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Abstract: In shape analysis, the interpolation of shapes’ trajectories is often performed by means
of geodesics in an appropriate Riemannian Shape Space. Over the past several decades, different
metrics and shape spaces have been proposed, including Kendall shape space, LDDMM based
approaches, and elastic contour, among others. Once a Riemannian space is chosen, geodesics
and parallel transports can be used to build splines or piecewise geodesics paths. In a recent
paper, we introduced a new Riemannian shape space named TPS Space based on the Thin Plate
Spline interpolant and characterized by an appropriate metric and parallel transport rule. In the
present paper, we further explore the geometry of the TPS Space by characterizing the properties
of its geodesics. Several applications show the capability of the proposed formulation to conserve
important physical properties of deformation, such as local strains and global elastic energy.

Keywords: shape analysis; geodesics; thin plate spline

MSC: 53Z50

1. Introduction

In shape analysis, the interpolation of shapes’ trajectories is often performed by means
of geodesics in appropriate Riemannian Shape Spaces. Different proposed metrics and
shape spaces include Kendall shape space [1,2], LDDMM-based approaches [3–6], and
elastic contour [7]. Once a Riemannian space is chosen, geodesics and parallel transports
can be used to build splines or piecewise geodesics paths [1,8,9]. If the torsion of the
connection defined on the Riemannian space does not vanish, then a difference can appear
between geodesics and autoparallel lines [10]. In recent papers [11–14], the present authors
introduced and developed a new Riemannian shape space named TPS Space based on the
Thin Plate Spline interpolant and characterized by an appropriate metric and a parallel
transport rule, and the efficiency of this TPS parallel transport was compared with other
methods in [14]. One of the main features of the TPS connection is its independence from
the path. In fact, TPS parallel transport is named Direct Transport. This feature leads to
a flat space (vanishing Riemannian Curvature) with torsion. In previous contributions,
the geodesics of the TPS Space have never been studied. The present paper aims at
studying the characterization of geodesics and parallel lines in the TPS space together with
numerical techniques to compute them. Looking for geodesics’ computation is of particular
importance in a variety of morphological analyses, such as in spline regression, which have
applications in a wide range of shape analysis tasks spanning fields from medical/clinical
investigations to biological research. As will be clarified in the following pages, in a
connection with torsion, geodesics and autoparallel lines can coincide; however, this is not
a rule [10,15]. In particular, it happens only if the torsion is completely skew-symmetric. On
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the other hand, the TPS connection is defined by directly assigning a parallel transport rule
without analytically defining the corresponding covariant derivative, ∇. For this reason,
it is not possible to calculate the Christoffel symbols of the connection or the components
of the torsion to establish whether it is completely skew-symmetric [15]. In the following,
we exploit the qualitative definitions of Direct Transport and TPS metric in 2D to build the
geodesics and the autoparallel lines of the TPS space numerically. In particular, geodesics
are built by minimising the length of the path connecting two given points (the initial
and final shapes), while autoparallel lines are calculated via shooting from a point (the
initial configuration) and a vector (the initial deformation velocity). Our set of examples
allows the geometry of the TPS Space to be explored by characterizing the properties of its
geodesics and parallel lines. The paper is organised as follows:

• In Section 2, the general definitions of the two families of curves in Riemannian spaces
are summarized.

• In Section 3, the main concept defining the TPS Space are recalled.
• In Section 4, the novel contribution of this paper is presented, that is, the construction

of and comparison between autoparallel and geodesic lines in TPS Space.
• In Section 6, the numerical results are shown in order to discuss and compare the main

features of autoparallel and geodesic lines in TPS Space.

2. Geodesics in Riemannian Manifolds

In this section, we sketch several concepts in differential geometry, referring to [10,15,16]
for details.

In differential geometry, a Riemannian manifold (M, g) is a smooth manifold M
equipped with a positive-definite inner product g on the tangent space TpM at each
point p.

A connection on the manifold is a rule allowing for parallel transport vectors along
a smooth curve γ(t) ∈ M. This rule allows for the comparison of vectors belonging to
different tangent spaces.

To be more precise, any parallel transport rule τb,a along a path from a to b has to fulfill
the following properties:

τb,a : TaM → TbM , is linear, and non-singular.

Va 7→ Vb ;

moreover, for any point c on the path

τb,c ◦ τc,a = τb,a (1)

It follows from this that τa,a is the identity on TaM, and τa,b = (τb,a)
−1.

This procedure defines the connection, inducing a covariant derivative, ∇, that can be
then calculated by the following limit:

∇Vp U = lim
h→0

τ−1
h,0 Uγ(h) −Uγ(0)

h
(2)

A vector field V is said to be parallel along the curve γ if the following holds:

∇γ̇V = 0. (3)

A connection is considered compatible with a metric g if the parallel transport is an
isometry, i.e., if ga(Va, Wa) = gb(τb,a(Va), τb,a(Wa)) for each pair of vectors Va, Wa along
each path.

In terms of connection, this means that:

g(∇XY, Z) + g(∇XZ, Y) = X · g(Y, Z) (4)
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The torsion of the connection ∇ is a tensor field defined as

∇VW −∇WV − [V, W] , (5)

with [·, ·] the Lie bracket.
A connection is called symmetric when the torsion is null for all V, W. A funda-

mental result of Riemannian Geometry is the existence of a unique symmetric connection
compatible with the metric g, named the Levi–Civita (LC) connection, which we call ∇g.

In its more general meaning, a geodesic is a curve γ(t) ∈ M the tangent field γ̇(t) of
which is parallel along the curve itself:

∇γ̇γ̇ = 0. (6)

In other terms, a geodesic is the curve on the manifold where one walks, maintaining
the same direction, according to the given parallel transport rule. In this general sense, the
geodesic can be called an autoparallel line [10].

