insert the integer order of the ordinary NPZ model with the
non-integer order (fractional-order α). It will be expanded to the fractional system by tak-
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ing the ordinary derivative d/dt to fractional derivative in the context of ABC–derivative
ABC
t D

α
0 . The rebuilt NPZ model under viral infection in phytoplankton species under the

ABC–fractional derivative is recommended as:

ABC
t D

α
0N (t) = ξα(Nα

0 −N )− aαSu(N )− bαIv(N )− cαZw(N ),

ABC
t D

α
0S(t) = aαSu(N )− βαSI −mαZg(S)− ηα

1S ,

ABC
t D

α
0I(t) = bαIv(N ) + βαSI − nαZg(I)− ηα

2I ,

ABC
t D

α
0Z(t) = cαZw(N ) + eα

1mαZg(S) + eα
2nαZg(I)− ηα

3Z ,

(3)

with the initial condition (N ,S , I ,Z) = (N0,S0, I0,Z0) where N0, S0, I0, Z0 > 0. Here,
the functions u(N ), v(N ), and w(N ) represent the nutrient uptake rates of susceptible
phytoplankton, infected phytoplankton and, zooplankton, respectively. The functions
u(N ), v(N ), and w(N ) satisfy the following assumptions:

(i) The functions u(N ) and v(N ) are continuous defined on [0, ∞);
(ii) The functions u(0) = v(0) = 0, du/dN > 0, dv/dN > 0, and limt→∞ u(N ) =

limt→∞ v(N ) = 1;
(iii) The function g(x) is the response function representing herbivore grazing where g is

continuous on [0, ∞) and satisfies g(0) = 0, g′(x) > 0, and lim
t→∞

g(u) = 1, u = {S , I}.

The descriptions of all non-negative parameters are listed in Table 1.

Table 1. The details of parameters of the NPZ model (3).

Parameter Details of the Parameter

N0 The constant input of nutrient concentration;
ξ The washout rate of the nutrient;
η1 The mortality rate of susceptible phytoplankton group;
η2 The mortality rate of infected phytoplankton group;
η3 The mortality rate of zooplankton group;
a The maximal intake nutrient rate for susceptible phytoplankton species;
b The maximal intake nutrient rate for infected phytoplankton species;
c The maximal intake nutrient rate for zooplankton species;
β The force of infection between the both phytoplankton groups;
m The predation rate of zooplankton for susceptible phytoplankton;
n The predation rate of zooplankton for infected phytoplankton;
e1 The conversion efficiency due to consumption of susceptible

phytoplankton;
e2 The conversion efficiency due to consumption of infected phytoplankton;

2.4. The Equilibrium Points of the ABC-FNPZ Model (3)

Next, we show the equilibrium points and verify the stability of their associated
equilibria with the help of the basic reproduction numbers.

Investigating the equilibrium points of the dynamics models helps to better understand
the dynamic complexity of the models. To reach the equilibrium points for the ABC-FNPZ
model (3), we take

ABC
t D

α
0N (t) = 0, ABC

t D
α
0S(t) = 0, ABC

t D
α
0I(t) = 0, ABC

t D
α
0Z(t) = 0.

Then, the eight equilibrium points are analyzed as follows:

E∗0 = (N ∗0 , 0, 0, 0), E∗1 = (N ∗1 ,S∗1 , 0, 0), E∗2 = (N ∗2 , 0, I∗2 , 0),

E∗3 = (N ∗3 , 0, 0,Z∗3 ), E∗4 = (N ∗4 , 0, I∗4 ,Z∗4 ), E∗5 = (N ∗5 ,S∗5 , 0,Z∗5 ),
E∗6 = (N ∗6 ,S∗6 , I∗6 , 0), E∗7 = (N ∗7 ,S∗7 , I∗7 ,Z∗7 ),
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where N ∗0 = Nα
0 ,

N ∗1 = u−1
(

ηα
1

aα

)
, S∗1 =

ξα

ηα
1

[
Nα

0 − u−1
(

ηα
1

aα

)]
,

N ∗2 = v−1
(

ηα
2

bα

)
, I∗2 =

ξα

ηα
2

[
Nα

0 − v−1
(

ηα
2

bα

)]
,

N ∗3 = w−1
(

ηα
3

cα

)
, Z∗3 =

ξα

ηα
3

[
Nα

0 − w−1
(

ηα
3

cα

)]
,

I∗4 = g−1
(

ηα
3 − cαw(N ∗4 )

eα
2nα

)
, Z∗4 =

1
ηα

3 − cαw(N ∗4 )
[eα

2(b
αv(N ∗4 )− ηα

2 )I∗4 ],

S∗5 = g−1
(

ηα
3 − cαw(N ∗5 )

eα
1mα

)
, Z∗5 =

1
ηα

3 − cαw(N ∗5 )
[eα

1(aαu(N ∗5 )− ηα
1 )S∗5 ],

S∗6 =
ηα

2 − bαv(N ∗6 )
βα

, I∗6 =
aαu(N ∗6 )− ηα

1
βα

,

N ∗4 is the positive solution of

ξα(Nα
0 −N ∗4 )(ηα

3 − cαw(N ∗4 ))− [bαv(N ∗4 )(ηα
3 − cαw(N ∗4 )) + cαw(N ∗4 )eα

2(b
αv(N ∗4 )− ηα

2 )]I∗4 = 0,

N ∗5 is the positive solution of

ξα(Nα
0 −N ∗5 )(ηα

3 − cαw(N ∗5 ))− [aαu(N ∗5 )(ηα
3 − cαw(N ∗5 )) + cαw(N ∗5 )eα

1(aαu(N ∗5 )− ηα
1 )]S∗5 = 0,

N ∗6 is the positive solution of

ξαβα(Nα
0 −N ∗6 )− aαηα

2 u(N ∗6 ) + bαηα
1 v(N ∗6 ) = 0.

