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Abstract: We study a nonlocal Dirichlet problem with the (p(b(u)), q(b(u)))-Laplacian operator and
integrable data on a bounded domain with smooth boundary. We establish the existence of at least
one weak solution in the case the variable exponents of the leading operator depend on the solution
u, without assuming any growth conditions on g. The proof is based on the characterization of the
energy functional associated to the problem, using the methods of the calculus of variations.
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1. Introduction

We consider a nonlocal Dirichlet boundary value problem of the following form:{
−div (a(u,∇u)) = g in Ω,
u = 0 on ∂Ω,

(1)

on a bounded domain Ω ⊂ RN with smooth boundary ∂Ω. Here, g is a suitable given data,
and the leading operator is defined by

a(u,∇u) = (|∇u|p(b(u))−2 + |∇u|q(b(u))−2)∇u,

which is the sum of a p(·)-Laplacian operator and of a q(·)-Laplacian operator. The variable
exponents are bounded and bounded away by 1, and they are precisely defined by referring
to the following maps:

p, q : R→ [1,+∞),

b : W1,α
0 (Ω)→ R.

By W1,α
0 (Ω), we mean the Dirichlet–Sobolev space with constant exponent α satisfying

1 < α < +∞ (that is, W1,α
0 (Ω) denotes the closure of C∞

0 (Ω) in W1,α(Ω)) (for a better
understanding of the role of constant exponent α, see Lemma 2 and subsequent discussion).
To underline the degree of generality in defining exponents p, q, we recall two typical
examples of maps b of the following form:

b(u) = ‖∇u‖Lα(Ω), b(u) = ‖u‖Ls(Ω), s ≤ α∗, (2)

namely, we may link b(·) to two norm definitions that are relevant from a mathematical

point of view. Here, α∗ denotes the critical Sobolev exponent of α (namely, α∗ =
N α

N − α
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if α < N and α∗ = +∞ otherwise); see also (7) for the precise definition in the case of
variable exponents.

The differential operator a(u,∇u) is a nonhomogeneous operator that is usually
known as (p(·), q(·))-Laplacian operator. Differential problems involving such operator
play a crucial role in modeling various physical phenomena and life science dynamics. For
some references, we note the works of Ružička [1], Shi et al. [2] and Zhang and Rădulescu [3]
(electrorheological fluid). Some other applications to model porous media and viscous flows
can be found in Antontsev and Shmarev [4], where the authors consider various evolution
equations and discuss existence, uniqueness, localization and asymptotic behavior of
solutions under appropriate growth conditions. Briefly, the analysis of variational problems
with the p(·)-Laplacian operator arises from the nonlinear elasticity theory, with the works
of Marcellini [5] and Zhikov [6]. In [5,6], the authors present a study of energy integral
functionals under suitable growth conditions for the integrand. Namely, they consider an
energy functional of the following form:

u→
∫

Ω
f (z, x)dz,

under a p&q-growth condition (q < p) given by

|x|q ≤ f (z, x) ≤ c0[|x|p + |x|q] for a.e. z ∈ Ω, all x ∈ RN , some c0 > 0.

Clearly, in the case of problem (1), we have the following energy functional

u→
∫

Ω

[
|∇u|p(b(u)) + |∇u|q(b(u))

]
dz.

The interest for such variational problems was recently revived by Mingione and co-
authors, who obtained significant regularity results for local minimizers of functionals (see,
for example, Baroni et al. [7] and the references therein). The case where variable exponents
depend on the unknown solution u is not largely investigated; see, for example, the recent
works of Chipot and de Oliveira [8] and Vetro [9]. This situation is relevant in the context
of variational image denoising methods, where certain numerical approaches estimate the
orientations of image structures from the data and, hence, use this information in building
an energy functional to minimize. The performance of this minimization process benefits
from using explicitly u-dependence or∇u-dependence (recall (2)), for image regularization
(see Tiirola [10] and the references therein). Moreover, for more information about nonlocal
problems, the interested reader can refer to the works of Chipot and de Oliveira [8] and
Corvellec and Hantoute [11] and the book of Diening et al. [12].

Our approach involves the energy functional associated to problem (1) using certain
estimates of some integral terms together with the properties of auxiliary operators. We
establish the existence of at least one weak solution in a suitable anisotropic Sobolev space
without assuming any restriction on the growth of data g.

The manuscript is organized as follows. In Section 2, we present some notations and
results used in the paper; in Section 3, we provide the main theorems with complete proofs.
Section 4 concludes the manuscript.

