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Abstract: The study considers a nonlinear multi-parameter reaction–diffusion system of two Lotka–
Volterra-type equations with several delays. It treats both cases of different diffusion coefficients and
identical diffusion coefficients. The study describes a few different techniques to solve the system
of interest, including (i) reduction to a single second-order linear ODE without delay, (ii) reduction
to a system of three second-order ODEs without delay, (iii) reduction to a system of three first-
order ODEs with delay, (iv) reduction to a system of two second-order ODEs without delay and
a linear Schrödinger-type PDE, and (v) reduction to a system of two first-order ODEs with delay
and a linear heat-type PDE. The study presents many new exact solutions to a Lotka–Volterra-type
reaction–diffusion system with several arbitrary delay times, including over 50 solutions in terms
of elementary functions. All of these are generalized or incomplete separable solutions that involve
several free parameters (constants of integration). A special case is studied where a solution contains
infinitely many free parameters. Along with that, some new exact solutions are obtained for a simpler
nonlinear reaction–diffusion system of PDEs without delays that represents a special case of the
original multi-parameter delay system. Several generalizations to systems with variable coefficients,
systems with more complex nonlinearities, and hyperbolic type systems with delay are discussed.
The solutions obtained can be used to model delay processes in biology, ecology, biochemistry and
medicine and test approximate analytical and numerical methods for reaction–diffusion and other
nonlinear PDEs with delays.

Keywords: reaction–diffusion equations with delay; Lotka–Volterra-type systems of equations;
nonlinear systems of PDEs; reductions; exact solutions; generalized separable solutions; solutions in
terms of elementary functions
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1. Introduction
1.1. Preliminary Remarks The Lotka–Volterra-Type Diffusion System with Delays

Linear and nonlinear differential equations, ordinary and partial, with delay are not
uncommon for mathematical modeling of phenomena and processes in various areas of
theoretical physics, mechanics, control theory, biology, biophysics, biochemistry, medicine,
ecology, economics and technical applications.

Below are a few factors that lead to the need to introduce delay into mathematical
models described by differential equations. In biology and biomechanics, the delay is
due to the limited transmission rate of nerve and muscle reactions in living tissues. In
medicine, in studying the spread of infectious diseases, the delay time is determined by
the incubation period (the time from the moment of infection to the first signs when the
disease begins to manifest itself). In the dynamics of populations, a delay arises because
individuals participate in reproduction only after reaching a certain age. In control theory,
delays are usually associated with the finite speed of signal propagation and the limited
speed of technological processes.

The presence of delay in mathematical models and differential equations is a compli-
cating factor, which, as a rule, leads to a narrowing of the stability region of the solutions
obtained. The study and solution of ordinary differential equations (ODEs) with a delay
are comparable in complexity to the study and solution of partial differential equations
(PDE) without delays. Importantly, unlike simpler PDEs without delay, which often have
self-similar solutions, PDEs with delay do not admit self-similar solutions.

The present article deals with a Lotka–Volterra-type reaction–diffusion system with
two components and four constant delays described by two coupled PDEs with quadratic
nonlinearities:

ut = a1uxx + u(b1 + p1ū1 + q1v̄2),

vt = a2vxx + v(b2 + p2ū3 + q2v̄4),
(1)

where u = u(x, t) and v = v(x, t) are the unknown functions; ūi = u(x, t− τi), i = 1, 3;
v̄j = v(x, t − τj), j = 2, 4; τi ≥ 0 and τj ≥ 0 are delay times; a1 > 0 and a2 > 0 are
diffusion-type coefficients; and b1, b2, p1, p2, q1, and q2 are some constants.
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Systems of the form (1) are used in the mathematical modeling of various processes in
biology, ecology, biochemistry, medicine, etc. For example, in population theory, the delays
τ1 and τ4 characterize the mean reproductive age of species. At the same time, τ2 and τ3 are
responsible for the time required for changes in the population size of one species to cause
changes in the other. All the delays are non-negative and can be zero in some models. The
terms with nonzero coefficients q1 and p2 make the model different from a single equation,
while the coefficients are responsible for the interaction between individuals of the two
populations. In the case of cooperation, when one species persists in the absence of the
other or when species mutually increase each other’s growth rate, the coefficients q1 and p2
are positive. In the case of competition, an increase in one population leads to a decrease in
the other (for example, an increase in the number of predators leads to a decrease in the
prey population), and the coefficients q1 and q2 are negative. Lotka–Volterra cooperative
models with delays, described by PDEs (1), were treated in [1,2]; for competitive models,
see [3–5].

The special case of the system of delay PDEs (1) with b2 = q2 = 0, τ1 = τ3 = 0, and
τ2 > 0 describes a Belousov–Zhabotinsky oscillating chemical reaction, where u and v are
the bromic acid and bromide ion concentrations (see [6]).

The system of delay PDEs (1) is a generalization of simpler equations and systems
outlined below.

1◦. In the simplest case of no diffusion or delays, with a1 = a2 = 0 and τ1 = τ2 = τ3 =
τ4 = 0, the system of PDEs (1) degenerates into a system of ODEs [7,8], which is known as
the classical Lotka–Volterra system.

2◦. With no diffusion, when a1 = a2 = 0, system (1) degenerates into a simpler system
of delay ODEs. For qualitative features and the dynamics of such delay systems, see, for
example, [9–14].

3◦. If a1a2 6= 0, the diffusion system of PDEs (1) simplifies significantly when there
are no delays, τ1 = τ2 = τ3 = τ4 = 0. Numerous studies are devoted to qualitative analysis
of such systems (e.g., see [15–19] and references in [18,19]).

The system of PDEs (1) without delays admits simple traveling wave solutions

u = u(z), v = v(z), z = x + λt, (2)

with the functions u(z) and v(z) described by a system of ODEs. The studies [20–22]
obtained some exact solutions to this system, of the form (2), which are expressible in terms
of elementary functions.

The studies [23–25] considered nonclassical symmetries and exact solutions to sys-
tem (1) and related Lotka–Volterra-type systems in the absence of delays (see also [26,27]).

Remark 1. For exact solutions to various single nonlinear reaction–diffusion-type equations
without delays, see, for example, [26,28–44]. The books [26,32,37,40,43,44] describe solution
methods for such equations.

4◦. In general, the presence of delays in system (1) complicates its analysis dramat-
ically, since the majority of analytical methods that are effective in constructing exact
solutions to nonlinear PDEs without delay are either inapplicable for solving delay PDEs at
all or extremely limited for this purpose.

The system of delay PDEs (1) admits simple traveling wave solutions (2) (e.g.,
see [1,5,45]). At present, there is only one publication [46] where two other exact solutions
to system (1) were obtained and some reductions of related nonlinear reaction–diffusion
systems of PDEs were described.