Remark 4. For the state of local stability of all equilibrium points, we require the following
conditions:

(i) E∗0 is the axial equilibrium point and exists for all parameter values;
(ii) E∗1 is the boundary disease-free equilibrium point and existence assumptions of E∗1 are ηα

1 < aα

and Nα
0 > u−1(ηα

1 /aα) which refers to aαu(Nα
0 ) > ηα

1 ;
(iii) E∗2 is the boundary endemic equilibrium point and existence assumptions of E∗2 are ηα

2 < bα

and Nα
0 > v−1(ηα

2 /bα) which refers to bαv(Nα
0 ) > ηα

2 ;
(iv) E∗3 is the boundary phytoplankton free equilibrium point and existence assumptions of E∗3 are

ηα
3 < cα and Nα

0 > w−1(ηα
3 /cα) which refers to cαw(Nα

0 ) > ηα
3 ;

(v) E∗7 is the interior equilibrium point and (N ∗7 ,S∗7 , I∗7 ,Z∗7 ) is the positive solution of

ξα(Nα
0 −N ∗7 )− aαS∗7 u(N ∗7 )− bαI∗7 v(N ∗7 )− cαZ∗7 w(N ∗7 ) = 0,

aαu(N ∗7 )− βαI∗7 −
mαZ∗7 g(S∗7 )
S∗7

− ηα
1 = 0,

bαu(N ∗7 ) + βαS∗7 −
nαZ∗7 g(I∗7 )
I∗7

− ηα
2 = 0,

cαw(N ∗7 ) + eα
1mαg(S∗7 ) + e2nαg(I∗7 )− ηα

3 = 0.

Furthermore, the Jacobian matrix (J) corresponding to the ABC-FNPZ model (3) at
E∗i = (N ∗i ,S∗i , I∗i ,Z∗i ) for i = 0, 1, . . . , 7, is computed by:

J(N ∗i ,S∗i , I∗i ,Z∗i ) =


J1,1 J1,2 J1,3 J1,4
J2,1 J2,2 J2,3 J2,4
J3,1 J3,2 J3,3 J3,4
J4,1 J4,2 J4,3 J4,4

, (4)
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where

J1,1 = −ξα − aαS∗i u′(N ∗i )− bαI∗i v′(N ∗i )− cαZ∗i w′(N ∗i ),
J1,2 = −aαu(N ∗i ), J1,3 = −bαv(N ∗i ), J1,4 = −cαw(N ∗i ),
J2,1 = aαS∗i u′(N ∗i ), J2,2 = aαu(N ∗i )− βαI∗i −mαZ∗i g′(S∗i ),
J2,3 = −βαS∗i , J2,4 = −mαg(S∗i ),
J3,1 = bαI∗i v′(N ∗i ), J3,2 = βαI∗i ,

J3,3 = bαv(N ∗i ) + βαS∗i − nαZ∗i g′(I∗i )− η′2, J3,4 = −nαg(I∗i ),
J4,1 = cαZ∗i w′(N ∗i ), J4,2 = eα

1mαZ∗i g′(S∗i ), J4,3 = eα
2nαg′(I∗i )Z∗i ,

J4,4 = cαw(N ∗i ) + eα
1mαg(S∗i ) + eα

2nαg(I∗i )− ηα
3 .

The dynamical behaviors of the ordinary differential equations of the NPZ model with
viral infection in phytoplankton (3), including extinction criteria of plankton population,
local stability analysis of equilibrium points by Lyapunov function, Hopf bifurcation of
the interior equilibrium point, along with permanence of the system have been analyzed
in [16].

3. Existence Criteries for the ABC-FNPZ Model (3)

The qualitative results for the ABC-FNPZ model (3) are discussed in this section.
Before proving, we define a Banach space B = C(J ,R4) with ‖X‖ = supt∈J {|X(t)|}
where

sup
t∈J
{|X(t)|} = sup

t∈J
{|N (t)|}+ sup

t∈J
{|S(t)|}+ sup

t∈J
{|I(t)|}+ sup

t∈J
{|Z(t)|}, J = [0, T].

Next, we represent the initial value problem (3)
ABC
t Dα

0X(t) = F(t,X(t)),

X(0) = X0(t) ≥ 0, 0 < t < T < ∞,
(5)

where

X(t) =


N (t)
S(t)
I(t)
Z(t)

, X0(t) =


N0(t)
S0(t)
I0(t)
Z0(t)

,


X1(t)
X2(t)
X3(t)
X4(t)

 =


X1(t,N ,S , I ,Z)
X2(t,N ,S , I ,Z)
X3(t,N ,S , I ,Z)
X4(t,N ,S , I ,Z)

, (6)

and

F(t,X(t)) =


X1(t)
X2(t)
X3(t)
X4(t)

 =


ξα(Nα

0 −N )− aαSu(N )− bαIv(N )− cαZw(N )
aαSu(N )− βαSI −mαZg(S)− ηα

1S
bαIv(N ) + βαSI − nαZg(I)− ηα

2I
cαZw(N ) + eα

1mαZg(S) + eα
2nαZg(I)− ηα

3Z

. (7)

Next, we will utilize the ABC-fractional integral operator AB
t Iα

0 on the problem (5)

X(t) = X0(t) +
1− α

AB(α)F(t,X(t)) +
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1F(s,X(s))ds. (8)

As in (8), we define an operator Q : B → B by

(QX)(t) = X0(t) +
1− α

AB(α)F(t,X(t)) +
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1F(s,X(s))ds. (9)
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It should be noticed that the ABC-FNPZ model (3) has the unique solution if and only
if Q has fixed points.