On the other hand, if the connection is the Levi–Civita one, the geodesics acquire
an additional property. Given two points, p, q, belonging to a convex neighbourhood of
(M, g), a geodesic from p to q is the shortest path joining p and q according to the metric g.
The distance d(p, q) between p and q can be calculated as

∫ q
p

√
g(γ̇(t), γ̇(t))dt.

In this paper, following [10], by geodesics we mean only those geodesics of the Levi–
Civita connection, ∇g; we refer to the geodesics of a different connection, ∇, as autoparal-
lel lines.

In general, the difference between a Levi–Civita connection, ∇g, and any connection
∇ is a (2, 1) tensor field D [15]:

∇XY = ∇g
XY + D(X, Y) X, Y ∈ TM (7)

The symmetric and the antisymmetric part of D have direct geometric meanings:

• A connection ∇ is torsion-free if and only if D is symmetric.
• A connection ∇ has the same geodesics as the Levi–Civita connection ∇g if and only

if D is skew-symmetric.

As a consequence of (4), the connection ∇ is compatible with the metric g if and only
if D belongs to the space

Dg := TM⊗ (Λ2TM) =
{

D ∈ ⊗3TM|D(X, V, W) + D(X, W, V) = 0
}

(8)

Finally, by means of (6)–(8), we find that a connection ∇ on (M, g) is both metric
and geodesic-preserving if and only if its torsion lies in Λ3TM, i.e., if it is completely
skew-symmetric. In this case, 2D = T and

∇XY = ∇g
XY +

1
2

T(X, Y,−) (9)

3. Geometry of the TPS Space

In the present section, we summarize the formulation of the TPS Space presented and
developed in [11–13]. Both the metric g and parallel transport are based on the interpolation
function called Thin Plate Spline (TPS). Then, in order to introduce the Riemannian structure
of the TPS Space, we need to first summarize the formulation of the TPS. Furthermore, in
order to introduce the metric g we need to explain strain energy, bending energy, and body
bending energy and how they are used to build g.
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3.1. Thin Plate Spline

Let Em be the m-dimensional Euclidean space and ΩX, ΩX′ ⊂ Em be two regular
regions representing the undeformed (source) and deformed (target) configurations of a
body (Figure 1), respectively. We label as x the points in ΩX and as x′ the points in ΩX′ .
The displacement field is represented by the following difference vectors:

u(x) = x′ − x (10)

If the configurations are sampled in k points (landmarks), then ΩX and ΩX′ are named
k-configurations and represented by the k×m matrices X and X′, respectively. The displace-
ments experienced by the k landmarks can be collected in the k×m matrix U = X′ − X.
Because translations do not affect the shape, they are filtered out by centring configurations
in the origin of Em. The set of all centred k-configurations is named Centred Configuration
Space CCk

m. Given a configuration X, the corresponding centred configuration can be repre-
sented in two different ways: by a k×m matrix obtained as XC = CX or, alternatively, by a
(k− 1)×m matrix XH = HX , where C = Ik − 1

k 1k1T
k , Ik is the k× k identity matrix and 1k

is a k× 1 column of ones, while H is the Helmert sub-matrix. The jth row of the Helmert
sub-matrix H is obtained by

Figure 1. Example of a 2D configuration made by six landmarks, with the first five lying on the
boundary and one, x6, inside the region Ω.

(hj, ..., hj,−jhj, 0, ..., 0), hj = −(j(j + 1))−1/2

and thus, the jth row consists of hj repeated j times followed by jhj and then k− j− 1 zeros,
j = 1, ..., k− 1. The notable property HT H = C can be used to switch from one parametriza-
tion to the other. In the following we use only centred configurations; we therefore remove
the subscript, C or H, by specifying, when necessary, which parametrization we are using.
Let X, X′ ∈ CCk

m be a pair of centred configurations. The Thin Plate Spline (TPS) Φ is a
function that interpolates, in Em, the deformation from X to X′. The TPS is parametrized
by the pair (AX , WX) where AX ∈ GL(m) is a linear transformation of Em represented by a
m×m matrix and WX is a k×m matrix. Given a point x ∈ Em and a centred configuration
X ∈ CCk

m, we obtain
x′ = Φ(x) = AXx + WT

Xs(x) (11)

where s(x) = (σ(x− x1), ..., σ(x− xk))
TC is a (k× 1) matrix, xi ∈ X is the position of the

i-th landmark, and

σ(h) =
{
||h||2 log(||h||2) if ||h|| > 0;
0 if ||h|| = 0.

for m = 2

σ(h) =
{
−||h|| if ||h|| > 0;
0 if ||h|| = 0.

for m = 3



Mathematics 2022, 10, 1562 5 of 20

Equation (11), applied landmark-wise to X, reads:

X′ = XAT
X + SXWX , with (SX)ij = Cikσ(xk − xl)Cl j . (12)

Because X and X′ are centred, Equation (12) represents m× (k− 1) interpolation con-
straints, while the matrices (AX , WX) consist of m×m + k×m = (m + k)m parameters. In
order to solve the interpolation problem we need to introduce m× (m+ 1) more constraints
on WX , uncoupling the affine and non-affine parts:

1T
k WX = 0 , XTWX = 0 . (13)

For a given pair (X, X′) there exists a unique set of parameters for the pair (AX , WX)
that solve the problem (12), constrained with (13):

AT
X = Γ21XX′ , WX = Γ11XX′ , (14)

where

Γ21X =
(

XTS−1
X X

)−1
XTS−1

X

Γ11X = S−1
X − S−1

X XΓ21X

are a m× k and a k× k matrices, respectively, which only depend on the source configuration
X. We note that the inverse of the singular matrix SX is obtained by means of the Helmert
matrix as

S−1
X = HT

(
HSX HT

)−1
H (15)

Finally the target X′ can be represented as the deformation of X:

X′ = X Γ21XX′ + SXΓ11XX′ = XAT
X + SXWX . (16)

The k× k matrix Γ11X is called the Bending Energy matrix and is used to extract the non
linear part of the deformation. Because it vanishes on affine deformations, its eigenvectors
associated with non vanishing eigenvalues are only (k− 1−m). These are called principal
warp eigenvectors, and represent the principal modes of deformation of the shape X [11].