2. Notation and Materials

In this section we introduce our notation and collect some useful materials. In the
context of Banach spaces, if we denote by X a Banach space, then its topological dual will
be given as X∗. Now, we focus on the setting of Lebesgue and Sobolev spaces with variable
exponents, but we also link these spaces to their counterparts with constant exponents.
For a more complete view on framework structures, we suggest the recent monographies
of Antontsev and Shmarev [4] and Zhikov [6,13] (about differential problems subject to
nonstandard growth conditions), Cruz-Uribe and Fiorenza [14] and Diening et al. [12]
(about variable Lebesgue and Sobolev spaces). The exponent functions in our finding here
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are introduced as elements of the set, namelyM(Ω), of all Lebesgue-measurable functions
p : Ω→ [1,+∞) for which their essential infimum and essential supremum are given as
follows:

p− = ess inf
z∈Ω

p(z), p+ = ess sup
z∈Ω

p(z).

For p ∈ M(Ω) ∩ L∞(Ω), we introduce variable exponent Lebesgue space Lp(z)(Ω)
defined by the following:

Lp(z)(Ω) =
{

u : Ω→ R : u is measurable and ρp(u) < +∞
}

,

where
ρp(u) =

∫
Ω
|u(z)|p(z)dz < +∞ (that is, we assume ρp(·) is finite). (3)

The space (Lp(z)(Ω), ‖u‖Lp(z)(Ω)) is a Banach space, where

‖u‖Lp(z)(Ω) = inf
{

λ > 0 : ρp

( u
λ

)
≤ 1

}
is the well-known Luxembourg norm. From Fan and Zhao [15], we recall some results
involving (Lp(z)(Ω), ‖u‖Lp(z)(Ω)). For their proofs, we refer to Theorems 1.6 and 1.8 of [15],
for which their conclusions are summarized in the following result.

Theorem 1. The following facts hold:

(i) (Lp(z)(Ω), ‖ · ‖Lp(z)(Ω)) is a separable Banach space;

(ii) C∞
0 (Ω) is dense in (Lp(z)(Ω), ‖ · ‖Lp(z)(Ω)).

Additionally, looking at Theorem 1.10 of [15], we note the following result.

Theorem 2. (Lp(z)(Ω), ‖ · ‖Lp(z)(Ω)) is an uniform convex space (thus, reflexive too), provided
that 1 < p− ≤ p+ < +∞.

To increase the discussion about norm properties, we recall Theorems 1.2 and 1.3
of [15] in the following result involving also (3).

Theorem 3. If u ∈ Lp(z)(Ω), then we have the following:

(i) ‖u‖Lp(z)(Ω) < 1 (= 1, > 1) if and only if ρp(u) < 1 (= 1, > 1);

(ii) If ‖u‖Lp(z)(Ω) > 1, then ‖u‖p−

Lp(z)(Ω)
≤ ρp(u) ≤ ‖u‖p+

Lp(z)(Ω)
;

(iii) If ‖u‖Lp(z)(Ω) < 1, then ‖u‖p+

Lp(z)(Ω)
≤ ρp(u) ≤ ‖u‖p−

Lp(z)(Ω)
;

(iv) In the case u 6≡ 0, then ‖u‖Lp(z)(Ω) = a if and only if ρp(u/a) = 1.

According to the classical notation in variable exponents Lebesgue and Sobolev spaces,
we will denote the dual space of Lp(z)(Ω) by Lp′(z)(Ω) (instead than (Lp(z)(Ω))∗). We point
out that p′(·) means the Hölder conjugate of p(·) in the sense that the following equality
holds true:

1
p′(·) +

1
p(·) = 1.

The similar concept of Hölder conjugate applies in the case of constant exponents (for
example, α′ will denote the Hölder conjugate of α). From the context, it is clear that

1 < (p+)′ ≤ ess inf
z∈Ω

p′(z) ≤ ess sup
z∈Ω

p′(z) ≤ (p−)′ < +∞.
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Additionally, in the case 1 < p−, we consider the Hölder’s inequality given as∫
Ω

uvdz ≤
( 1

p−
+

1
(p′)−

)
‖u‖Lp(z)(Ω)‖v‖Lp′(z)(Ω)

≤ 2‖u‖Lp(z)(Ω)‖v‖Lp′(z)(Ω)
,

for all u ∈ Lp(z)(Ω) and v ∈ Lp′(z)(Ω). The above inequalities are also useful in establishing
relevant embedding results. For example, Theorem 1.11 of [15] uses the Hölder inequality
to ensure the continuity of embedding in a bounded domain Ω. Namely, we have the
following result.

Theorem 4. Assume that the Lebesgue measure of Ω is finite (namely, |Ω| < +∞) and p1, p2 ∈
M(Ω) ∩ L∞(Ω). Then, we have

Lp2(z)(Ω) ↪→ Lp1(z)(Ω) ⇐⇒ p1(z) ≤ p2(z) for a.e. z ∈ Ω.