3.1. Uniqueness Criterias of the ABC-FNPZ Model (3)

In the first result, the uniqueness of solutions for the ABC-FNPZ model (3) would be
analyzed by applying the fixed point theory of Banach’s type.

Theorem 1. Suppose that F ∈ C(J ×R4,R) satisfying the following assumption:

(H1) there is a positive real number LF such that

|F(t,X(t))− F(t,Y(t))| ≤ LF|X(t)−Y(t)|, X,Y ∈ B, t ∈ J .

If (
1− α +

Tα

Γ(α)

)
LF

AB(α) < 1, (10)

hence the ABC-FNPZ model (3) has a unique solution.

Proof. The details of the proof are skipped. See Theorem 4.1 in [36].

In the second result, the uniqueness of solution for the ABC-FNPZ model (3) will be
proved via nonlinear contraction.

Theorem 2. Assume that F ∈ C(J ×R4,R) satisfying the following assumption:

(H2) |F(t,X(t))− F(t,Y(t))| ≤ |X(t)−Y(t)|
H∗+|X(t)−Y(t)| δF(t), X,Y ≥ 0, t ∈ J ,

where δF ∈ C(J ,R+) and H∗ = AB
t Iα

0 δF(T). Hence the ABC-FNPZ model (3) has a unique
solution.

Proof. We convert the problem (5) into X = QX which is corresponding to the ABC-FNPZ
model (3), where Q is given by (9). We define a continuous non-decreasing function
Φ : R+ → R+ as follows:

Φ(ε) =
H∗ε

H∗ + ε
, ∀ε ≥ 0.

Notice that, Φ verifies Φ(0) = 0 and Φ(ε) < ε for every ε > 0.
For any X, Y ∈ B, and for each t ∈ J , we obtain

|(QX)(t)− (QY)(t)| ≤ 1− α

AB(α) |F(t,X(t))− F(t,Y(t))|

+
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1|F(s,X(s))− F(s,Y(s))|ds

≤ 1− α

AB(α)
|X(t)−Y(t)|

H∗ + |X(t)−Y(t)| δF(t)

+
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1δF(s)

|X(s)−Y(s)|
H∗ + |X(s)−Y(s)|ds

≤ Φ(‖X−Y‖)
H∗

(
1− α

AB(α) δF(T) +
α

AB(α)Γ(α)

∫ T

0
(T − s)α−1δF(s)ds

)
≤ Φ(‖X−Y‖).

This yields that |(QX)(t)− (QY)(t)| ≤ Φ(‖X−Y‖). Hence, Q has the property of
nonlinear contraction. Therefore, by applying Lemma 2, Q has the unique fixed point that
is a unique solution of (5). The proof is finished.

In the last result, the uniqueness of solutions for the ABC-FNPZ model (3) will be
discussed via Hölder inequality.
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Theorem 3. Assume that F ∈ C(J ×R4,R) satisfying the following assumption:

(H3) |F(t,X(t))− F(t,Y(t))| ≤ θF(t)|X(t)−Y(t)|, X,Y ∈ B, t ∈ J , and θF ∈ L
1
q (J ,R+),

q ∈ (0, 1). Denote ‖θF‖ = max{|θF(t)|, (
∫ T

0 |θF(s)|
1
q ds)q}. If

‖θF‖
AB(α)

(
1− α +

α

Γ(α)

(
1− q
α− q

)1−q
Tα−q

)
< 1,

hence the ABC-FNPZ model (3) has the unique solution

Proof. For any X, Y ∈ B, and t ∈ J , by applying the Hölder inequality, we obtain

|(QX)(t)− (QY)(t)|

≤ 1− α

AB(α) |F(t,X(t))− F(t,Y(t))|+ α

AB(α)Γ(α)

∫ t

0
(t− s)α−1|F(s,X(s))− F(s,Y(s))|ds

≤ 1− α

AB(α) |θF(t)||X(t)−Y(t)|+ α

AB(α)Γ(α)

∫ t

0
(t− s)α−1|θF(t)||X(t)−Y(t)|ds

≤ 1− α

AB(α) |θF(t)|‖X−Y‖+ α

AB(α)Γ(α)

(∫ t

0
(t− s)

α−1
1−q ds

)1−q(∫ t

0
|θF(s)|

1
q ds
)q
‖X−Y‖

≤ ‖θF‖
AB(α)

(
1− α +

α

Γ(α)

(
1− q
α− q

)1−q
Tα−q

)
‖X−Y‖,

which implies that Q is contraction. Then, the fixed point theory of Banach’s type verifies
thatQ has the unique fixed point, that is a unique solution of the ABC-FNPZ model (3).