3.2. Energies

It has been proven [17] that TPS is the only interpolating function that minimizes the
bending energy J, which gauges the second derivative of the displacement field:

J =
∫
Rm
∇2u · ∇2u (17)

Note that the bending energy is defined as an integral on the whole, Rm. In [12], in
order to provide a mechanical interpretation of bending energy, the concept of body-bending
energy was introduced, allowing the integration to be performed entirely inside the body:

JΩ =
∫

Ω
∇2u · ∇2u (18)

The body-bending energy is slightly smaller than the bending energy, and the decay
ρ = J/JΩ can be used to quantify the difference. Both J and JΩ can be used as pseudo-
metrics on TCCk

m, as they measure the difference between two configurations and vanish
in affine deformations. In order to endow X ∈ CCk

m with a Riemannian metric we need
a non-singular distance. Here, we propose slightly modifying the Dirichlet Energy used
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in the deformable templates method [18] to obtain the following expression for the strain
energy, ϕ, stored by the body:

ϕ =
1
2

∫
Ω

E · E (19)

where

E =
∇u + (∇u)T

2
(20)

is the strain tensor (in the case of small displacements). We note that ϕ vanishes on the
rotational part of the local deformation. On the other hand we stress that (19) is a global
measure that should be calculated via integration, starting from local measures, by means
of a discretization of the whole domain Ω. In [12] it is shown that (19) can be calculated
directly as a global quantity starting from landmark displacements, at least for bilinear
deformations in 2D. In fact, in that case, when a rectangle bends in a generic trapezoid the
deformation can be parametrized as follows:

u = (A− I)x + [(χ⊗ e1 ⊗ e2)x]x (21)

where χ = χ1e1 + χ1e2 are the bending with respect to the two axes, A is a linear trans-
formation, and I is the (m×m) identity matrix. Then, the strain energy can be calculated
as the sum of one contribution depending on the norm of A and a second contribution
proportional to the bending energy, J. The proportionality coefficient depends only on
geometrical quantities of Ω:

ϕ =
1
2
A(A− I) · (A− I) +

Ip

4ρA J (22)

where Ip and A are the polar inertia and the area of Ω, respectively. In the next section, we
show that both J and (A− I) · (A− I) can be calculated by means of the TPS parameters
Γ21X and Γ11X . Then, the expression (22) can be globally calculated starting from landmark
displacements by means of TPS.

3.3. TPS Metric

In [11], it is shown that the value of the bending energy J associated with a displace-
ment, U, of a configuration, X, obtained using the quadratic form

J(U) = νπTr(UT BU). (23)

where ν = 16 for m = 2 and is ν = 8 for m = 3. For this reason the matrix B := Γ11X
is called the Bending Energy Matrix of X. This fact allows us to evaluate the bending
energy directly by means of a closed form expression, avoiding the need to discretize the
configuration in a huge number of triangles. Furthermore we note that the Bending Energy
Matrix depends only on X and can be used as a pseudo-metric on TCCk

m. Let two given
configurations, X and X′ = X +U, related landmark-wise by a bilinear deformation as (21);
then, the strain energy (22) can be calculated as

ϕ(U) =
1
2
ATr(UTΓT

21XΓ21XU) +
4πIp

ρA Tr(UT BU) (24)

and the average strain energy on the body can be obtained as

ϕ(U) = ϕ(U)
A = 1

2 Tr(UTΓT
21XΓ21XU) +

4πIp
ρA2 Tr(UT BU) (25)

While this expression is valid only for bilinear deformations, it can be generalized by
assuming certain approximations concerning, in particular, the decay, ρ. In [13], it is further
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shown that for the body-bending energy calculation it is possible to define a symmetric
matrix, BΩ, such that the following holds:

JΩ(U) = Tr(UT BΩU) (26)

Then, in general, the decay, ρ(U), is not isotropic and can be calculated by means of
the Rayleigh quotient:

ρ(U) =
J(U)

JΩ(U)
=

16πTr(UT BU)

Tr(UT BΩU)
(27)

In the two-dimensional case, the BEB matrix BΩ is defined as follows:

BΩ = Γ11XCΩ Γ11X + Γ11XC∂Ω Γ11X (28)

(CΩ)ij = 8αiσ(xi − xj) (29)

(C∂Ω)ij =
k−q

∑
p=1

∫ 1

0

[
∇2si(xp + ζ`p)∇sj(xp + ζ`p)

− si(xp + ζ`p)div
(
∇2sj(xp + ζ`p)

) ]
· ∗(`p)dζ

where s(x) = (σ(x− x1), ..., σ(x− xk))
T and the values of the angles αi are

αi =

{
2π if xi ∈ Ω;
arccos( `i

‖`i‖
· `i+1
‖`i+1‖

) if xi ∈ ∂Ω. (30)

while `i = (xi+1 − xi) , ∗(`p) is the vector `p rotated clockwise by π/2, q is the number of
landmarks that does not lie on the boundary ∂Ω, and (k− p) is the number of landmarks
lying on ∂Ω (see Figure 1). As ρ can assume different values depending on the direction of
the deformation, while we need a metric depending only on X, in the following we assume
an isotropic decay ρ̄:

ρ̄ =
16π

(k− z)
Tr
(

B B−1
Ω

)
(31)

where z ≥ (m + 1) is the number of vanishing eigenvalues of
(

B B−1
Ω

)
. Then, in the

following, we approximate the calculus of the BEB by assuming

BΩ ' ρ̄B (32)

Finally, we generalize (25), defining the distance between two generic configurations
X and X′ (called Γ-Energy), as follows:

Γ(X, X′) := Tr
(
(X′ − X)T G (X′ − X)

)
(33)

where

G := µ1ΓT
21XΓ21X + µ2Γ11X µ1 =

1
2

and µ2 =
4πIp

ρ̄A2 (34)

We note that Γ21X, Γ11X, µ2 depend only on the source configuration, X. From a
mechanical point of view, we can define the Γ-energy Γ(U) as the average strain energy
ϕ(Ũ), evaluated on a more simple deformation Ũ characterized by the same uniform
component Ũu = Uu of U and a bilinear deformation Ũnu storing the same body bending
energy of Unu, i.e., such that JΩ(Ũnu) = JΩ(Unu). In [12], it is shown that the Γ-energy
is a good approximation of the strain energy for more general deformations as well as
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bilinear ones. Then, the TPS Space [11–13] can be defined as the CCk
m equipped with the

TPS metric tensor:
g(U, V) := Tr

(
UT G V

)
(35)

In particular, the affine and non-affine components of the metric are defined by the
sub-metrics

gu(U, V) := Tr
(

UT Gu V
)

gnu(U, V) := Tr
(

UT Gb V
)

(36)

where
Gu := µ1ΓT

21XΓ21X Gnu = µ2Γ11X (37)

Alignments: OPA and MOPA Techniques

After the TPS metric tensor G is introduced, we introduce a technique for managing
rotations in order to align two configurations, X and Y, based on minimization of the
distance, defined as

d(X, Y) = inf
Q∈SOm

√
Tr((YQ− X)TGα(YQ− X)) .

The aligned configuration, Ŷ, is obtained by means of an optimal rotation, Q̂, minimiz-
ing d.

Ŷ = YQ̂

where Q̂ = argmin g((YQ− X), (YQ− X)). According to this definition, Q̂ turns out to
be the rotational component of the polar decomposition of YTGX. When α = 0, we obtain
the rotational component of YTX, the classical Ordinary Procrustes Analysis (OPA). When
α = 1, then YTGX = AX. In the latter case, we define the alignment Modified OPA, or
MOPA [11].

3.4. TPS Direct Transport

The connection called the TPS connection was introduced in [11] and developed in [13].
It has the following properties:

1. It is compatible with the TPS metric;
2. It is compatible with the decomposition provided in (12);
3. It is independent of the path.

We assume all the configurations to be centred and represented by Helmertized land-
marks; then, if not otherwise specified, each matrix is a (k− 1)×m matrix. Furthermore,
deformation vectors have a subscript denoting the starting point, that is, the source config-
uration; for details, see [11].

Let X and Y be two source configurations and let VX and VY be the two associated
deformation vectors, provided by

VX = X′ − X = X(AT
X − I) + SXWX ,

VY = Y′ −Y = Y(AT
Y − I) + SYWY . (38)

We can then say that VY is the parallel transport of a given VX , that is, VY = τY,X(VX),
if and only if the uniform part of VY equals that of VX

AY = AX ; (39)

and the non uniform part WY of VY solves the linear systems

YTWY = XTWX = 0 QYET
YWY = QXET

XWX , (40)
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where the (k− 1)× (k− 1−m) body principal warps matrix EX collects all the body prin-
cipal warps of X and QX is a suitable (k− 1− m)× (k− 1− m) orthogonal matrix (i.e.,
QT

XQX = I) defined on each configuration X and representing a rotation or reflection of
the principal warps. After being chosen, a configuration P as a Pole for the space QX is
estimated, minimising the Euclidean distance ‖EXQBX − EP‖ between the rotated principal
warps of X and the corresponding basis on the pole, P.

The principal warps matrix can be built as follows:

• Perform a TPS analysis on X and find the SX and Γ11X ;
• Perform an eigenvalue analysis on Γ11X and obtain Γ11X = ΓΛΓT , where Γ is the

(k− 1)× (k− 1) matrix containing the eigenvectors γi in column and Λ is the diag-
onal (k− 1)× (k− 1) matrix of the eigenvalues λ1, . . . , λk−1 ordered by increasing
magnitude (the first m eigenvalues will be equal to 0);

• Drop the first m columns from Γ by obtaining the (k− 1)× (k− 1−m) matrix Γ̄,
containing the principal warp eigenvectors by column;

• Drop the first m rows and the first m columns from Λ by obtaining the (k− 1−m)×
(k− 1−m) matrix Λ̄;

• Define the (k− 1)× (k− 1−m) matrix EX = SX Γ̄Λ̄1/2.

The same steps must be used to build the principal warps matrix EY on the target
configuration.

The first equation of (40) constrains Wb to be orthogonal to the affine part, while
the second defines the isometry in the subspace of the non-affine deformations. This last
requirement implies the conservation of the total bending energy. The system (40) can be
written as  YT

QYET
Y

 [WY
]
=

 XT

QXET
X

 [WX
]

.