Remark 2. For exact solutions to single nonlinear reaction–diffusion-type delay equations,
see [47–53] (see also [54], where time-fractional reaction–diffusion PDEs with delay were consid-
ered). The studies [55,56] describe some exact solutions to nonlinear Klein–Gordon-type PDEs with
delay.
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1.2. The System of Delay PDEs in Question Exact Solutions and Generalized Separable Solutions

1◦. In general, the multi-parameter nonlinear Lotka–Volterra-type diffusion system of
delay PDEs (1) contains 12 free parameters, four of which can be removed by scaling the
dependent and independent variables. We will consider a special case of system (1) while
imposing one constraint, p1/p2 = q1/q2, on the free parameters. With this in mind, we set
p1 = c1k1, q1 = c1k2, p2 = c2k1, and q2 = c2k2 to obtain

ut = a1uxx + u[b1 + c1(k1ū1 + k2v̄2)],

vt = a2vxx + v[b2 + c2(k1ū3 + k2v̄4)],
(3)

where ūi = u(x, t − τi), v̄j = v(x, t − τj) (i = 1, 3, j = 2, 4); a1 > 0, a2 > 0, b1, b2, k1,
k2, τi ≥ 0, and τj ≥ 0 are free parameters; c1 6= 0 and c2 6= 0 are some constants to be
determined later. The present study does not deal with the degenerate cases of k1 = 0 or
k2 = 0, when system (3) becomes semi-coupled, meaning that one equation of the system
is isolated, while the other one is linear in the unknown.

2◦. A solution is called exact if it satisfies the equation in question exactly (i.e., when
substituted into the equation, the solution turns it into an identity). At the same time,
any approximations or simplifications of the equation are not allowed, and no a priori
assumptions are used.

The term ‘exact solution’ for nonlinear PDEs with delay is normally used in cases
where the solution is expressed:

(i) In terms of elementary functions;
(ii) In terms of elementary and special functions and indefinite integrals;
(iii) In terms of solutions to ODEs without or with delay or systems of such equations.

Combinations of solutions from items (i)–(iii) are allowed. In cases (i) and (ii), an exact
solution can be represented in an explicit, implicit or parametric form.

Exact solutions play an essential role as standard reference results that can be used to
verify the consistency and estimate errors of various numerical, asymptotic, and approxi-
mate analytical methods for solving nonlinear PDEs with delay. These solutions can also
serve as a basis for perfecting and testing computer algebra software packages such as
Maple and Mathematica.

The simplest and most preferred exact solutions for testing are solutions in terms
of elementary functions (see Item (i)). Currently, the vast majority of the obtained exact
solutions of such equations are more complex and relate to Item (iii).

3◦. We will be looking for exact generalized separable solutions to the system of delay
PDEs (3) in the form

u = ξ(t)θ(x) + ϕ(x), v = η(t)θ(x) + ψ(x), (4)

or in an alternative form that can be obtained from (4) by replacing the functions ϕ(x)
and ψ(x) with ϕ(t) and ψ(t), respectively. In some cases, we will look for more complicated
solutions involving functions with two arguments. Special attention will be given to the
construction of exact solutions expressible in terms of elementary functions.

1.3. Simplest Solutions (Stationary Points)

Constants (stationary points) are the simplest solutions to system (3):

u = u◦ = const, v = v◦ = const. (5)

These constants are determined by the formulas

(a) u◦ = v◦ = 0; (b) u◦ = − b1

c1k1
, v◦ = 0; (c) u◦ = 0, v◦ = − b2

c2k2
;

(d) u◦ = − k2

k1
v◦ − b1

c1k1
, v◦ is any

(
a special case where

b1

c1
=

b2

c2

)
.

(6)
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The stationary points (6) will further be used to construct more complicated solutions
to system (3).

2. Reductions and Exact Solutions of the System of Delay PDEs with Different
Diffusion Coefficients (a1 6= a2)
2.1. Reduction of the System with Three Delays to a Single Second-Order Linear ODE
without Delay

The four delay times in system (3) are assumed to be related by the single constraint

τ2 − τ1 = τ4 − τ3. (7)

This suggests that any three of these delays can be set arbitrarily. Notably, relation (7)
holds, for example, in the following three important special cases:

τ2 = τ1, τ4 = τ3, τ1 and τ3 are arbitrary;

τ3 = τ1, τ4 = τ2, τ1 and τ2 are arbitrary;

τm = mτ, m = 1, 2, 3, 4, τ is arbitrary.

We seek a generalized separable solution to system (3) in the form

u = −k2eλ(t+τ1)θ(x) + u◦, v = k1eλ(t+τ2)θ(x) + v◦, (8)

where u◦ and v◦ are the stationary points (5) of system (3). We assume that the function
θ = θ(x) satisfies the second-order linear ODE

θ′′xx = µθ. (9)

The constants λ and µ appearing in (8) and (9) are to be determined in a subsequent
analysis.

The functions (8) are selected so as to ensure that under condition (7), the following
simple relations hold:

k1ū1 + k2v̄2 = k1u◦ + k2v◦ = const, k1ū3 + k2v̄4 = k1u◦ + k2v◦ = const. (10)

Substituting (8) into (3) and taking into account relations (10) and Equation (9) fol-
lowed by a simple rearrangement of terms, we arrive at the linear algebraic system

λ = a1µ + b1 + c1(k1u◦ + k2v◦),

λ = a2µ + b2 + c2(k1u◦ + k2v◦).
(11)

It serves to determine the parameters λ and µ.
If a1 6= a2, the solution of system (11) is expressed as

λ =
a2b1 − a1b2 + (a2c1 − a1c2)ρ

◦

a2 − a1
, µ =

b1 − b2 + (c1 − c2)ρ
◦

a2 − a1
, ρ◦ = k1u◦ + k2v◦. (12)

For the first three stationary points in (6), the coefficients (12) are given by

(a) λ =
a2b1 − a1b2

a2 − a1
, µ =

b1 − b2

a2 − a1
;

(b) λ =
a1(b1c2 − b2c1)

c1(a2 − a1)
, µ =

λ

a1
=

b1c2 − b2c1

c1(a2 − a1)
;

(c) λ =
a2(b1c2 − b2c1)

c2(a2 − a1)
, µ =

λ

a2
=

b1c2 − b2c1

c2(a2 − a1)
.

(13)

In case (d), the parameters degenerate, λ = µ = 0, resulting in solutions of little
interest.
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The general solution to the linear ODE (9) with µ 6= 0 reads

θ(x) =

C1 cos
(√
|µ| x

)
+ C2 sin

(√
|µ| x

)
if µ < 0,

C1 exp
(
−
√
|µ| x

)
+ C2 exp

(√
|µ| x

)
if µ > 0,

(14)

where C1 and C2 are arbitrary constants.
Formulas (8), (13) and (14) and the first three stationary points (6) determine six

nondegenerate solutions, three for µ > 0 and µ < 0 each, to the nonlinear system (3) with
a1 6= a2 and four constant delays satisfying condition (7). The study [46] presents exact
solutions to system (3) corresponding to the stationary point (b) in (6). These are written
out below.