Moreover, the embedding is continuous.

We complete the discussion about the spaces involved in our study by introducing the
variable exponent Sobolev space W1,p(z)(Ω) defined by

W1,p(z)(Ω) = {u ∈ Lp(z)(Ω) : |∇u| ∈ Lp(z)(Ω)}.

On this space, we consider the norm given as

‖u‖W1,p(z)(Ω) = ‖u‖Lp(z)(Ω) + ‖∇u‖Lp(z)(Ω) (where ‖∇u‖Lp(z)(Ω) = ‖|∇u|‖Lp(z)(Ω)).

Similarly to the variable exponent Lebesgue space Lp(z)(Ω), we note that W1,p(z)(Ω)
is separable when 1 ≤ p− ≤ p+ < +∞. Moreover, W1,p(z)(Ω) is reflexive if 1 < p− ≤
p+ < +∞. About the embedding properties, we remark that

W1,p2(z)(Ω) ↪→W1,p1(z)(Ω) if p1(z) ≤ p2(z) for a.e. z ∈ Ω. (4)

For our analysis, it is useful to mention the anisotropic Dirichlet variable exponent
space (see, for example, [12]) defined by

W1,p(z)
0 (Ω) = {u ∈W1,1

0 (Ω) : |∇u| ∈ Lp(z)(Ω)},

where we consider the norm

‖u‖
W1,p(z)

0 (Ω)
= ‖u‖L1(Ω) + ‖∇u‖Lp(z)(Ω). (5)

If p ∈ C(Ω) ∩M(Ω), we can find some constant c = c(p, Ω, N) such that

‖u‖Lp(z)(Ω) ≤ c‖∇u‖Lp(z)(Ω) for all u ∈W1,p(z)
0 (Ω).

For more information we refer again to [12]. Indeed, it is relevant to note that the norms
‖u‖W1,p(z)(Ω) and ‖∇u‖Lp(z)(Ω) are equivalent to each other on W1,p(z)

0 (Ω). Consequently,
we can use ‖∇u‖Lp(z)(Ω) instead of ‖u‖W1,p(z)(Ω). With the abuse of notation, we write

‖u‖ = ‖∇u‖Lp(z)(Ω) in W1,p(z)
0 (Ω).

Even if the variable exponent space originates as natural extension of the correspond-
ing constant exponent space, there are some source of difficulties in developing the theory
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of Lp(z)(Ω), W1,p(z)(Ω) and W1,p(z)
0 (Ω). For example, smooth functions are not necessarily

dense in W1,p(z)
0 (Ω). By letting the following:

H1,p(z)
0 (Ω) = the closure of C∞

0 with respect to ‖ · ‖W1,p(z)(Ω),

we note that generally
H1,p(z)

0 (Ω) $ W1,p(z)
0 (Ω).

However, in the case where Ω is a bounded domain with Lipschitz-continuous bound-
ary ∂Ω and p(·) is log-Hölder continuous, the density of C∞

0 (Ω) in W1,p(z)
0 (Ω) holds true

(for additional details, look at Theorem 2.6 of [15]). For the reader’s convenience, we remark
that p(·) is a log-Hölder continuous function if the following condition is satisfied:

∃C > 0 : −|p(z)− p(y)| ln |z− y| ≤ C for all z, y ∈ Ω, 2|z− y| < 1. (6)

Summing up, (6) gives us the equality

H1,p(z)
0 (Ω) = W1,p(z)

0 (Ω).

The log-Hölder continuity of p(·) is ensured whenever

p ∈ C0,λ(Ω) for some λ ∈ (0, 1).

For a given Sobolev space W1,p(z)(Ω), we define the critical Sobolev exponent of p(·)
by

p∗(z) =


N p(z)

N − p(z)
if p(z) < N,

+∞ if p(z) ≥ N.
(7)

Referring to this notion, Fan and Zhao [15] established the following result.

Proposition 1. Let p ∈ C(Ω) satisfying p− > 1. If α ∈ C(Ω) and 1 < α(z) < p∗(z) for all
z ∈ Ω, then there is a continuous and compact embedding W1,p(z)(Ω) ↪→ Lα(z)(Ω).

We conclude this section by recalling some results related to classical properties of
operators (see also Chipot [16]). These results will be used in concluding the proof of our
main theorem.

Lemma 1. For all ξ, η ∈ RN , we have the following implications:

2 ≤ p < +∞⇒ 21−p|ξ − η|p ≤ (|ξ|p−2ξ − |η|p−2η) · (ξ − η); (8)

1 < p < 2⇒ (p− 1)|ξ − η|2 ≤ (|ξ|p−2ξ − |η|p−2η) · (ξ − η) · (|ξ|p + |η|p)
2−p

p . (9)

The above lemma is linked to monotonicity, and the next theorem is linked to subjec-
tivity.