This can be re-written as
WY = M−1

Y MXWX

And so:

VY =

(
YΓ21X +

√
µ2(X)

µ2(Y)
SY M−1

Y MXΓ11X

)
VX , (41)

It is worth noting that Equation (41), characterizing VY as the parallel transport of VX ,
depends only on quantities related to the startpoint, X, and endpoint, Y, of the transport,
and does not depend on the path. For this reason, the TPS connection is characterized by
vanishing curvature and non-vanishing torsion. Moreover, it is easy to check that (41) is
compatible with the TPS metric G and with the decomposition provided in (12).

4. Geodesics and Autoparallel Lines in TPS Space

In the present section, we introduce the main contribution of the present paper, that
is, to show the most important features of the geodesics and autoparallel lines in the TPS
space and compare the two families of lines.

In the previous section, the TPS connection has been defined by directly assigning
the parallel transport rule (41) without analytically defining the corresponding covariant
derivative ∇. For this reason, it is not immediately necessary to calculate the Christoffel
symbols of the connection or the Christoffel symbols of the corresponding Levi–Civita
connection ∇g, nor the components of the torsion for the purpose of establishing whether
it is completely skew-symmetric [15] and thus whether or not the autoparallel lines and
geodesic lines coincide.

After VX , VY in (41) is substituted with Ẋ0, Ẋ(t) and X, Y with X0, X(t), we obtain

Ẋ(t) =

(
X(t)Γ21X0 +

√
µ2(X0)

µ2(X(t))
SX(t)M−1

X(t)MX0Γ11X0

)
Ẋ0, (42)
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Equation (42) can be integrated to shoot the autoparallel line starting from X0 with initial
velocity Ẋ0. In the general case, this integration is not simple because it involves the
construction and inversion of the matrix MY and alignment with the pole, P. Fortunately,
the integration of (42) is not as complicated in the case of purely affine deformations. In the
next Section 4.1, we show the analytical solution of geodesic and autoparallel lines for the
case of purely affine deformations. Then, in Sections 4.2 and 4.3, we exploit the qualitative
definitions of Direct Transport and TPS metrics in 2D to numerically build the geodesics
and autoparallel lines of the TPS space, respectively, in the general case. In particular,
geodesics are built by minimising the length of the path connecting two given points (initial
and final shapes), while autoparallel lines are calculated via shooting from a point (initial
configuration) and a vector (initial deformation velocity).

4.1. Analytical Solution for the Affine Subspace

A trajectory of affine transformations of X0 can be represented as

X(t) = X0 AT
X0
(t) (43)

with AX0(t) ∈ SL(m)∀t and A(0) = I

X0 = X(t)A−T
X0

(t) (44)

Ẋ(t) = X0 ȦT
X0
(t) = X(t)A−T

X0
(t)ȦT

X0
(t) (45)

Ẋ(0) = X0 A−T
X0

(0)ȦT
X0
(0) = X0 ȦT

X0
(0) (46)

The trajectory is an autoparallel line if and only if

Ẋ(t) = τX(t),X0
Ẋ(0)∀t ∈ [0, 1] (47)

that is, by means of the (39)

Ẋ(t) = X(t)A−T
X0

(t)ȦT
X0
(t) = X(t)ȦT

X0
(0) (48)

that is,
ȦX0(t)A−1

X0
(t) = ȦX0(0) (49)

we note that this equation is the same as that characterizing the autoparallel lines in GL(m).
The solution is as follows:

X(t) = X0 exp
[
tȦX0(0)

]T t ∈ [0, 1] (50)

as is well known, in GL(m) geodesics and autoparallel lines coincide [15,19]; then, this
property holds for TPS-geodesics and TPS-autoparallel lines as well in the case of affine
deformations. The geodesic from X0 to X1 can be calculated as

X(t) = X0 exp
[
t log

(
Γ21X0 X1

)]
t ∈ [0, 1] (51)

4.2. Geodesics Calculation: Objective Function Optimisation and Equality Constraints

Given two configurations X0, X1, we calculate the geodesics from X0 to X1 by ex-
ploiting the property of minimizing the Riemannian distance. The geodesic trajectory
{X(t)|t ∈ [0, 1], X(0) = X0, X(1) = X1} can be calculated by minimizing the functional:

d(X0, X f ) =
∫ 1

0

√
g(Ẋ(t), Ẋ(t))dt (52)
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In addition, we require that the curve has a constant speed,
(

g(Ẋ, Ẋ)
)·

= 0, and we enforce
this constraint by adding a Lagrange multiplier, k, to the objective function:

f (X(t)) = d(X0, X f ) + k
∫ 1

0

(
g(Ẋ, Ẋ)

)·dt = 0 (53)

The optimization problem is solved numerically by discretizing X(t) in a finite number
n of steps Xi using Algorithm 1, sketched below.

Algorithm 1: geodesic algorithm.

Result: Geodesic path with initial configuration X0 and final configuration X f
using n discretization steps.

1 initialization: X0, Xn = X f , n;
2 for i← 1 to n do
3 Set Vi = Xi+1 − Xi

4 Set di =
√

g(Vi, Vi)
5 Set ddi = di − di−1
6 end
7 Return f = ∑n−1

i=1 di + k ∑n−1
i=1 dd2

i ;

Then, the objective function is minimized by the R optimizer Solnp, R package version
1.16 [20]. The solver is an indirect solver implementing the augmented Lagrange multiplier
method with an SQP interior algorithm.

4.3. Autoparallel Lines Calculation Algorithm via Shooting

Autoparallel lines do not minimize any distance, and are built directly by means
of the parallel transport rule (41) via shooting. Let Xo ∈ M be the initial configuration
and V ∈ TM be the initial deformation velocity; V can be called shooting vector and the
path X(t) such that X(0) = X0, Ẋ(0) = V,∇ẊẊ = 0∀t ∈ [0, 1] is called shooting path of
Xo and V. In order to interpolate between X0 and X1 with an autoparallel line, shooting
should be used iteratively to find a shooting vector V such that a shooting path starting
at X0 and with V as shooting vector reaches X1 in a unit time (see [7]). In the present
work, we are interested in comparing the behaviour of geodesics and autoparallel lines;
thus, we avoid the iterative procedure by limiting ourselves to implementing a single
shooting procedure starting from a configuration Xo and a deformation Vo and then using
Algorithm 2, sketched below.