Solution for µ = b1c2−b2c1
c1(a2−a1)

< 0:

u = −k2ea1µ(t+τ1)
[
C1 cos

(√
|µ| x

)
+ C2 sin

(√
|µ| x

)]
− b1(c1k1)

−1,

v = k1ea1µ(t+τ2)
[
C1 cos

(√
|µ| x

)
+ C2 sin

(√
|µ| x

)]
,

(15)

where C1 and C2 are arbitrary constants.
Solution for µ = b1c2−b2c1

c1(a2−a1)
> 0:

u = −k2ea1µ(t+τ1)
[
C1 exp

(
−√µ x

)
+ C2 exp

(√
µ x
)]
− b1(c1k1)

−1,

v = k1ea1µ(t+τ2)
[
C1 exp

(
−√µ x

)
+ C2 exp

(√
µ x
)]

.
(16)

2.2. Reduction of the System of PDEs with Three Delays to a System of Two Second-Order ODEs
without Delays

We assume that the four delay times in system (3) are related by the single con-
straint (7).

Generalized separable solutions exponential in t. We seek a generalized separable solution
to system (3) in the form

u = −k2eλ(t+τ1)θ(x) + ϕ(x), v = k1eλ(t+τ2)θ(x) + ψ(x), (17)

with the functions θ = θ(x), ϕ = ϕ(x), and ψ = ψ(x) and parameter λ to be determined in
the subsequent analysis.

The functions (17) are selected so as to ensure that under condition (7), the following
relations hold:

k1ū1 + k2v̄2 = k1 ϕ(x) + k2ψ(x), k1ū3 + k2v̄4 = k1 ϕ(x) + k2ψ(x). (18)

Substituting (17) into (3) and taking into account (18), we obtain

−k2eλ(t+τ1)
[
a1θ′′xx + (b1 − λ + c1ρ)θ] + a1 ϕ′′xx + (b1 + c1ρ)ϕ = 0,

k1eλ(t+τ2)
[
a2θ′′xx + (b2 − λ + c2ρ)θ] + a2ψ′′xx + (b2 + c2ρ)ψ = 0,

(19)

with the notation ρ = k1 ϕ + k2ψ used for short.
Relations (19) can be satisfied by setting

a1 ϕ′′xx + (b1 + c1ρ)ϕ = 0,

a2ψ′′xx + (b2 + c2ρ)ψ = 0,

a1θ′′xx + (b1 − λ + c1ρ)θ = 0,

a2θ′′xx + (b2 − λ + c2ρ)θ = 0.

(20)



Mathematics 2022, 10, 1529 7 of 28

The first two equations in (20) form a closed system of ODEs for determining the
functions ϕ and ψ, while the other two equations make up an overdetermined system for
the single function θ. On requiring that the last two equations in (20) coincide, we find the
parameter λ and other constants:

λ =
a2b1 − a1b2

a2 − a1
, c1 = a1, c2 = a2 (a1 6= a2). (21)

On substituting (21) into (20), we arrive at the following system of stationary second-
order ODEs:

a1 ϕ′′xx + (b1 + a1ρ)ϕ = 0,

a2ψ′′xx + (b2 + a2ρ)ψ = 0,

θ′′xx +
( b2 − b1

a2 − a1
+ ρ
)

θ = 0,

(22)

where ρ = k1 ϕ + k2ψ.

Statement 1. Let ϕ = ϕ(x), ψ = ψ(x), θ = θ(x) be a solution of system (22). Then, the
functions

ϕ̂ = ϕ(±x + A), ψ̂ = ψ(±x + A), θ̂ = Bθ(±x + A), (23)

where A and B are arbitrary constants (B 6= 0) are also a solution of the system.

System (22) simplifies significantly if either ϕ or ψ is set to zero, in which case the
system will only consist of two equations.

Properties and some transformations of the system of ODEs (22) with ψ = 0. The au-
tonomous systems of ODEs (22) with ψ = 0 can be rewritten in the form

ϕ′′xx + (b + kϕ)ϕ = 0, (24)

θ′′xx + (β + kϕ)θ = 0. (25)

where b = b1/a1, k = k1, and β = (b2 − b1)/(a2 − a1). We assume that ϕ(x) 6≡ const (the
special case ϕ = u◦ = const was discussed above).

Below are three linear transformations of the system of ODEs (24) and (25), which will
be required for the construction of exact solutions.

1◦. The linear transformation

ϕ = ϕ1 −
b
k

, θ = θ1 (transformation G1), (26)

takes system (24) and (25) to the same system with other determining parameters

(ϕ1)
′′
xx + (−b + kϕ1)ϕ1 = 0,

(θ1)
′′
xx + (β− b + kϕ1)θ1 = 0.

(27)

2◦. The linear transformation

ϕ = −ϕ2, θ = θ2, z = ix, i2 = −1 (transformation G2), (28)

also takes system (24) and (25) to the same system with other parameters

(ϕ2)
′′
zz + (−b + kϕ2)ϕ2 = 0,

(θ2)
′′
zz + (−β + kϕ2)θ2 = 0.

(29)
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We will use (b, β) to refer to systems (24) and (25). Then, transformations G1 and G2
and their composition G1 ◦G2 connect this system with three other systems of the same
form, which can schematically be depicted as

(b, β)
G1−→ (−b, β− b); (b, β)

G2−→ (−b,−β); (b, β)
G1◦G2−−−−→ (b, b− β). (30)

These transformations allow one to multiply exact solutions to (24) and (25). In
addition, the following statement holds true.

Statement 2. Suppose the functions

ϕ = Φ(x, b, k), θ = Θ(x, b, β, k) (31)

make up an exact solution to the system of ODEs (24) and (25). Then, exact solutions to the same
system with other determining parameters b and β (k remains the same) can be obtained using three
pairs of formulas specified in the last three rows of Table 1.

Table 1. Exact solutions to three related systems of ODEs of the form (24) and (25) that can be
expressed in terms of solution (b, β) of the original system.

System of ODEs Function ϕ Function θ

(b, β), original system Φ(x, b, k) Θ(x, b, β, k)

(−b, β− b) Φ(x, b, k) + bk−1 Θ(x, b, β, k)

(−b,−β) −Φ(ix, b, k) Θ(ix, b, β, k)

(b, b− β) −Φ(ix, b, k)− bk−1 Θ(ix, b, β, k)

3◦. The linear transformation

ϕ = − 6
k

ϕ3 −
b

2k
, θ = θ3 (transformation H) (32)

reduces (24) and (25) to a system of the special form

(ϕ3)
′′
xx = 6ϕ2

3 − 1
24 b2,

(θ3)
′′
xx = (6ϕ3 +

1
2 b− β)θ3.

(33)

Exact solutions to the system of ODEs (24) and (25). The general solution to the
autonomous ODE (24) can be represented in the implicit form

x + C2 = ±
∫ dϕ√

C1 − bϕ2 − 2
3 kϕ3

. (34)

where C1 and C2 are arbitrary constants. In general, the integral on the right-hand side
of (34) is not expressible in terms of elementary functions.