3.2. Existence Criteria of the ABC-FNPZ Model (3)

Theorem 4. Assume that F ∈ C(J ×R4,R) verifying (H1). Moreover, suppose that:

(H4) there is p ∈ C(J ,R+) so that

|F(t,X(t))| ≤ p(t), (t,X) ∈ J × B;

with p∗ = supt∈J {p(t)}.
Then the ABC-fractional NPZ model (3) has at least one solution on J if

L :=
(1− α)LF
AB(α) < 1. (11)

Proof. Define a bounded, closed and convex subset Br = {X ∈ B : ‖X‖ ≤ r} of B for a
constant r > 0. Let Q be defined by (9). We separate Q on Br into Q = Q1 +Q2, where

(Q1X)(t) = X0(t) +
1− α

AB(α)F(t,X(t)), (12)

(Q2X)(t) =
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1|F(s,X(s))|ds. (13)

We divide the proof into four steps.
Step I. QBr ⊂ Br.
Let us pick r ≥ ‖X0‖+ ‖p‖

AB(α) (1− α + Tα

Γ(α) ). Then, for each X ∈ Br and t ∈ J , we
obtain
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|(QX)(t)| ≤ sup
t∈J

{
|X0(t)|+

1− α

AB(α) |F(t,X(t))|+
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1|F(s,X(s))|ds

}
≤ ‖X0‖+

1− α

AB(α)‖p‖+ φ‖p‖
AB(α)Γ(α)

∫ t

0
(t− s)α−1ds

≤ ‖X0‖+
‖p‖

AB(α)

(
1− α +

Tα

Γ(α)

)
.

Thus, we get

‖QX‖ ≤ ‖X0‖+
‖p‖

AB(α)

(
1− α +

Tα

Γ(α)

)
< r.

This yields that QBr ⊂ Br.
Step II. Q2 is compact.
Thanks of Step I, we have that Q is uniformly bounded, so for each X ∈ Br, we have

|(Q2X)(t)| ≤ sup
t∈J

{
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1|F(s,X(s))|ds

}
≤ ‖p‖Tα

AB(α)Γ(α) .

Next, given t1 < t2 where t1, t2 ∈ J and X ∈ Br. Hence, we obtain

|(Q2X)(t2)− (Q2X)(t1)|

≤ α

AB(α)Γ(α)

∣∣∣∣∫ t2

t1

(t2 − s)α−1F(s,X(s))ds +
∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1]F(s,X(s))ds

∣∣∣∣
≤ ‖p‖

AB(α)Γ(α) |t
α
2 − tα

1 + 2(t2 − t1)
α|.

Since t2 − t1 → 0, the R.H.S of the above inequality tends to 0 via independently of
X ∈ Br, which implies that Q2 is equi-continuous. By the previous reasons, we get that
Q2 is relatively compact on Br. Thus, by the theory of Arzelá-Ascoli’s, we obtain Q2 is
compact on Br.

Step III. Q1 is L-contractive.
Thanks from (H1), for any X, Y ∈ Br, t ∈ J , we get

|(Q1X)(t)− (Q1Y)(t)| ≤
1− α

AB(α) |F(t,X(t))− F(t,Y(t))| ≤ 1− α

AB(α)LF‖X−Y‖.

Which yields that ‖Q1X−Q1Y‖ ≤ [(1− α)LF/AB(α)]‖X−Y‖. Hence,Q1 isL-contractive
with L := (1− α)LF/AB(α) < 1.

Step IV. Q is condensing.
Since,Q1 is continuous L-contraction andQ2 is compact, hence, by applying Lemma 3,

Q : Br → Br with Q = Q1 +Q2 is a condensing map on Br.
Therefore, all assumptions of Lemma 4 are verified. Hence, we conclude that Q has

the fixed point, which implies that the ABC-FNPZ model (3) has at least one solution in
B.

4. Stability Criterias of the ABC-FNPZ Model (3)

In this section, we analyze some sufficient conditions for the ABC-FNPZ model (3)
that will correspond to the assumptions of the different types of Ulam’s stability.
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Definition 8 ([37]). The ABC-FNPZ model (3) is said to be HU stable if there is CF > 0 such
that for every ε > 0 and for every solution Z ∈ B of∣∣∣ABCt Dα

0Z(t)− F(t,Z(t))
∣∣∣ ≤ ε, for all t ∈ J , (14)

there is the solution X ∈ B of the ABC-FNPZ model (3) under

|Z(t)−X(t)| ≤ CFε, t ∈ J , (15)

with ε = max(εi)
T, and CF = max(CFi )

T for i = 1, 2, 3, 4.

Definition 9 ([37]). The ABC-FNPZ model (3) is said to be GHU stable if there is GF ∈
C(R+,R+) with GF(0) = 0 so that, for every solution Z ∈ B of∣∣∣ABCt Dα

0Z(t)− F(t,Z(t))
∣∣∣ ≤ εGF(t), ∀t ∈ J , , (16)

there is the solution X ∈ B of the ABC-FNPZ model (3) so that

|Z(t)−X(t)| ≤ GF(ε), t ∈ J , (17)

with ε = max(εi)
T, and GF = max(GFi )

T for i = 1, 2, 3, 4.

Definition 10 ([37]). The ABC-FNPZ model (3) is said to beHUR stable with respect to GF ∈
C(J ,R+) if there is CF,GF > 0 so that for each ε > 0 and for every solution Z ∈ B of (16) there
is the solution X ∈ B of the ABC-FNPZ model (3) so that

|Z(t)−X(t)| ≤ CF,GFεGF(t), t ∈ J . (18)

with ε = max(εi)
T, CF,GF = max(CFi ,GFi

)T, and GF = max(GFi )
T for i = 1, 2, 3, 4.