Theorem 5 (Minty-Browder). Assume that L : X → X∗ is a bounded, continuous, coercive and
a monotone operator, where X is a real, reflexive Banach space. Then, for each data g ∈ X∗, there is
an element u satisfying the equation:

L(u) = g,

that is, L(X) = X∗.

The following lemma is a consequence of similar one established by Chipot and de
Oliveira.
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Lemma 2 ([8], Lemma 3.1). Let {rn}, {sn} ⊂ R be two sequences. Assume that there exist
α, β ∈ (1,+∞) such that the following is the case:

(i) α ≤ rn, sn ≤ β for all n ∈ N;
(ii) rn → r, sn → s as n→ +∞;
(iii) ∇un

w−→ ∇u in L1(Ω)N , as n→ +∞;
(iv) ‖|∇un|rn‖L1(Ω), ‖|∇un|sn‖L1(Ω) ≤ C, for some constant C > 0 not depending on n.

Then, |∇u|r, |∇u|s ∈ L1(Ω) and

lim inf
n→+∞

∫
Ω
|∇un|rn dz ≥

∫
Ω
|∇u|rdz and lim inf

n→+∞

∫
Ω
|∇un|sn dz ≥

∫
Ω
|∇u|sdz. (10)

Proof. From Lemma 3.1 of [8], we obtain |∇u|r, |∇u|s ∈ L1(Ω) and

lim inf
n→+∞

∫
Ω
|∇un|rn dz ≥

∫
Ω
|∇u|rdz, lim inf

n→+∞

∫
Ω
|∇un|sn dz ≥

∫
Ω
|∇u|sdz.

Thus, (10) holds.

We define the set where we are going to look for the solutions to problem (1) as follows:

W1,p(b(u))
0 (Ω) =

{
u ∈W1,1

0 (Ω) :
∫

Ω
|∇u|p(b(u))dz < +∞

}
.

If 1 < p(b(u)) < +∞ for all u ∈ R, this set is a Banach space for norm ‖u‖
W1,p(·)

0 (Ω)

defined in (5), which is equivalent to ‖∇u‖Lp(b(u))(Ω) in the case of p(b(u)) ∈ C(Ω). If,

for some constant α, p ≥ α > 1, p and b are continuous, then W1,p(b(u))
0 (Ω) is a closed

subspace of W1,α
0 (Ω) in view of (4); therefore, it is separable and reflexive. In what follows,

W−1,α′(Ω) = W1,α
0 (Ω)∗, with 1 < α < +∞, denotes as usual the dual space of W1,α

0 (Ω).

3. Main Results

We prove an existence theorem of at least one weak solution to the nonlocal Dirichlet
problem (1). Thus, we place some restrictions to the exponents and assume that p(·) and
q(·) are real functions satisfying the following:

p, q are continuous, 1 < α < q ≤ p ≤ β, (11)

for some constants α and β. With respect to constant α, we define domain W1,α
0 (Ω) of the

real map b(·), and additionally we impose the following:

b is continuous, b is bounded, (12)

that is, b(·) sends bounded sets of W1,α
0 (Ω) into bounded sets of R. Since we are interested

in solutions in a weak sense, we recall the following definition.

Definition 1. For a weak solution to the problem (1) we mean a function u ∈ W1,p(b(u))
0 (Ω)

such that the following is the case:∫
Ω

[
|∇u|p(b(u))−2 + |∇u|q(b(u))−2

]
∇u∇vdz = 〈g, v〉 for all v ∈W1,p(b(u))

0 (Ω), (13)

with 〈·, ·〉 being the duality pairing of (W1,p(b(u))
0 (Ω)∗, W1,p(b(u))

0 (Ω)).

We remark that quantities p(b(u)) and q(b(u)) reduce to real numbers and not func-
tions. Consequently, we can treat variable exponent Sobolev spaces in Definition 1 as
constant exponent Sobolev spaces.
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As ingredients of the existence theorem (namely Theorem 6), we consider certain
classes of approximating problems (for short (1)n, n ∈ N) obtained from problem (1) by
assuming the following one as the leading operator:

an(u,∇u) = (|∇u|pn−2 + |∇u|qn−2)∇u, n ∈ N,

where pn and qn with qn ≤ pn are constant exponents. For n ∈ N, as an approximating
solution of problem (1)n, we mean function un ∈W1,pn

0 (Ω) such that the following is the
case: ∫

Ω

[
|∇un|pn−2 + |∇un|qn−2

]
∇un∇vdz = 〈g, v〉 for all v ∈W1,pn

0 (Ω), (14)

with 〈·, ·〉 being the duality pairing of (W1,pn
0 (Ω)∗, W1,pn

0 (Ω)). Clearly, (14) is (13) in special
cases p(b(u)) = pn and q(b(u)) = qn.