Solutions to ODE (24) are expressible in terms of the Weierstrass elliptic function
℘ = ℘(z, g2, g3), which is defined explicitly via the elliptic integral [57]:

z =
∫ ∞

℘

dy√
4y3 − g2y− g3

,

where g2 and g3 are free parameters called invariants. The first ODE in (33) has a solution
ϕ3 = ℘(x, 1

12 b2, C̃1) (see [57,58]), where C̃1 = g3 is an arbitrary constant. By virtue of
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transformation H (32) and the first property in (23), Equation (24) with k 6= 0 admits the
solutions

ϕ = − 6
k
℘
(
±x + C̃2,

1
12

b2, C̃1

)
− b

2k
, (35)

where C̃1 and C̃2 are arbitrary constants.
Notably, once ϕ(x) is known, the general solution to the linear homogeneous Equa-

tion (25) can be written as [58]:

θ = θ0

(
C3 + C4

∫ dx
θ2

0

)
, (36)

where θ0 = θ0(x) is any nontrivial particular solution to Equation (25).
If β = b, Equation (25) with θ = ϕ coincides with Equation (24). Therefore, the

function θ0 = ϕ is a particular solution to Equation (25) in this case. On substituting θ0 = ϕ
into (36), we obtain the general solution to Equation (25) with β = b; the representation of
the function ϕ in terms of the Weierstrass elliptic function (35) can also be used.

2.3. Exact Solutions in Terms of Elementary Functions to the Reduced System of Two
Second-Order ODEs

Consider a few special cases where solutions to the system of ODEs (24) and (25) are
expressible in terms of elementary functions.

1◦. For C1 = 0 and b = 0, the function ϕ in (34) can be represented in explicit form as

ϕ = − 6
k(x + C2)2 . (37)

Substituting (37) into (25) and multiplying by (x + C2)
2, we obtain the equation

ξ2θ′′ξξ + (βξ2 − 6)θ = 0, ξ = x + C2. (38)

Up to renaming, it coincides with a special case of an ODE discussed in the book [58]
(see Equation (132) with a = 0 and n = 2 on page 535).

For β = 0, the general solution of Equation (38) is

θ(x) = C3(x + C2)
−2 + C4(x + C2)

3,

where C3 and C4 are arbitrary constants.
For β 6= 0, the general solution of Equation (38) can be represented as

θ =

{
ξ1/2[C3 J5/2

(√
β ξ
)
+ C4Y5/2

(√
β ξ
)]

if β > 0,

ξ1/2[C3 I5/2
(√
−β ξ

)
+ C4K5/2

(√
−β ξ

)]
if β < 0,

(39)

where C3 and C4 are arbitrary constants, J5/2(ζ) and Y5/2(ζ) are Bessel functions of the first
and second kind, and I5/2(ζ) and K5/2(ζ) are modified Bessel functions of the first and
second kind. These can be expressed in terms of elementary functions as [58]:

J5/2(ζ) =

√
2
π

3 sin ζ − 3 ζ cos ζ − ζ2 sin ζ

ζ5/2 ,

Y5/2(ζ) = −
√

2
π

3 cos ζ + 3 ζ sin ζ − ζ2 cos ζ

ζ5/2 ,

I5/2(ζ) =

√
2
π

3 sinh ζ − 3 ζ cosh ζ + ζ2 sinh ζ

ζ5/2 , K5/2(ζ) =

√
π

2
3 + 3 ζ + ζ2

eζ ζ5/2 .
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2◦. For C1 = 0 and b 6= 0, the integral in (34) can be expressed in terms of elementary
functions, and the function ϕ can be written explicitly as

ϕ(x) =


− 3b

2k
+

3b
2k

tanh2
( 1

2

√
−b x + A1

)
, b < 0,

− 3b
2k
− 3b

2k
tan2

( 1
2

√
b x + A1

)
, b > 0,

(40)

where A1 = 1
2

√
∓b C2 is an arbitrary constant.

For β = 0, the general solutions of Equation (25) corresponding to solutions (40) are

θ(x) =

{
A2(3S2 − 1) + A3

[
3S + (3S2 − 1) artanh

( 1
2

√
−b x + A1

)]
, b < 0,

A2(3T2 + 1) + A3
[
3T + (3T2 + 1) arctan

( 1
2

√
b x + A1

)]
, b > 0,

where
S = tanh

( 1
2

√
−b x + A1

)
, T = tan

( 1
2

√
b x + A1

)
,

and A2 and A3 are arbitrary constants.
For β 6= 0 and b < 0, Equation (25) admits particular solutions of the form [58]:

θ0 = sinhm( 1
2

√
−b x + A1

)
coshn( 1

2

√
−b x + A1

)
.

Substituting θ0 into Equation (25) and in view of the first solution (40), we find the
following allowed values of the parameters:

m = 0, n = −2, β = b,

m = 0, n = 3, β = 9
4 b,

m = 1, n = −2, β = 1
4 b,

m = 1, n = 3, β = 4b.

As a result, taking into account (36), we obtain four general solutions for different β:

β = b, θ = A2 cosh−2 ξ + A3
[
(3 + 2 cosh2 ξ) tanh ξ + 3 ξ cosh−2 ξ

]
;

β = 9
4 b, θ = A2 cosh3 ξ + A3 sinh ξ

(
4 + 3 cosh−2 ξ + 8 cosh2 ξ

)
;

β = 1
4 b, θ = A2 sinh ξ cosh−2 ξ + A3 cosh−1 ξ

(
3 ξ tanh ξ − 3 + cosh2 ξ

)
;

β = 4b, θ = A2 sinh ξ cosh3 ξ + A3
(
2 + cosh−2 ξ + 8 cosh2 ξ − 16 cosh4 ξ

)
,

(41)

where ξ = 1
2

√
−b x + A1.

For β 6= 0 and b > 0, Equation (25) admits the following particular solutions [58]:

θ0 =


cos−2( 1

2

√
b x + A1

)
, β = b,

cos3( 1
2

√
b x + A1

)
, β = 9

4 b,
sin
( 1

2

√
b x + A1

)
cos−2( 1

2

√
b x + A1

)
, β = 1

4 b,
sin
( 1

2

√
b x + A1

)
cos3( 1

2

√
b x + A1

)
, β = 4b.

In view of (36), we obtain four general solutions for different β:

β = b, θ = A2 cos−2 ξ + A3
[
(3 + 2 cos2 ξ) tan ξ + 3 ξ cos−2 ξ

]
;

β = 9
4 b, θ = A2 cos3 ξ + A3 sin ξ

(
4 + 3 cos−2 ξ + 8 cos2 ξ

)
;

β = 1
4 b, θ = A2 sin ξ cos−2 ξ + A3 cos−1 ξ

(
3 ξ tan ξ + 3− cos2 ξ

)
;

β = 4b, θ = A2 sin ξ cos3 ξ + A3
(
2 + cos−2 ξ + 8 cos2 ξ − 16 cos4 ξ

)
,

(42)

where ξ = 1
2

√
b x + A1.
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3◦. For C1 = 1
3 b3/k2, b 6= 0, the radicand in (34) can be factorized to

( 1
3 b− 2

3 kϕ
)
×( b

k + ϕ
)2. In this case, the integral can be expressed in terms of elementary functions, and

the function ϕ can be represented in explicit form as

ϕ(x) =


b

2k
+

3b
2k

tan2
(

1
2

√
−b x + A1

)
, b < 0,

b
2k
− 3b

2k
tanh2

(
1
2

√
b x + A1

)
, b > 0.