Definition 11 ([37]). The ABC-FNPZ model (3) is said to be GHUR stable with respect to
GF ∈ C(J ,R+) if there is CF,GF > 0 so that for every solution Z ∈ B of∣∣∣ABCt Dα

0Z(t)− F(t,Z(t))
∣∣∣ ≤ GF(t), for all t ∈ J , (19)

there is the solution X ∈ B of the ABC-FNPZ model (3) so that

|Z(t)−X(t)| ≤ CF,GFGF(t), t ∈ J . (20)

with CF,GF = max(CFi ,GFi
)T, and GF = max(GFi )

T for i = 1, 2, 3, 4.

Remark 5. Clearly

(i) Definition 8⇒ Definition 9;
(ii) Definition 10⇒ Definition 11;
(iii) Definition 10 for GF(·) = 1⇒ Definition 8.

Remark 6. Z ∈ B is the solution of (14) if and only if there is U ∈ B (which depends on Z) so
that:

(i) |U(t)| ≤ ε, U = max(Ui)
T, ∀t ∈ J ;

(ii) ABC
t Dα

0Z(t) = F(t,Z(t)) +U(t), ∀t ∈ J .

Remark 7. Z ∈ B is the solution of (16) if and only if there is V ∈ B (which depends on Z) so
that:

(i) |V(t)| ≤ εGF(t), V = max(Vi)
T, ∀t ∈ J ;
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(ii) ABC
t Dα

0Z(t) = F(t,Z(t)) +V(t), ∀t ∈ J .

Remark 8. There is an increasing function GF ∈ C(J ,R+) and there is λGF > 0, so that for any
t ∈ J , we get the following result:

AB
0 Iα

t GF(t) ≤ λGFGF(t). (21)

4.1. TheHU Stability

Next, we provide the important lemma, which will be applied in the reasons onHU
and GHU stability of the ABC-FNPZ model (3).

Lemma 5. Let α ∈ (0, 1] and Z ∈ B be the solution of (14). Then Z ∈ B verifies the following
result:

|Z(t)− (QZ)(t)| ≤ 1
AB(α)

(
1− α +

Tα

Γ(α)

)
ε, 0 < ε ≤ 1. (22)

Proof. Assume that Z is the solution of (14). Then,{ ABC
t Dα

0Z(t) = F(t,Z(t)) +U(t), t ∈ J ,

Z(0) = Z0 ≥ 0.
(23)

The solution of the problem (23) can be rewritten as:

Z(t) = Z0(t) +
1− α

AB(α)F(t,Z(t)) +
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1F(s,Z(s))ds

+
1− α

AB(α)U(t) +
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1U(s)ds.

Thanks of Remark 6, it follows that

|Z(t)− (QZ)(t)| ≤ 1− α

AB(α) |U(t)|+
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1|U(s)|ds

≤ 1
AB(α)

(
1− α +

Tα

Γ(α)

)
ε.

Hence, the inequality (22) is obtained.

Now, we will prove theHU stability and GHU stability of solutions to the ABC-FNPZ
model (3).

Theorem 5. Assume that F ∈ C(J ×R4,R), (H1), and (10) hold. Then the ABC-FNPZ model
(3) is UH stable on J .

Proof. Assume that Z ∈ B is any solution of (14), and X ∈ B is the unique solution of the
ABC-FNPZ model (3). By using the triangle inequality, |a− b| ≤ |a|+ |b|, with Lemma 5,
we have

|Z(t)−X(t)| ≤
∣∣∣∣Z(t)−X0(t)−

1− α

AB(α)X(t)−
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1X(s)ds

∣∣∣∣
≤ |Z(t)− (QZ)(t) + (QZ)(t)− (QX)(t)|
≤ |Z(t)− (QZ)(t)|+ |(QZ)(t)− (QX)(t)|

≤ 1
AB(α)

(
1− α +

Tα

Γ(α)

)
ε +

LF
AB(α)

(
1− α +

Tα

Γ(α)

)
|Z(t)−X(t)|.
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Which implies that |Z(t)−X(t)| ≤ CF ε, where

CF =

1
AB(α)

(
1− α + Tα

Γ(α)

)
1− LF

AB(α)

(
1− α + Tα

Γ(α)

) .

Therefore, the ABC-FNPZ model (3) isHU stable.

Corollary 1. Taking GF(ε) = CFε in Theorem 5 with GF(0) = 0, then the ABC-FNPZ model
(3) is GHU stable.

4.2. TheHUR Stability

Next, we provide the important lemma, which will be helpful in the discussion on
HU stability and GHU stability of the ABC-FNPZ model (3).

Lemma 6. Let α ∈ (0, 1] and let Z ∈ B be a solution of (16). Then Z verifies the following
inequality

|Z(t)− (QZ)(t)| ≤ λGFGF(t)ε. (24)

Proof. Let Z be the solution of (16). Then{ ABC
t Dα

0Z(t) = F(t,Z(t)) +V(t), t ∈ J ,

Z(0) = Z0 ≥ 0.
(25)

The solution of (25) can be rewritten in the form

Z(t) = Z0 +
1− α

AB(α)F(t,Z(t)) +
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1F(s,Z(s))ds

+
1− α

AB(α)V(t) +
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1V(s)ds.

By using Remark 7, we have

|Z(t)− (QZ)(t)| ≤ 1− α

AB(α) |V(t)|+
α

AB(α)Γ(α)

∫ t

0
(t− s)α−1|V(s)|ds ≤ λGFGF(t)ε.