Algorithm 2: shooting algorithm.

Result: Shooting path with initial position X0 and initial velocity V0 using n
discretization steps.

1 initialization: X0, V0, n;
2 for i← 1 to n do
3 Set Xi = Xi−1 + Vi−1 /* update configuration */
4 Set Vi = τXi ,Xi−1(Vi−1)/* update velocity via PT */
5 end
6 Return X;

5. Examples

We propose five experiments aimed at finding TPS geodesics and comparing them
with original shapes, shapes inputted in the optimizer, and shapes from geodesic shooting.
For each experiment, eight shapes were generated.
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1. Affine case, spherical: in this simple case, the starting rectangle experiences only a
size increase.

2. Affine case, general: in this case, the rectangle undergoes only a pure affine transfor-
mation.

3. Non-affine case bending: in this case, the rectangle experiences pure bending parame-
terized according to the parameters specified below.

4. Non-affine case bending+size: in this case, the rectangle experiences pure bending
parameterized according to the parameters specified below, with the addition of a
size increase.

5. Non-affine case bending+general affine component: in this case, the rectangle experi-
ences pure bending parameterized according to the parameters specified below, with
the addition of the same parameters of affine transformation as in case 2.

5.1. Dataset

A set of parametric shape paths were generated, starting from a rectangle 1× 3, by
means of the following formula:x(t)

y(t)

 =

(
F11(t) F12(t)

F21(t) F22(t)

)1 + χ(t) xo

χ(t)

 sin(χ(t) yo)

cos(χ(t) yo)− 1

 . (54)

where F11(t), F22(t), F12(t), F21(t) parametrize the affine transformations and χ(t) is the
amount of bending. Each experiment is articulated in the following steps:

1. A parametric trajectory X(t) is generated by the mean of the (54). In this way, the
initial and final points, X(0) and X(1), are identified.

2. Linear interpolation between X(0) and X(1).
3. The geodesic Y(t), such that Y(0) = X(0) and Y(1) = X(1) are calculated following

the procedure sketched in Section 4.2. The distance, d(X(0), X(1)), and the initial
tangent, Y′(0), are calculated.

4. The autoparallel line Z(t), starting from X(0), is built by shooting Z′(0) = Y′(0) by
means of Direct Transport for a distance of ` = d(X(0), X(1)), following the procedure
sketched in Section 4.3.

For all cases, we computed the linear interpolation between the first shape (the un-
deformed rectangle in all cases) and the last shape of any experiment. These linearized
shapes (eight shapes) were the input for the optimizer, imposing as equality constraints the
maintenance of the first and last shapes in order to force the geodesic to pass between these
shapes. Finally, we performed a common Principal Component Analysis (PCA) for each
experiment except for the first (which was trivial in terms of pure shape change), including
all of the four sets of shapes: original, linearized, optimized, and shooted.

In each one of the experiments, we checked:

• The trend of the Γ-energy.
• The trend of the components of the Γ-energy.

5.2. Affine Case: Spherical

A parametric trajectory of eight configurations was generated by applying (54) to the
initial rectangular shape by selecting eight values of the parameters in the following ranges:
F11(t) = F22(t) ∈ [1, 2]; F12(t) = F21(t) = 0; χ(t) = 0. Figure 2 and Table 1 show the results
for the size-only case. Geodesic searching via optimization satisfactorily recovers both
the size change and the equally spaced Γ-energy steps between consecutive shapes. The
non-affine component of the Γ-energy, db, is of course equal to zero. Optimized geodesics
and shooting quietly coincide. Figure 3 shows scatterplots of Table 1 values.



Mathematics 2022, 10, 1562 13 of 20

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

(a)

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

(b)

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

(c)

Figure 2. Affine spherical case results. (a) Left panel: geodesic trajectory shapes (black) plotted against
the original parametric shapes (red). (b) Center panel: geodesic trajectory shapes (black) plotted
against the shapes found via linear interpolation between the first and last shapes of the parametric
dataset (red). (c) Right panel: geodesic trajectory shapes (black) plotted against autoparallel trajectory
(red) built via shooting of the first two configurations of the geodesic.
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Figure 3. Trend of the energies for different interpolations: (a) Left: linear interpolation (b) Center:
geodesics interpolation. (c) Right: autoparallel interpolation. Blue refers to du, red to db, grey to dtot.

Table 1. Values of the energies for the affine spherical case; du represents the affine component of the
Γ-energy, db the non-affine component and dtot the total Γ-energy.

LINEAR GEODESIC A-PARALLEL

du db dtot du db dtot du db dtot

0.082 0.000 0.082 0.029 0.000 0.029 0.029 0.000 0.029
0.049 0.000 0.049 0.029 0.000 0.029 0.029 0.000 0.029
0.033 0.000 0.033 0.029 0.000 0.029 0.029 0.000 0.029
0.024 0.000 0.024 0.029 0.000 0.029 0.029 0.000 0.029
0.018 0.000 0.018 0.029 0.000 0.029 0.029 0.000 0.029
0.014 0.000 0.014 0.029 0.000 0.029 0.029 0.000 0.029
0.011 0.000 0.011 0.030 0.000 0.030 0.029 0.000 0.029

5.3. Affine Case: General Case

A parametric trajectory of eight configurations is generated by applying (54) to the
initial rectangular shape by selecting eight values of the parameters in the following ranges:

F11(t) ∈ [−0.2, 1.2]; F12(t) ∈ [−0.2, 1.2];

F21(t) ∈ [−0.2, 1.2]; F22(t) ∈ [0, 0.6];

χ(t) = 0.