Remark 1. We recall that the operator A : W1,p
0 (Ω)→W1,p

0 (Ω)∗ is defined by

〈A(u), v〉 =
∫

Ω

[
|∇u|p−2 + |∇u|q−2

]
∇u∇vdz

for all v ∈W1,p
0 (Ω) is bounded, continuous, strictly monotone and coercive. Therefore, weak solu-

tion un ∈W1,pn
0 (Ω) to problem (1)n exists by Theorem 5 and is unique by the strict monotonicity;

that is, there is a unique un ∈W1,pn
0 (Ω) that satisfies (14).

In this context, we establish the following convergence result.

Lemma 3. For n ∈ N, let un ∈ W1,pn
0 (Ω) be the solution to (14). If sequences {pn}n∈N and

{qn}n∈N and the given data g satisfy the following conditions:

pn → p, qn → q as n→ +∞, where p, q ∈ (1,+∞), (15)

g ∈W−1,s′(Ω) for some constant s ∈ (1,+∞) such that 1 < s < q ≤ p, (16)

then the sequence of approximating solutions {un}n∈N converges as follows:

un → u in W1,s
0 (Ω) as n→ +∞, (17)

where u ∈W1,p
0 (Ω) ∩W1,q

0 (Ω) is the solution to the equation∫
Ω

[
|∇u|p−2 + |∇u|q−2

]
∇u∇vdz = 〈g, v〉 for all v ∈W1,p

0 (Ω). (18)

Proof. The convergence in Equation (17) is strong in W1,s
0 (Ω). However, we construct

this result over an auxiliary weak convergence result for the gradient of un, n ∈ N, in
the constant exponent Lebesgue space Ls(Ω)N . To obtain this goal, by combining the
convergences in (15) with the relations among the involved exponents p, q, s (that is, s <
q ≤ p), we suppose without any loss of generality that the following is the case:

p + 1 > pn ≥ qn > s for all n ∈ N. (19)

From (14) with test function v = un, we derive the following inequality linking the
integrand in (18) to suitable norms of data g and the gradient of approximating solutions.
Namely, we have∫

Ω
[|∇un|pn + |∇un|qn ]dz ≤ ‖g‖W−1,s′ (Ω)‖un‖W1,s

0 (Ω)
= ‖g‖W−1,s′ (Ω)‖∇un‖Ls(Ω). (20)
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We remark that ‖g‖W−1,s′ (Ω) means the operator norm in Sobolev space W−1,s′(Ω)

associated to the norm of gradient in Lebesgue space Ls(Ω). The relations in (19) and an
application of Hölder’s inequality lead to the following:

(∫
Ω
|∇un|sdz

) 1
s
≤
(∫

Ω
|∇un|pn dz

) 1
pn
|Ω|

1
s−

1
pn (21)

and (∫
Ω
|∇un|sdz

) 1
s
≤
(∫

Ω
|∇un|qn dz

) 1
qn
|Ω|

1
s−

1
qn , (22)

where by |Ω|, we mean again the Lebesgue measure of Ω. From (20) and (21), we obtain
the following:

‖∇un‖pn
Lpn (Ω)

≤ ‖g‖W−1,s′ (Ω)‖∇un‖Ls(Ω)

≤‖g‖W−1,s′ (Ω)‖∇un‖Lpn (Ω)|Ω|
1
s−

1
pn ,

=⇒ ‖∇un‖Lpn (Ω) ≤ ‖g‖
1

pn−1

W−1,s′ (Ω)
|Ω|

(
1
s−

1
pn

)
1

pn−1 ,

=⇒ ‖∇un‖Lpn (Ω) ≤ max
t∈[s,p+1]

{
‖g‖

1
t−1

W−1,s′ (Ω)
|Ω|(

1
s−

1
t )

1
t−1

}
= C, (23)

where C = C(p, s, Ω, g) > 0. Similarly, from (20) and (22), we obtain the following:

‖∇un‖Lqn (Ω) ≤ max
t∈[s,p+1]

{
‖g‖

1
t−1

W−1,s′ (Ω)
|Ω|(

1
s−

1
t )

1
t−1

}
= C, (24)

where C = C(p, q, s, Ω, g) > 0. Therefore, from (21)–(24), we obtain the following upper
bound:

‖∇un‖Ls(Ω) ≤ C min{‖∇un‖Lpn (Ω), ‖∇un‖Lqn (Ω)} ≤ C, (25)

for some C = C(p, q, s, Ω, g) > 0, where we point out that constant C > 0 is independent
of the index n. Moreover, the upper bound (25) ensures that we can find some subsequence
of {un}n∈N (with abuse of notation, we use {un}n∈N to denote also this subsequence) and
some u ∈W1,s(Ω) (namely, u is a weak limit of the sequence {un}n∈N in the Sobolev space
W1,s(Ω)) such that

∇un
w−→ ∇u in Ls(Ω)N as n→ +∞. (26)

The last convergence is the auxiliary weak result that we mentioned at the beginning
of the proof. Now, combining the convergences in (15) and (26), with the relations among
the involved exponents in (19), with the upper bounds in (23) and (24), we can apply
Lemma 2 to conclude that

lim inf
n→+∞

∫
Ω
|∇un|pn dz ≥

∫
Ω
|∇u|pdz and lim inf

n→+∞

∫
Ω
|∇un|qn dz ≥

∫
Ω
|∇u|qdz.

By these inferior limits, we deduce that

u ∈W1,p
0 (Ω) and u ∈W1,q

0 (Ω). (27)

We note that the equality in (14) is equivalent to the following inequality:∫
Ω

[
|∇un|pn−2 + |∇un|qn−2

]
∇un∇(v− un)dz ≥ 〈g, v− un〉 for all v ∈W1,pn

0 (Ω).
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Referring to the Minty’s lemma, we obtain the following inequality:∫
Ω

[
|∇v|pn−2 + |∇v|qn−2

]
∇v∇(v− un)dz ≥ 〈g, v− un〉 for all v ∈W1,pn

0 (Ω). (28)

Then, for v ∈ C∞
0 (Ω) in (28), the convergences in (15) and (26) lead to the following

inequality:∫
Ω

[
|∇v|p−2 + |∇v|q−2

]
∇v∇(v− u)dz ≥ 〈g, v− u〉 for all v ∈ C∞

0 (Ω), (29)

as n goes to +∞ in (28). On the other hand, we note that space C∞
0 (Ω) is dense into

W1,p
0 (Ω); hence, the inequality of (29) remains true for every v ∈W1,p

0 (Ω). Therefore, we
can consider test functions v = u± δy in (29), where y ∈W1,p

0 (Ω) and δ > 0, and we obtain
the following:∫

Ω

[
|∇(u± δy)|p−2 + |∇(u± δy)|q−2

]
∇(u± δy)∇ydz = 〈g, y〉. (30)

Clearly, if we take the limit as δ→ 0 in (30), then we obtain the following:∫
Ω

[
|∇u|p−2 + |∇u|q−2

]
∇u∇ydz = 〈g, y〉 for all y ∈W1,p

0 (Ω),

which implies that u solves (18). What remains is to show that the convergence in (17)
holds true. To this aim, we first prove that the convergence of gradient terms in (26) is in
fact strong. Referring to the right hand side of (14) (with test function v = un), we remark
that

〈g, un〉 → 〈g, u〉 as n→ +∞, since un
w−→ u. (31)

Choosing again as test function v = un in (14) and using the above convergence (that
is, (31)), we deduce that

lim
n→+∞

∫
Ω
[|∇un|pn + |∇un|qn ]dz =

∫
Ω
[|∇u|p + |∇u|q]dz. (32)

In addition, we refine the discussion about exponents pn and qn starting from the
situation where

pn ≥ p, qn ≥ q for all n ∈ N.

In this case, we use the Hölder’s inequality to obtain the following:

∫
Ω
|∇un|pdz ≤

(∫
Ω
|∇un|pn dz

) p
pn
|Ω|1−

p
pn

and ∫
Ω
|∇un|qdz ≤

(∫
Ω
|∇un|qn dz

) q
qn
|Ω|1−

q
qn ,

where by |Ω| we mean again the Lebesgue measure of Ω. Referring to the first part of the
proof of the present lemma, we note that the sequences{∫

Ω
|∇un|pn dz

}
n∈N

and
{∫

Ω
|∇un|qn dz

}
n∈N

are bounded. This implies that we can find some subsequence of {un}n∈N (with the abuse
of notation, we use {un}n∈N to denote also this subsequence) such that the following limits
exist, namely

lim
n→+∞

∫
Ω
|∇un|pn dz and lim

n→+∞

∫
Ω
|∇un|qn dz.
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We can deduce that

lim
n→+∞

(∫
Ω
|∇un|pn dz

) p
pn
|Ω|1−

p
pn = lim

n→+∞

∫
Ω
|∇un|pn dz

and

lim
n→+∞

(∫
Ω
|∇un|qn dz

) q
qn
|Ω|1−

q
qn = lim

n→+∞

∫
Ω
|∇un|qn dz.