Hence, the inequality (22) is achieved.

Finally, we establish theRHU stability and GRHU stability results for the ABC-FNPZ
model (3).

Theorem 6. Assume that F ∈ C(J ×R4,R), (H1), and (10) hold. Then the ABC-FNPZ model
(3) isRHU stable on J .

Proof. Assume that Z ∈ B is a solution of (19), and X ∈ B is an unique solution of the
ABC-FNPZ model (3). By applying Lemma 6 and |a− b| ≤ |a|+ |b|, we get that

|Z(t)−X(t)| ≤
∣∣∣∣Z(t)−X0(t)−

1− α

AB(α)F(s,X(s))− α

AB(α)Γ(α)

∫ t

0
(t− s)α−1F(s,X(s))ds

∣∣∣∣
≤ |Z(t)− (QZ)(t) + (QZ)(t)− (QX)(t)|
≤ |Z(t)− (QZ)(t)|+ |(QZ)(t)− (QX)(t)|

≤ λGFGF(t)ε +
LF

AB(α)

(
1− α +

Tα

Γ(α)

)
|Z(t)−X(t)|,
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which yields that |Z(t)−X(t)| ≤ CF,GFεGF(t), where

CF,GF :=
λGF

1− LF
AB(α)

(
1− α + Tα

Γ(α)

) .

Hence, the ABC-FNPZ model (3) isRHU stable.

Corollary 2. Taking ε = 1 into |Z(t)−X(t)| ≤ CF,GFεGF(t) in Theorem 6 with GF(0) = 0,
then the ABC-FNPZ model (3) is GRHU stable.

5. Numerical Experiments for the ABC-FNPZ Model (3)

This section presents a powerful iterative scheme for the dynamical analysis of the
ABC-FNPZ model (3) and employ it to generate numerical results.

5.1. Numerical Technique

The NPZ model under consideration via ABC-fractional derivative is numerically
simulated by using the novel numerical method as proposed in [38]. To conduct this, we
first use the AB-fractional integral operator on both sides of the ABC-FNPZ model (3),
which yields:

N (t) = N0 +
1− α

AB(α)X1(t,N ,S , I ,Z) + α

AB(α)Γ(α)

∫ t

0
(t− s)α−1X1(s,N ,S , I ,Z)ds,

S(t) = S0 +
1− α

AB(α)X2(t,N ,S , I ,Z) + α

AB(α)Γ(α)

∫ t

0
(t− s)α−1X2(s,N ,S , I ,Z)ds,

I(t) = I0 +
1− α

AB(α)X3(t,N ,S , I ,Z) + α

AB(α)Γ(α)

∫ t

0
(t− s)α−1X3(s,N ,S , I ,Z)ds,

Z(t) = Z0 +
1− α

AB(α)X4(t,N ,S , I ,Z) + α

AB(α)Γ(α)

∫ t

0
(t− s)α−1X4(s,N ,S , I ,Z)ds.

Next, we take the hypothesis that the numerical solution is being assumed in [0, T],
which is divided by putting the time tk = hk for k = 0, 1, 2, . . . , N and h = T/N. Applying
the Adams’s-type predictor–corrector technique shown by [38] to establish the numerical
approximation of the R.H.S of the above system. Therefore, the corrector schemes of the
order integral form of ABC-fractional derivative are defined as below:

Nk+1 = N0 +
(1− α)hα

AB(α)Γ(α + 2)
X1(tk+1,N p

k+1,S p
k+1, I p

k+1,Z p
k+1)

+
αhα

AB(α)Γ(α + 2)

k

∑
j=0

Aj,k+1X1(tj,Nj,Sj, Ij,Zj),

Sk+1 = S0 +
(1− α)hα

AB(α)Γ(α + 2)
X2(tk+1,N p

k+1,S p
k+1, I p

k+1,Z p
k+1)

+
αhα

AB(α)Γ(α + 2)

k

∑
j=0

Aj,k+1X2(tj,Nj,Sj, Ij,Zj),

Ik+1 = I0 +
(1− α)hα

AB(α)Γ(α + 2)
X3(tk+1,N p

k+1,S p
k+1, I p

k+1,Z p
k+1)

+
αhα

AB(α)Γ(α + 2)

k

∑
j=0

Aj,k+1X3(tj,Nj,Sj, Ij,Zj),
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Zk+1 = Z0 +
(1− α)hα

AB(α)Γ(α + 2)
X4(tk+1,N p

k+1,S p
k+1, I p

k+1,Z p
k+1)

+
αhα

AB(α)Γ(α + 2)

k

∑
j=0

Aj,k+1X4(tj,Nj,Sj, Ij,Zj),

where

Aj,k+1 =

 kα+1 − (k− α)(k + 1)α, if j = 0,

(k− j + 2)α+1 + (k− j)α+1 − 2(k− j + 1)α+1, if 1 ≤ j ≤ k.