(43)

For β = 0, the general solutions of Equation (25) corresponding to solutions (43) are

θ(x) =


A2(1 + T2) + A3

[
2T

1 + T2 + 3T + 3(1 + T2)
( 1

2

√
−b x + A1

)]
, b < 0,

A2(1− S2) + A3

[
2S

1− S2 + 3S + 3(1− S2)
( 1

2

√
b x + A1

)]
, b > 0,

where
T = tan

( 1
2

√
−b x + A1

)
, S = tanh

( 1
2

√
b x + A1

)
.

For β 6= 0 and b < 0, Equation (25) admits the following exact solutions [58]:

θ0 =


1 + 3 tan2( 1

2

√
−b x + A1

)
, β = b,

cos3( 1
2

√
−b x + A1

)
, β = − 5

4 b,
sin
( 1

2

√
−b x + A1

)
cos−2( 1

2

√
−b x + A1

)
, β = 3

4 b,
sin
( 1

2

√
−b x + A1

)
cos3( 1

2

√
−b x + A1

)
, β = −3b.

The respective general solutions of Equation (25) are

β = b, θ = A2
(
1 + 3 tan2 ξ

)
+ A3

[
ξ
(
1 + 3 tan2 ξ

)
+ 3 tan ξ

]
;

β = − 5
4 b, θ = A2 cos3 ξ + A3 sin ξ

(
4 + 3 cos−2 ξ + 8 cos2 ξ

)
;

β = 3
4 b, θ = A2 sin ξ cos−2 ξ + A3 cos−1 ξ

(
3 ξ tan ξ + 3− cos2 ξ

)
;

β = −3b, θ = A2 sin ξ cos3 ξ + A3
(
2 + cos−2 ξ + 8 cos2 ξ − 16 cos4 ξ

)
,

(44)

where ξ = 1
2

√
−b x + A1.

For β 6= 0 and b > 0, Equation (25) has the following exact solutions [58]:

θ0 =


1− 3 tanh2( 1

2

√
b x + A1

)
, β = b,

cosh3( 1
2

√
b x + A1

)
, β = − 5

4 b,
sinh

( 1
2

√
b x + A1

)
cosh−2( 1

2

√
b x + A1

)
, β = 3

4 b,
sinh

( 1
2

√
b x + A1

)
cosh3( 1

2

√
b x + A1

)
, β = −3b.

The respective general solutions of Equation (25) are

β = b, θ = A2
(
1− 3 tanh2 ξ

)
+ A3

[
ξ
(
1− 3 tanh2 ξ

)
+ 3 tanh ξ

]
;

β = − 5
4 b, θ = A2 cosh3 ξ + A3 sinh ξ

(
4 + 3 cosh−2 ξ + 8 cosh2 ξ

)
;

β = 3
4 b, θ = A2 sinh ξ cosh−2 ξ + A3 cosh−1 ξ

(
3 ξ tanh ξ − 3 + cosh2 ξ

)
;

β = −3b, θ = A2 sinh ξ cosh3 ξ + A3
(
2 + cosh−2 ξ + 8 cosh2 ξ − 16 cosh4 ξ

)
,

(45)

where ξ = 1
2

√
b x + A1.



Mathematics 2022, 10, 1529 12 of 28

4◦. Apart from the above exact solutions for ϕ(x), Equation (24) admits the solutions

ϕ(x) =



− 3b
2k

+
3b
2k

coth2
( 1

2

√
−b x + A1

)
, b < 0,

b
2k

+
3b
2k

cot2
(

1
2

√
−b x + A1

)
, b < 0,

b
2k
− 3b

2k
coth2

(
1
2

√
b x + A1

)
, b > 0,

− 3b
2k
− 3b

2k
cot2

( 1
2

√
b x + A1

)
, b > 0.

(46)

The following replacements should be made in the respective solutions for θ(x): {sin,
cos, tan, arctan}with {cos, sin, cot, arccot} and {sinh, cosh, tanh, artanh}with {cosh, sinh,
coth, arcoth}, respectively.

In particular, besides the first solution in (40) with b < 0 and the first solution in (41)
with β = b, there are solutions

ϕ(x) = − 3b
2k

+
3b
2k

coth2 ξ, ξ =
1
2

√
−b x + A1,

θ(x) = A2 sinh−2 ξ + A3
[
(3 + 2 sinh2 ξ) coth ξ + 3 ξ sinh−2 ξ

]
.

Moreover, apart from the first solution in (43) with b < 0 and the first solution in (44)
with β = − 5

4 b, there are solutions

ϕ(x) =
b

2k
+

3b
2k

cot2 ξ, ξ =
1
2

√
−b x + A1,

θ(x) = A2 sin3 ξ + A3 cos ξ
(
4 + 3 sin−2 ξ + 8 sin2 ξ

)
.

Table 2 summarizes the exact solutions in terms of elementary functions to the system
of ODEs (24) and (25) for various values of the parameters b and β. The space variable x
can everywhere be replaced with x + A1, where A1 is an arbitrary constant.

The exact solutions to the original Lotka–Volterra system of delay PDEs (3) for c1 = a1
and c2 = a2 and under condition (7) are determined by substituting the functions ϕ and θ
from Table 2, where b = b1/a1, k = k1, and β = (b2 − b1)/(a2 − a1), into Formula (17) with
λ = a2b1−a1b2

a2−a1
and ψ = 0.

Remark 3. The value β = b in Table 2 corresponds to the stationary solutions (17) with ψ = 0 to
the system of PDEs (3) with parameters (21), where λ = 0.

Remark 4. By setting ϕ = 0 in system (22) and denoting a2 = a, b2 = ba, k2 = k, and
β = (b2 − b1)/(a2 − a1), one can obtain exact solutions for the pair of functions ψ(x) and θ(x)
analogous to those described above for the pair of functions ϕ(x) and θ(x) for ψ(x) = 0.
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Table 2. Solutions of systems (24) and (25) for various values of the parameters b and β. Notation:
J5/2(ξ) and Y5/2(ξ) are the Bessel functions of the first and second kind, I5/2(ξ) and K5/2(ξ) are the
modified Bessel functions of the first and second kind, and A1, A2, A3, C2, C3, and C4 are arbitrary
constants.