Referring to the limit in (32), we obtain the following inequality

lim sup
n→+∞

∫
Ω
|∇un|pdz + lim sup

n→+∞

∫
Ω
|∇un|qdz

≤ lim
n→+∞

∫
Ω
|∇un|pn dz + lim

n→+∞

∫
Ω
|∇un|qn dz

=
∫

Ω
|∇u|pdz +

∫
Ω
|∇u|qdz.

On the other hand, we say that∫
Ω
|∇u|pdz ≤ lim inf

n→+∞

∫
Ω
|∇un|pdz and

∫
Ω
|∇u|qdz ≤ lim inf

n→+∞

∫
Ω
|∇un|qdz.

Thus, we obtain the following∫
Ω
|∇u|pdz = lim

n→+∞

∫
Ω
|∇un|pdz or

∫
Ω
|∇u|qdz = lim

n→+∞

∫
Ω
|∇un|qdz.

This implies that

un → u (strongly) in W1,p
0 (Ω) or in W1,q

0 (Ω), as n→ +∞. (33)

Thus, we obtain un → u (strongly) in W1,p
0 (Ω) and in W1,q

0 (Ω), as n → +∞. Finally,
since W1,p

0 (Ω), W1,q
0 (Ω) ⊂ W1,s

0 (Ω), we conclude the convergence in (17) as a byproduct
of (33).

Next, we develop similar arguments in the situation where the following is the case:

s < qn ≤ pn < p for all n ∈ N. (34)

We introduce the non-negative monotone operator An defined by

An =
∫

Ω

([
|∇un|pn−2 + |∇un|qn−2

]
∇un −

[
|∇u|pn−2 + |∇u|qn−2

]
∇u
)

×(∇un −∇u)dz. (35)

From (14),we deduce the equivalent form of An as follows

An = 〈g, un − u〉 −
∫

Ω

[
|∇u|pn−2 + |∇u|qn−2

]
∇u∇(un − u)dz.

The hypothesis on the data (see (16)) and the weak convergence in (26) imply that

〈g, un − u〉 → 0 as n→ +∞. (36)

In addition, by using (27), we deduce the following bounds:∣∣∣|∇u|pn−2∇u
∣∣∣ ≤ max{1, |∇u|}p−1 ∈ Lp′(Ω) (37)
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and ∣∣∣|∇u|qn−2∇u
∣∣∣ ≤ max{1, |∇u|}p−1 ∈ Lp′(Ω). (38)

We combine the information in (34), (36)–(38) to conclude that

An → 0 as n→ +∞. (39)

We involve in the proof in Lemma 1. Precisely, if we suppose that

pn ≥ 2,

then we refer to the first implication of Lemma 1; that is, we use (8) in (35) and deduce the
following:

An ≥
∫

Ω

(
|∇un|pn−2∇un − |∇u|pn−2∇u

)
(∇un −∇u)dz

≥ 1
2pn−1

∫
Ω
|∇(un − u)|pn dz. (40)

On the other hand, pn > s (recall (34)); hence, an application of Hölder’s inequality,
together with (39) and (40), gives us the following:

∫
Ω
|∇(un − u)|sdz ≤

(∫
Ω
|∇(un − u)|pn dz

) s
pn
|Ω|1−

s
pn → 0,

as n → +∞. Consequently, the convergence in (17) holds true. The other situation to
consider is the second implication in Lemma 1. Namely, starting from the following:

pn < 2 =⇒ qn < 2,

we apply Hölder’s inequality to obtain that∫
Ω
|∇(un − u)|qn dz

=
∫

Ω
|∇(un − u)|qn(|∇un|qn + |∇u|qn)

qn−2
2 (|∇un|qn + |∇u|qn)

2−qn
2 dz (41)

≤
[∫

Ω
|∇(un − u)|2(|∇un|qn + |∇u|qn)

qn−2
qn dz

] qn
2
[∫

Ω
(|∇un|qn + |∇u|qn)dz

]1− qn
2

.

Thus, from (9), we deduce the following:

An ≥
∫

Ω

(
|∇un|qn−2∇un − |∇u|qn−2∇u

)
(∇un −∇u)dz

≥ C
∫

Ω
|∇(un − u)|2(|∇un|qn + |∇u|qn)

qn−2
qn dz, (42)

for some constant depending on qn; that is, C = C(qn) > 0. Now, (41) and (42) together
with the bounds in (24) lead to the following limit

lim
n→+∞

∫
Ω
|∇(un − u)|qn dz = 0.

This completes the proof of the convergence in (17).

We are ready to establish the main result of the paper in the form of the following
existence theorem. Lemma 3 is the key tool of the proof.