Furthermore, the predictor expressions N p
k+1, S p

k+1, I p
k+1, Z p

k+1 are presented as:

N p
k+1 = N0 +

1− α

AB(α)X1(tk,Nk,Sk, Ik,Zk) +
α

AB(α)Γ2(α)

k

∑
j=0

Ωj,k+1X1(tj,Nj,Sj, Ij,Zj),

S p
k+1 = S0 +

1− α

AB(α)X2(tk,Nk,Sk, Ik,Zk) +
α

AB(α)Γ2(α)

k

∑
j=0

Ωj,k+1X2(tj,Nj,Sj, Ij,Zj),

I p
k+1 = I0 +

1− α

AB(α)X3(tk,Nk,Sk, Ik,Zk) +
α

AB(α)Γ2(α)

k

∑
j=0

Ωj,k+1X3(tj,Nj,Sj, Ij,Zj),

Z p
k+1 = Z0 +

1− α

AB(α)X4(tk,Nk,Sk, Ik,Zk) +
α

AB(α)Γ2(α)

k

∑
j=0

Ωj,k+1X4(tj,Nj,Sj, Ij,Zj),

where
Ωj,k+1 =

hα

α
((k + 1− j)α − (k− j)α), 0 ≤ j ≤ k.

5.2. Numerical Experiments

The numerical experiments for the ABC-FNPZ model (3) are demonstrated by the
help support of the Adam’s type predictor–corrector tool provided in the previous part. The
approximate solutions of the ABC-FNPZ model (3) have been solved for different fractional
orders α, which are 1.000, 0.995, 0.985, 0.975, 0.965, 0.955, 0.945, 0.935 with N = 20, 000,
and T = 10, 000. To illustrate the examples that ensured the theoretical outcomes, we
separate the case of verification for the behavior effect into four situations in the case of the
difference between N0, u(N ), v(N ), w(N ), and (N (0),S(0), I(0),Z(0)).

Case I. If we set parameter values N0 = 3.9, ξ = 0.0012, η1 = 0.02, η2 = 0.03, η3 = 0.01,
a = 0.1, b = 0.01, c = 0.02, β = 0.3, m = 0.02, n = 0.04, e1 = 0.09, and e2 = 0.07. Under an
initial condition (N (0),S(0), I(0),Z(0)) = (0.05, 0.35, 0.10, 0.04) and

u(N ) = v(N ) = w(N ) =
N α

1 + 0.5N α
, g(S) = Sα

1 + 0.5Sα
, g(I) = Iα

1 + 0.5Iα
.

It is shown in Figure 1 that the ABC-FNPZ model (3) with α = 1.000 is LAS around
E∗6 = (0.5491151578, 0.08563906497, 0.07694268370, 0). Figures 2–11 depict the time series of
the system for various fractional orders α. Observing the results, the susceptible populations
of nutrient, phytoplankton, and infected phytoplankton oscillate increase and decrease
until tend to stabilize while the susceptible populations of zooplankton decrease rapidly to
zero with different α increase approaching one.
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Figure 1. Dynamic of the model (3) for different parameters in Case I with α = 1.000.

Figure 2. Dynamic of N (t) of the model (3) for different order α in Case I.

Figure 3. Dynamic of S(t) of the model (3) for different order α in Case I.
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Figure 4. Dynamic of I(t) of the model (3) for different order α in Case I.

Figure 5. Dynamic of Z(t) of the model (3) for different order α in Case I.

Figure 6. Dynamic of the model (3) for different parameters in Case I.
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Figure 7. Dynamic of the model (3) for different parameters in Case I.

Figure 8. Dynamic of the model (3) for different parameters in Case I.

Figure 9. Dynamic of the model (3) for different parameters in Case I.
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Figure 10. Dynamic of the model (3) for different parameters in Case I.

Figure 11. Dynamics of the model (3) for different parameters in Case I.

Case II. If we set N0 = 5.0, ξ = 0.0012, η1 = 0.02, η2 = 0.03, η3 = 0.01, a = 0.1,
b = 0.01, c = 0.02, β = 0.3, m = 0.02, n = 0.04, e1 = 0.09, and e2 = 0.07. Under an initial
condition (N (0),S(0), I(0),Z(0)) = (0.05, 0.35, 0.10, 0.04) and

u(N ) = v(N ) = w(N ) =
N α

1 + 0.5N α
, g(S) = Sα

1 + 0.5Sα
, g(I) = Iα

1 + 0.5Iα
.

Figure 12 verifies the stability of the system for α = 1.000. The time series of the
system for various fractional orders α are indicated in Figures 13–22. In this case, we
give the value of N0 different from Case I, so we notice from all figures that the system is
LAS around E∗7 = (0.6654718801, 0.08765044584, 0.09761827412, 0.03378140623) where the
susceptible populations of nutrient, phytoplankton and infected phytoplankton oscillate
increase and decrease until tend to stabilize as well as the susceptible populations of
zooplankton a little decrease and increase quickly then tend to stabilize with different α
increase approaching one.
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Figure 12. Dynamic of the model (3) for different parameters in Case II with α = 1.000.

Figure 13. Dynamic of N (t) of the model (3) for different parameters in Case II.

Figure 14. Dynamic of S(t) of the model (3) for different parameters in Case II.
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Figure 15. Dynamic of I(t) of the model (3) for different parameters in Case II.

Figure 16. Dynamic of Z(t) of the model (3) for different parameters in Case II.

Figure 17. Dynamic of the model (3) for different parameters in Case II.
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Figure 18. Dynamic of the model (3) for different parameters in Case II.

Figure 19. Dynamic of the model (3) for different parameters in Case II.

Figure 20. Dynamic of the model (3) for different parameters in Case II.
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Figure 21. Dynamic of the model (3) for different parameters in Case II.

Figure 22. Dynamic of the model (3) for different parameters in Case II.