No. Parameters b and β Function ϕ, Equation (24) Function θ, Equation (25) Function ξ = ξ(x)

1 b = 0, β = 0 − 6
k ξ−2 C3ξ−2 + C4ξ3 ξ = x + C2

2 b = 0, β > 0 − 6
k ξ−2 √

ξ
[
C3 J5/2(

√
β ξ) + C4Y5/2(

√
β ξ)

]
ξ = x + C2

3 b = 0, β < 0 − 6
k ξ−2 √

ξ
[
C3 I5/2(

√
−β ξ) + C4K5/2(

√
−β ξ)

]
ξ = x + C2

4 b < 0, β = 0 − 3b
2k + 3b

2k tanh2 ξ A2(3 tanh2 ξ − 1) + A3
[
3 tanh ξ + (3 tanh2 ξ − 1) artanh ξ

] 1
2

√
−b x + A1

5 b < 0, β = 0 − 3b
2k + 3b

2k coth2 ξ A2(3 coth2 ξ − 1) + A3
[
3 coth ξ + (3 coth2 ξ − 1) arcoth ξ

] 1
2

√
−b x + A1

6 b > 0, β = 0 − 3b
2k −

3b
2k tan2 ξ A2(3 tan2 ξ + 1) + A3

[
3 tan ξ + (3 tan2 ξ + 1) arctan ξ

] 1
2

√
b x + A1

7 b > 0, β = 0 − 3b
2k −

3b
2k cot2 ξ A2(3 cot2 ξ + 1) + A3

[
3 cot ξ + (3 cot2 ξ + 1) arccot ξ

] 1
2

√
b x + A1

8 b < 0, β = 0 b
2k + 3b

2k tan2 ξ A2 cos−2 ξ + A3
[
sin(2ξ) + 3 tan ξ + 3 ξ cos−2 ξ

] 1
2

√
−b x + A1

9 b < 0, β = 0 b
2k + 3b

2k cot2 ξ A2 sin−2 ξ + A3
[
cos(2ξ) + 3 cot ξ + 3 ξ sin−2 ξ

] 1
2

√
−b x + A1

10 b > 0, β = 0 b
2k −

3b
2k tanh2 ξ A2 cosh−2 ξ + A3

[
sinh(2ξ) + 3 tanh ξ + 3 ξ cosh−2 ξ

] 1
2

√
b x + A1

11 b > 0, β = 0 b
2k −

3b
2k coth2 ξ A2 sinh−2 ξ + A3

[
cosh(2ξ) + 3 coth ξ + 3 ξ sinh−2 ξ

] 1
2

√
b x + A1

12 b < 0, β = −3b b
2k + 3b

2k tan2 ξ A2 sin ξ cos3 ξ + A3
(
2 + cos−2 ξ + 8 cos2 ξ − 16 cos4 ξ

) 1
2

√
−b x + A1

13 b < 0, β = −3b b
2k + 3b

2k cot2 ξ A2 cos ξ sin3 ξ + A3
(
2 + sin−2 ξ + 8 sin2 ξ − 16 sin4 ξ

) 1
2

√
−b x + A1

14 b > 0, β = −3b b
2k −

3b
2k tanh2 ξ A2 sinh ξ cosh3 ξ + A3

(
2 + cosh−2 ξ + 8 cosh2 ξ − 16 cosh4 ξ

) 1
2

√
b x + A1

15 b > 0, β = −3b b
2k −

3b
2k coth2 ξ A2 cosh ξ sinh3 ξ + A3

(
2 + sinh−2 ξ + 8 sinh2 ξ − 16 sinh4 ξ

) 1
2

√
b x + A1

16 b < 0, β = − 5
4 b b

2k + 3b
2k tan2 ξ A2 cos3 ξ + A3 sin ξ

(
4 + 3 cos−2 ξ + 8 cos2 ξ

) 1
2

√
−b x + A1

17 b < 0, β = − 5
4 b b

2k + 3b
2k cot2 ξ A2 sin3 ξ + A3 cos ξ

(
4 + 3 sin−2 ξ + 8 sin2 ξ

) 1
2

√
−b x + A1

18 b > 0, β = − 5
4 b b

2k −
3b
2k tanh2 ξ A2 cosh3 ξ + A3 sinh ξ

(
4 + 3 cosh−2 ξ + 8 cosh2 ξ

) 1
2

√
b x + A1

19 b > 0, β = − 5
4 b b

2k −
3b
2k coth2 ξ A2 sinh3 ξ + A3 cosh ξ

(
4 + 3 sinh−2 ξ + 8 sinh2 ξ

) 1
2

√
b x + A1

20 b < 0, β = 1
4 b − 3b

2k + 3b
2k tanh2 ξ A2 sinh ξ cosh−2 ξ + A3 cosh−1 ξ

(
3 ξ tanh ξ − 3 + cosh2 ξ

) 1
2

√
−b x + A1

21 b < 0, β = 1
4 b − 3b

2k + 3b
2k coth2 ξ A2 cosh ξ sinh−2 ξ + A3 sinh−1 ξ

(
3 ξ coth ξ − 3 + sinh2 ξ

) 1
2

√
−b x + A1

22 b > 0, β = 1
4 b − 3b

2k −
3b
2k tan2 ξ A2 sin ξ cos−2 ξ + A3 cos−1 ξ

(
3 ξ tan ξ + 3− cos2 ξ

) 1
2

√
b x + A1

23 b > 0, β = 1
4 b − 3b

2k −
3b
2k cot2 ξ A2 cos ξ sin−2 ξ + A3 sin−1 ξ

(
3 ξ cot ξ + 3− sin2 ξ

) 1
2

√
b x + A1

24 b < 0, β = 3
4 b b

2k + 3b
2k tan2 ξ A2 sin ξ cos−2 ξ + A3 cos−1 ξ

(
3 ξ tan ξ + 3− cos2 ξ

) 1
2

√
−b x + A1

25 b < 0, β = 3
4 b b

2k + 3b
2k cot2 ξ A2 cos ξ sin−2 ξ + A3 sin−1 ξ

(
3 ξ cot ξ + 3− sin2 ξ

) 1
2

√
−b x + A1

26 b > 0, β = 3
4 b b

2k −
3b
2k tanh2 ξ A2 sinh ξ cosh−2 ξ + A3 cosh−1 ξ

(
3 ξ tanh ξ − 3 + cosh2 ξ

) 1
2

√
b x + A1

27 b > 0, β = 3
4 b b

2k −
3b
2k coth2 ξ A2 cosh ξ sinh−2 ξ + A3 sinh−1 ξ

(
3 ξ coth ξ − 3 + sinh2 ξ

) 1
2

√
b x + A1

28 b < 0, β = b b
2k + 3b

2k tan2 ξ A2
(
1 + 3 tan2 ξ

)
+ A3

[
ξ
(
1 + 3 tan2 ξ

)
+ 3 tan ξ

] 1
2

√
−b x + A1

29 b < 0, β = b b
2k + 3b

2k cot2 ξ A2
(
1 + 3 cot2 ξ

)
+ A3

[
ξ
(
1 + 3 cot2 ξ

)
+ 3 cot ξ

] 1
2

√
−b x + A1

30 b > 0, β = b b
2k −

3b
2k tanh2 ξ A2

(
1− 3 tanh2 ξ

)
+ A3

[
ξ
(
1− 3 tanh2 ξ

)
+ 3 tanh ξ

] 1
2

√
b x + A1

31 b > 0, β = b b
2k −

3b
2k coth2 ξ A2

(
1− 3 coth2 ξ

)
+ A3

[
ξ
(
1− 3 coth2 ξ

)
+ 3 coth ξ

] 1
2

√
b x + A1