Theorem 6. Let Ω ⊂ RN , N ≥ 2, be a bounded domain. If assumptions (11) and (12) hold and
g ∈W−1,α′(Ω), then problem (1) admits at least one weak solution.
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Proof. Starting from the assumption on data g, we point out that

g ∈ (W−1,α′(Ω))∗ ⊂ (W−1,δ′(Ω))∗ for any δ > α.

Now, for each λ ∈ R, we can find a unique solution u = uλ ∈ W1,p(λ)(Ω) (see
Remark 1) relative to the auxiliary p(λ)-Laplacian problem∫

Ω

[
|∇u|p(λ)−2 + |∇u|q(λ)−2

]
∇u∇vdz = 〈g, v〉 for all v ∈W1,p(λ)

0 (Ω). (43)

For choice v = u = uλ, from (43), we deduce the inequality∫
Ω

[
|∇uλ|p(λ) + |∇uλ|q(λ)

]
dz ≤ ‖g‖W−1,α′ (Ω)‖∇uλ‖Lα(Ω). (44)

For the second norm term in (44), the Hölder’s inequality leads to

‖∇uλ‖Lα(Ω) ≤ min
{
‖∇uλ‖Lp(λ)(Ω)|Ω|

1
α−

1
p(λ) , ‖∇uλ‖Lq(λ)(Ω)|Ω|

1
α−

1
q(λ)

}
(45)

and, hence, inequality (44) gives us

‖∇uλ‖
p(λ)−1
Lp(λ)(Ω)

≤ ‖g‖W−1,α′ (Ω)|Ω|
1
α−

1
p(λ) , ‖∇uλ‖

q(λ)−1
Lq(λ)(Ω)

≤ ‖g‖W−1,α′ (Ω)|Ω|
1
α−

1
q(λ) . (46)

From inequalities (45) and (46), keeping in mind assumption (11), we deduce the
following:

‖∇uλ‖Lα(Ω) ≤min
{
‖g‖

1
p(λ)−1

W−1,α′ (Ω)
|Ω|(

1
α−

1
p(λ) )

p(λ)
p(λ)−1 , ‖g‖

1
q(λ)−1

W−1,α′ (Ω)
|Ω|(

1
α−

1
q(λ) )

q(λ)
q(λ)−1

}
≤ max

p,q∈[α,β]

{
‖g‖

1
p−1

W−1,α′ (Ω)
|Ω|(

1
α−

1
p )

p
p−1 , ‖g‖

1
q−1

W−1,α′ (Ω)
|Ω|(

1
α−

1
q )

q
q−1

}
= C, (47)

where C = C(α, β, Ω, g) > 0. Next, the second part of assumption (12) says that b(·) is a
bounded function. This fact and the inequality (47) imply that we can find L ∈ R satisfying
the range constraint for b(·) given as

b(uλ) ∈ [−L, L] for all λ ∈ R.

In view of the λ-dependence herein, we look at function B : [−L, L]→ [−L, L] given
by

B(λ) = b(uλ) for all λ ∈ [−L, L].

We note that B is a continuous function. Indeed, λn → λ, as n → +∞, implies
p(λn) → p(λ) and q(λn) → q(λ) (recall the first part of assumption (11)). We set pn =
p(λn) and qn = q(λn), we use Lemma 3 to conclude that

uλn → uλ in W1,α
0 (Ω) as n→ +∞.

From the first part of assumption (12), we note the continuity of b(·). Thus, the
following is obtained:

B(uλn)→ B(uλ) as n→ +∞,

and, hence, the continuity of B(·) is established. Consequently, B(·) has a fixed point λ0
and uλ0 solution of (43) (for λ = λ0) is clearly a solution to (13). We conclude that function
uλ0 corresponding to the fixed point λ0 of B(·) is a weak solution to (1).
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4. Conclusions

Nonhomogeneous differential operators with exponents depending on solution u may
represent useful models in the understanding of the dynamic process for applications. As
mentioned in the Introduction (recall the work of Tiirola [10]), these models together with
numerical techniques may improve certain sub-fields of image processing, as restoration,
noising and denoising and registration. In this manuscript, combining the tools of the
calculus of variations, with suitable classes of approximating problems and certain a priori
estimates, we study the weak solutions of nonlocal Dirichlet problems. Further studies
will be needed to explore the existence and multiplicity of ground state solutions (that
is, minimizers of the energy functional associated to the problem, among all nontrivial
solutions), also with a nonlinearity in the critical growth range. It is well-known that the
presence of a critical term (consider, for example, the critical power term |u|p∗−2u) is a
source of difficulties, as the energy functional loses its regularity. For more information, we
refer to Papageorgiou et al. [17], where suitable cut-off techniques are involved to bypass
the critical term.
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