Case III. If we set N0 = 3.9, ξ = 0.0012, η1 = 0.02, η2 = 0.03, η3 = 0.01, a = 0.1,
b = 0.01, c = 0.02, β = 0.3, m = 0.02, n = 0.04, e1 = 0.09, and e2 = 0.07. Under an initial
condition (N (0),S(0), I(0),Z(0)) = (0.45, 0.05, 0.02, 0.001) and

u(N ) = v(N ) = w(N ) = N α, g(S) = Sα, g(I) = Iα.

In this case, we use the same value of all parameters as in case I but the initial condition
and the functional u(N ), v(N ), w(N ), g(S), and g(I) are changed. As shown in Figures
23–33, one of the noticeable aspects of the asymptotic behaviors of the system is the
convergence of model solutions to E∗6 = (0.443037975, 0.08518987340, 0.08143459917, 0).
The susceptible populations of nutrient, phytoplankton and infected phytoplankton tend
to stabilize very fast, while the susceptible populations of zooplankton tend to zero more
quickly with different α increase approaching one.
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Figure 23. Dynamic of the model (3) for different parameters in Case III with α = 1.000.

Figure 24. Dynamic of N (t) the model (3) for different parameters in Case III.

Figure 25. Dynamic of S(t) the model (3) for different parameters in Case III.
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Figure 26. Dynamic of I(t) the model (3) for different parameters in Case III.

Figure 27. Dynamic of Z(t) the model (3) for different parameters in Case III.

Figure 28. Dynamic of the model (3) for different parameters in Case III.
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Figure 29. Dynamic of the model (3) for different parameters in Case III.

Figure 30. Dynamic of the model (3) for different parameters in Case III.

Figure 31. Dynamic of the model (3) for different parameters in Case III.
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Figure 32. Dynamic of the model (3) for different parameters in Case III.

Figure 33. Dynamic of the model (3) for different parameters in Case III.

Case IV. If we set N0 = 3.9, ξ = 0.0012, η1 = 0.02, η2 = 0.03, η3 = 0.01, a = 0.1,
b = 0.01, c = 0.02, β = 0.3, m = 0.02, n = 0.04, e1 = 0.09, and e2 = 0.07. Under an initial
condition (N (0),S(0), I(0),Z(0)) = (0.45, 0.05, 0.2, 0.1) and

u(N ) = v(N ) = w(N ) = N α, g(S) = Sα, g(I) = Iα.

Here, the initial condition differs from Case III. For Figure 34–44, we notice that E∗6 =
(0.443037975, 0.08518987340, 0.08143459917, 0) is LAS as well as the behavior of the model
quite similar to the other cases as the susceptible populations of nutrient, phytoplankton and
infected phytoplankton tend to stabilize, while the susceptible populations of zooplankton
tend to zero with different α increase approaching one.



Mathematics 2022, 10, 1578 28 of 33

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 34. Dynamic of the model (3) for different parameters in Case IV with α = 1.000.

Figure 35. Dynamic of N (t) of the model (3) for different parameters in Case IV.

Figure 36. Dynamic of S(t) of the model (3) for different parameters in Case IV.
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Figure 37. Dynamic of I(t) of the model (3) for different parameters in Case IV.

Figure 38. Dynamic of Z(t) of the model (3) for different parameters in Case IV.

Figure 39. Dynamic of the model (3) for different parameters in Case IV.
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Figure 40. Dynamic of the model (3) for different parameters in Case IV.

Figure 41. Dynamic of the model (3) for different parameters in Case IV.

Figure 42. Dynamic of the model (3) for different parameters in Case IV.
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Figure 43. Dynamic of the model (3) for different parameters in Case IV.

Figure 44. Dynamic of the model (3) for different parameters in Case IV.

As seen in all of the instances above (Case I–IV), the behavior of the system converges
to a different steady-state when the parameter values and functions are altered. In these
cases, they appear around the equilibrium points E∗6 and E∗7 . In addition, the reactions of
the system were predicted for various fractional orders, revealing that modest changes in
the fractional-order had no effect on the function’s overall behavior, only on the numerical
simulations that occur. In addition, we give a few comparisons of our study with the
previous studies. It is clear to see that the approximate solutions of the NPZ model (3)
converge to the ordinary solution when fractional-orders α approach one. This means
that when α = 1, the dynamic behavior of the considered system implies exactly the same
results as presented in [16]. Moreover, if u(N ) = v(N ) = N , g(S) = S , g(I) = I , and
c = 0, then the NPZ model (3) is reduced to cover the model presented in [15] for α = 1.

6. Conclusions

Mathematical modeling using nonlinear differential equations is an important tool
for better understanding the behavior of dynamic biological real-world problems. For
the summary throughout the manuscript, the ABC–fractional derivative is employed to
create the fractional model and the effect of interaction between nutrients, phytoplankton,
and zooplankton is investigated. The main aims of this study have been accomplished
by proving some theoretical requirements such as the existence and uniqueness with
the useful of fixed point theory of Banach’s and Sadovskii’s types. Moreover, the use of
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Ulam’s stability technique, including HU , GHU , RHU , and GRHU stability is proved.
The accuracy of the theoretical confirmation is verified via the numerical simulations in all
diagrams using the Adams’s-type predictor–corrector technique. Based on the results, the
non-integer operator used in the study delivers all of the expected theoretical properties
of the proposed model and the parameters play an important role in the stability of the
ecological system.

It will be a useful alternative technique to apply the ABC-fractional-order derivatives
procedure to study and analyze the other diversity of ecological systems in real-world
situations for further work. Furthermore, the task remains to develop the results obtained
for interesting fractional operators, see [39–41].
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