32 b < 0, β = b − 3b
2k + 3b

2k tanh2 ξ A2 cosh−2 ξ + A3
[
(3 + 2 cosh2 ξ) tanh ξ + 3 ξ cosh−2 ξ

] 1
2

√
−b x + A1

33 b < 0, β = b − 3b
2k + 3b

2k coth2 ξ A2 sinh−2 ξ + A3
[
(3 + 2 sinh2 ξ) coth ξ + 3 ξ sinh−2 ξ

] 1
2

√
−b x + A1

34 b > 0, β = b − 3b
2k −

3b
2k tan2 ξ A2 cos−2 ξ + A3

[
(3 + 2 cos2 ξ) tan ξ + 3 ξ cos−2 ξ

] 1
2

√
b x + A1

35 b > 0, β = b − 3b
2k −

3b
2k cot2 ξ A2 sin−2 ξ + A3

[
(3 + 2 sin2 ξ) cot ξ + 3 ξ sin−2 ξ

] 1
2

√
b x + A1

36 b < 0, β = 9
4 b − 3b

2k + 3b
2k tanh2 ξ A2 cosh3 ξ + A3 sinh ξ

(
4 + 3 cosh−2 ξ + 8 cosh2 ξ

) 1
2

√
−b x + A1

37 b < 0, β = 9
4 b − 3b

2k + 3b
2k coth2 ξ A2 sinh3 ξ + A3 cosh ξ

(
4 + 3 sinh−2 ξ + 8 sinh2 ξ

) 1
2

√
−b x + A1

38 b > 0, β = 9
4 b − 3b

2k −
3b
2k tan2 ξ A2 cos3 ξ + A3 sin ξ

(
4 + 3 cos−2 ξ + 8 cos2 ξ

) 1
2

√
b x + A1

39 b > 0, β = 9
4 b − 3b

2k −
3b
2k cot2 ξ A2 sin3 ξ + A3 cos ξ

(
4 + 3 sin−2 ξ + 8 sin2 ξ

) 1
2

√
b x + A1

40 b < 0, β = 4b − 3b
2k + 3b

2k tanh2 ξ A2 sinh ξ cosh3 ξ + A3
(
2 + cosh−2 ξ + 8 cosh2 ξ − 16 cosh4 ξ

) 1
2

√
−b x + A1

41 b < 0, β = 4b − 3b
2k + 3b

2k coth2 ξ A2 cosh ξ sinh3 ξ + A3
(
2 + sinh−2 ξ + 8 sinh2 ξ − 16 sinh4 ξ

) 1
2

√
−b x + A1

42 b > 0, β = 4b − 3b
2k −

3b
2k tan2 ξ A2 sin ξ cos3 ξ + A3

(
2 + cos−2 ξ + 8 cos2 ξ − 16 cos4 ξ

) 1
2

√
b x + A1

43 b > 0, β = 4b − 3b
2k −

3b
2k cot2 ξ A2 cos ξ sin3 ξ + A3

(
2 + sin−2 ξ + 8 sin2 ξ − 16 sin4 ξ

) 1
2

√
b x + A1
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2.4. Reduction of a System of PDEs with Three Delays to a System of Three Second-Order ODEs
without Delays

System (3) with four delays that satisfy the single relation (7) also admits generalized
separable solutions linear in time t:

u = −k2(t + τ1)θ(x) + ϕ(x), v = k1(t + τ2)θ(x) + ψ(x). (47)

An analysis similar to that above results in the following parameters of Equation (3):

b1 = σa1, b2 = σa2, c1 = a1, c2 = a2, (48)

where σ is an arbitrary constant. In this case, the functions θ = θ(x), ϕ = ϕ(x), and
ψ = ψ(x) are described by the stationary system of ODEs

ϕ′′xx + (σ + ρ)ϕ + (k2/a1)θ = 0,

ψ′′xx + (σ + ρ)ψ− (k1/a2)θ = 0,

θ′′xx + (σ + ρ)θ = 0, ρ = k1 ϕ + k2ψ.

(49)

Let us look at the special case a1 = a2 = a. By adding up the first two equations of (49)
multiplied by k1 and k2, we obtain an isolated ODE for ρ = k1 ϕ + k2ψ. We rewrite this
equation, together with the third and first ODEs of (49) and the algebraic relation for ρ, as
the mixed algebraic-differential system of equations

ρ′′xx + (σ + ρ)ρ = 0,

θ′′xx + (σ + ρ)θ = 0,

ϕ′′xx + (σ + ρ)ϕ + (k2/a)θ = 0,

ρ = k1 ϕ + k2ψ,

(50)

which contains three second-order ODEs.

2.5. Exact Solutions in Terms of Elementary Functions to the Reduced System of Three
Second-Order ODEs

First, let us describe two simple classes of exact solutions to system (50) with ρ = const.
1◦. Exact solution to system (50) with ρ = −σ:

ρ = −σ, ϕ = C1x + C2 −
k2

a

(
1
6

C3x3 +
1
2

C4x2
)

,

ψ = − 1
k2

(k1 ϕ + σ), θ = C3x + C4,

where C1, . . . , C4 are arbitrary constants.
2◦. Exact solution to system (50) with ρ = 0:

ρ= 0, ϕ= ϕp(x)+

{
C1 cos(

√
σ x)+C2 sin(

√
σ x) if σ > 0,

C1 cosh(
√
−σ x)+C2 sinh(

√
−σ x) if σ < 0,

ψ=− k1

k2
ϕ, θ =

{
C3 cos(

√
σ x)+C4 sin(

√
σ x) if σ > 0,

C3 cosh(
√
−σ x)+C4 sinh(

√
−σ x) if σ < 0,

ϕp(x) =


k2x

2a
√

σ

[
C4 cos(

√
σ x)−C3 sin(

√
σ x)

]
− C3k2

2aσ
cos(
√

σ x) if σ > 0,

−k2x
2a
√
−σ

[
C4 cosh(

√
−σ x)+C3 sinh(

√
−σ x)

]
− C3k2

2aσ
cosh(

√
−σ x) if σ < 0.
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Table 3. The functions ρ(x) and ω(x) determining exact solutions (51) to the system of ODEs (50).