Figure 4 and Table 2 show the results of the general affine-only case. Optimized
geodesics correctly recover the original parameterized deformation, with equally spaced
gamma-energy steps between consecutive shapes and db equal to zero. Figure 5 shows
scatterplots of Table 2 values. Figure 6 shows the first two PCs resulting from PCA per-
formed on all four types of datasets of the general affine case (parameterized, linearized,
optimized geodesic, shooting).
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Figure 4. Affine general case results. (a) Left panel: geodesic trajectory shapes (black) plotted against
the original parametric shapes (red). (b) Center panel: geodesic trajectory shapes (black) plotted
against the shapes found via linear interpolation between the first and last shapes of the parametric
dataset (red). (c) Right panel: geodesic trajectory shapes (black) plotted against autoparallel trajectory
(red) built via shooting of the first two configurations of the geodesic.
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Figure 5. Trend of the energies for different interpolations: (a) Left: linear interpolation (b) Center:
geodesics interpolation. (c) Right: autoparallel interpolation. Blue refers to du, red to db, grey to dtot.
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Figure 6. PC1-PC2 scatterplot of the PCA perfomed on the four set of shapes resulting from the
general affine case. PC1 explains 97.2% of total variance, while PC2 explains 2.66%. Black refers to the
optimized shapes, red to the linearized, green to the original shapes, and cyan to the shooted shapes.

Table 2. Values of the energies for the affine general case; du represents the affine component of the
Γ-energy, db the non-affine component, and dtot the total Γ-energy.

LINEAR GEODESIC A-PARALLEL

du db dtot du db dtot du db dtot

0.020 0.000 0.020 0.010 0.000 0.010 0.010 0.000 0.010
0.015 0.000 0.015 0.010 0.000 0.010 0.010 0.000 0.010
0.011 0.000 0.011 0.010 0.000 0.010 0.010 0.000 0.010
0.009 0.000 0.009 0.010 0.000 0.010 0.010 0.000 0.010
0.007 0.000 0.007 0.010 0.000 0.010 0.010 0.000 0.010
0.006 0.000 0.006 0.010 0.000 0.010 0.010 0.000 0.010
0.005 0.000 0.005 0.010 0.000 0.010 0.010 0.000 0.010
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5.4. Non Affine Case: Bending

A parametric trajectory of eight configurations is generated by applying (54) to the
initial rectangular shape by selecting eight values of the parameters in the following ranges:

F11(t) = 0; F12(t) = 0;

F21(t) = 0; F22(t) = 0;

χ(t) ∈ [0, 1.5].

The results of the general non-affine case are shown in Figures 7–9 and Table 3. This
simulation is particularly challenging due to the particular non-affine transformation expe-
rienced by the rectangle. Despite this, the geodesic optimization finds shapes characterized
by approximately equally spaced steps in terms of both gamma energy and its two com-
ponents, du and db. The PCA scatterplot in Figure 9 shows coherent behaviour for all
datasets except, as expected, for the linearized shapes.
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Figure 7. Non-affine case bending-only results. (a) Left panel: geodesic trajectory shapes (black)
plotted against the original parametric shapes (red). (b) Center panel: geodesic trajectory shapes
(black) plotted against the shapes found via linear interpolation between the first and last shapes
of the parametric dataset (red). (c) Right panel: geodesic trajectory shapes (black) plotted against
autoparallel trajectory (red) built via shooting of the first two configurations of the geodesic.
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Figure 8. Trend of the energies for different interpolations: (a) Left: linear interpolation (b) Center:
geodesics interpolation. (c) Right: autoparallel interpolation. Blue refers to du, red to db, grey to dtot.

Figure 9. PC1-PC2 scatterplot of the PCA perfomed on the four set of shapes resulting from the pure
bending case. PC1 explains 91.11% of total variance, while PC2 explains 6.50%. Black refers to the
optimized shapes, red to the linearized, green to the original shapes and cyan to the shooted shapes.
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Table 3. Values of the energies for the non-affine case of bending: du represents the affine component
of the Γ-energy, db the non-affine component, and dtot the total Γ-energy.

LINEAR GEODESIC A-PARALLEL

du db dtot du db dtot du db dtot

0.033 0.042 0.075 0.005 0.072 0.077 0.005 0.106 0.111
0.034 0.070 0.104 0.003 0.072 0.075 0.005 0.106 0.111
0.033 0.215 0.248 0.002 0.071 0.073 0.005 0.107 0.112
0.001 0.084 0.085 0.001 0.068 0.069 0.005 0.110 0.115
0.006 0.084 0.090 0.001 0.062 0.063 0.005 0.114 0.119
0.020 0.195 0.214 0.002 0.059 0.061 0.005 0.115 0.120
0.008 0.129 0.137 0.003 0.061 0.064 0.005 0.114 0.119

5.5. Non-Affine Case: Bending and Scaling

A parametric trajectory of eight configurations is generated by applying (54) to the
initial rectangular shape by selecting eight values of the parameters in the following ranges:

F11(t) ∈ [1, 2]; F12(t) = 0;

F21(t) = 0; F22(t) ∈ [1, 2];

χ(t) ∈ [0, 1.5].

Adding a significant size change to the previous experiment led to the results shown
in Figures 10–12 and Table 4. The equal spacing of the Γ-energy of the optimized geodesics
is rather acceptable, while its behaviour in the PCA space behaves more coherently than
that of the parametrized or shooted shapes.
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Figure 10. Non-affine case bending+size results. (a) Left panel: geodesic trajectory shapes (black)
plotted against the original parametric shapes (red). (b) Center panel: geodesic trajectory shapes
(black) plotted against the shapes found via linear interpolation between the first and last shapes
of the parametric dataset (red). (c) Right panel: geodesic trajectory shapes (black) plotted against
autoparallel trajectory (red) built via shooting of the first two configurations of the geodesic.
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Figure 11. Trend of the energies for different interpolations: (a) Left: linear interpolation (b) Center:
geodesics interpolation. (c) Right: autoparallel interpolation. Blue refers to du, red to db, grey to dtot.
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Figure 12. PC1-PC2 scatterplot of the PCA perfomed on the four set of shapes resulting from
the bending+size case. PC1 explains 79.36% of total variance, while PC2 explains 17.54%. Black
refers to the optimized shapes, red to the linearized, green to the original shapes and cyan to the
shooted shapes.

Table 4. Values of the energies for the non-affine case of bending and scaling; du represents the affine
component of the Γ-energy, db the non-affine component, and dtot the total Γ-energy.

LINEAR GEODESIC A-PARALLEL

du db dtot du db dtot du db dtot

0.060 0.37 0.431 0.017 0.120 0.137 0.017 0.150 0.167
0.003 0.41 0.412 0.003 0.128 0.131 0.017 0.150 0.167
0.147 0.42 0.571 0.007 0.115 0.122 0.017 0.150 0.168
0.028 0.04 0.073 0.021 0.101 0.122 0.017 0.159 0.177
0.021 0.03 0.056 0.029 0.087 0.116 0.017 0.155 0.172
0.036 0.07 0.104 0.025 0.091 0.115 0.017 0.176 0.193
0.012 0.03 0.040 0.044 0.065 0.110 0.017 0.175 0.193

5.6. Non-Affine Case: Bending and General Affine Component

A parametric trajectory of eight configurations is generated by applying (54) to the
initial rectangular shape by selecting eight values of the parameters in the following ranges:

F11(t) ∈ [−0.2, 1.2]; F12(t) ∈ [−0.2, 1.2];

F21(t) ∈ [−0.2, 1.2]; F22(t) ∈ [0, 0.6];

χ(t) ∈ [0, 1.5].

The last experiment is represented by a combination of non-affine and affine com-
ponents. Results relative to this deformation are shown in Figures 13–15 and Table 5.
Optimized geodesics struggle to find proper shape at fourth and fifth step of the deforma-
tion series; in the end, however, the final series results behave consistently in terms of both
equal gamma energy spacing and general morphology.

Table 5. Values of the energies for the non-affine case of bending and general affine deformation;
du represents the affine component of the Γ-energy, db the non-affine component, and dtot the total
Γ-energy.

LINEAR GEODESIC A-PARALLEL

du db dtot du db dtot du db dtot

0.037 0.196 0.233 0.004 0.096 0.100 0.004 0.110 0.114
0.017 0.453 0.470 0.005 0.097 0.101 0.004 0.110 0.114
0.039 0.689 0.729 0.005 0.100 0.104 0.004 0.113 0.117
0.010 0.158 0.168 0.001 0.108 0.110 0.004 0.120 0.123
0.012 0.152 0.164 0.013 0.101 0.114 0.004 0.114 0.117
0.025 0.289 0.315 0.028 0.089 0.117 0.004 0.115 0.119
0.009 0.124 0.132 0.017 0.103 0.120 0.004 0.128 0.132
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Figure 13. Non-affine case, bending+general affine component, results. (a) Left panel: geodesic
trajectory shapes (black) plotted against the original parametric shapes (red). (b) Center panel:
geodesic trajectory shapes (black) plotted against the shapes found via linear interpolation between
the first and last shapes of the parametric dataset (red). (c) Right panel: geodesic trajectory shapes
(black) plotted against autoparallel trajectory (red) built via shooting of the first two configurations of
the geodesic.
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Figure 14. Trend of the energies for different interpolations: (a) Left: linear interpolation (b) Center:
geodesics interpolation. (c) Right: autoparallel interpolation. Blue refers to du, red to db, grey to dtot.
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Figure 15. PC1-PC2 scatterplot of the PCA perfomed on the four set of shapes resulting from the
bending+general affine component case. PC1 explains 62.61% of total variance, while PC2 explains
25.48%. Black refers to the optimized shapes, red to the linearized, green to the original shapes and
cyan to the shooted shapes.

6. Discussion

The set of performed numerical analyses, together with the analytical results of
Section 4.1, showed that: The TPS geodesics are able to catch important qualitative be-
haviours of the parametric deformations. In particular, in each example the horizontal sides
of the initial rectangle remain straight for the whole path while the vertical sides bends,
exactly as happens in the parametric path. For affine deformations, TPS geodesics coincide
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with TPS autoparallel lines and both coincide with the LC geodesics of the group GL(m).
For non-affine deformations TPS geodesics and TPS autoparallel lines do not coincide.
In particular, the autoparallel lines are not very similar, expecially in the last steps, to
the parametric path. This was expected for the procedure of shooting used here. On the
other hand, certain qualitative behaviours are lost, as was expected. TPS Autoparallel
lines conserve the percentage of affine and non-affine energies, while this does not hap-
pen in optimized geodesic. Future directions of the present work will involve the use
of 3D data. This will certainly depend on the possibility of its being independent of the
body-bending energy matrix computation. Three-dimensional data offer many practical
applications, spanning a wide range of scientific disciplines such as cardiology [11,12],
vertebrate paleontology [21,22], and paleoanthropology.
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