No. Parameter σ Function ρ Function ω Function ξ

1 σ = 0 − 6
k x−2 x3 —

2 σ < 0 σ
2 + 3σ

2 tan2 ξ ξ
(
1 + 3 tan2 ξ

)
+ 3 tan ξ 1

2
√
−σ x

3 σ < 0 σ
2 + 3σ

2 cot2 ξ ξ
(
1 + 3 cot2 ξ

)
+ 3 cot ξ 1

2
√
−σ x

4 σ > 0 σ
2 −

3σ
2 tanh2 ξ ξ

(
1− 3 tanh2 ξ

)
+ 3 tanh ξ 1

2
√

σ x
5 σ > 0 σ

2 −
3σ
2 coth2 ξ ξ

(
1− 3 coth2 ξ

)
+ 3 coth ξ 1

2
√

σ x
6 σ < 0 − 3σ

2 + 3σ
2 tanh2 ξ (3 + 2 cosh2 ξ) tanh ξ + 3 ξ cosh−2 ξ 1

2
√
−σ x

7 σ < 0 − 3σ
2 + 3σ

2 coth2 ξ (3 + 2 sinh2 ξ) coth ξ + 3 ξ sinh−2 ξ 1
2
√
−σ x

8 σ > 0 − 3σ
2 −

3σ
2 tan2 ξ (3 + 2 cos2 ξ) tan ξ + 3 ξ cos−2 ξ 1

2
√

σ x
9 σ > 0 − 3σ

2 −
3σ
2 cot2 ξ (3 + 2 sin2 ξ) cot ξ + 3 ξ sin−2 ξ 1

2
√

σ x

3◦. The first two ODEs of system (50) coincide, up to renaming, with system (24)
and (25) at k = 1 and β = b, whose exact solutions were described above. For known
ρ = ρ(x), the second equation in (50) for θ is a second-order linear homogeneous ODE,
which has a particular solution θ0 = ρ(x). Hence, the general solution of this equation
is given by Formula (36). Once θ is found, the third equation in (50) is a second-order
linear nonhomogeneous ODE for ϕ = ϕ(x), with the particular solution ϕ0 = ρ(x) of the
homogeneous ODE already known. Considering the aforesaid and using relevant formulas
from [58], one can find the general solution to the ODE for ϕ. As a result, we obtain the
solution to system (50) in the form

ρ = ρ(x), θ = C1ρ(x) + C2ω(x), ϕ = C3ρ(x) + C4ω(x) + ϕp(x),

ψ =
1
k2

[(1− C3k1)ρ(x)− C4k1ω(x)− k1 ϕp(x)], ω(x) = ρ(x)
∫ dx

ρ2(x)
,

(51)

where C1, . . . , C4 are arbitrary constants, and ϕp(x) is a particular solution to the third
equation of system (50), which is defined as

ϕp(x) = − k2

a

[
ω(x)

∫
ρ(x)θ(x)

dx
W(x)

− ρ(x)
∫

ω(x)θ(x)
dx

W(x)

]
. (52)

Here, the function W(x) = ρω′x −ωρ′x is the Wronskian determinant. Simple computations
show that W(x) = 1.

Exact solutions to system (50) can be obtained by substituting the functions ρ(x)
and ω(x) from Table 3 into formulas (51) and (52).

4◦. For arbitrary σ, the function ρ(x) in solution (51) can be taken to be the Weierstrass
elliptic function:

ρ(x) = −6℘
(
x, 1

12 σ2, C5
)
− 1

2 σ,

where C5 is an arbitrary constant.

2.6. Reduction of the System of PDEs with a Single Delay to a Unsteady System of Two
First-Order Delay ODEs

Let the four delays in system (3) be identical:

τ1 = τ2 = τ3 = τ4 = τ. (53)

We look for generalized separable solutions to system (3) in the form

u = −k2ξ(t)θ(x) + ϕ(t), v = k1ξ(t)θ(x) + ψ(t), (54)
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with the functions θ = θ(x), ξ = ξ(t), ϕ = ϕ(t), and ψ = ψ(t) to be determined in the
subsequent analysis.

The functions (54) are selected to ensure that the composite arguments of f (. . . ) are
only dependent on t. We impose the following additional condition (a linear differential
constraint) on the function θ = θ(x):

θ′′xx = µθ + ε, (55)

where the constants µ and ε are to be found in the subsequent analysis. Notably, without
loss of generality, one can set ε = 0 in (55) in the nondegenerate case of µ 6= 0, since the
translation of θ by a constant only leads, by virtue of representation (54), to new definitions
of ϕ(t) and ψ(t).

Substituting (54) into (3) and taking into account (55), we get

−k2[(a1µ + b1 + c1 f̄ )ξ − ξ ′t]θ + a1k2εξ + b1 ϕ + c1 ϕ f̄ − ϕ′t = 0,

k1[(a2µ + b2 + c2 f̄ )ξ − ξ ′t]θ + a2k1εξ + b2ψ + c2ψ f̄ − ψ′t = 0,
(56)

where the notations f̄ = k1 ϕ̄ + k2ψ̄, ϕ̄ = ϕ(t− τ), and ψ̄ = ψ(t− τ) are used for short.
Relation (56) can be satisfied if we set

ϕ′t = a1k2εξ + b1 ϕ + c1 ϕ f̄ ,

ψ′t = a2k1εξ + b2ψ + c2ψ f̄ ,

ξ ′t = (a1µ + b1 + c1 f̄ )ξ,

ξ ′t = (a2µ + b2 + c2 f̄ )ξ.

(57)

The system of ODEs (57) is overdetermined because it consists of four equations for
three functions ξ, ϕ, and ψ. On requiring that the last two equations of system (57) coincide,
we find the parameter µ and other constants:

µ =
b1 − b2

a2 − a1
, c1 = c2 = 1 (a1 6= a2). (58)

For b1 6= b2, it follows from (58) that µ 6= 0, and hence, we can set ε = 0 in
Equations (55) and (57). The general solution of Equation (55) with ε = 0 is given by
Formula (14), while the first two equations of (57) are independent of ξ = ξ(t) and make
up a closed nonlinear system of first-order delay ODEs for ϕ = ϕ(t) and ψ = ψ(t):

ϕ′t = b1 ϕ + ϕ(k1 ϕ̄ + k2ψ̄),

ψ′t = b2ψ + ψ(k1 ϕ̄ + k2ψ̄),
(59)

where ϕ̄ = ϕ(t− τ) and ψ̄ = ψ(t− τ). Integrating the last equation in Equation (57) and
using relations (58), we find that the function ξ = ξ(t) is expressed in terms of ϕ = ϕ(t)
and ψ = ψ(t) as

ξ = A exp
[

a2b1 − a1b2

a2 − a1
t +

∫
(k1 ϕ̄ + k2ψ̄) dt

]
, (60)

where A is an arbitrary constant.
It is noteworthy that the system of delay ODEs (59) generally admits one-component

solutions ϕ = ϕ(t), ψ = 0 and ϕ = 0, ψ = ψ(t). In the absence of delay, these solutions can
be expressed in terms of elementary functions.
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2.7. The First Integral and Exact Solutions of the Reduced System of Two First-Order Delay ODEs

On eliminating the combination k1 ϕ̄ + k2ψ̄ from the system of delay ODEs (59), we get

ϕ′t
ϕ
− b1 =

ψ′t
ψ
− b2.

Integrating yields the first integral

ψ = C3e(b2−b1)t ϕ, (61)

where C3 is an arbitrary constant, which may depend on τ. Substituting (61) into the first
equation of system (59), we arrive at one first-order delay ODE

ϕ′t = b1 ϕ +
(
k1 + k2C3e(b2−b1)(t−τ)

)
ϕϕ̄, ϕ̄ = ϕ(t− τ). (62)

Example 1. ODE (62) for the Lotka–Volterra system of PDEs without delay (3), where τ = 0 is a
Bernoulli equation. The integration of it gives, in view of (61), an exact solution to system (59):

ϕ =

[
− C3k2

b2
e(b2−b1)t + C4e−b1t − k1

b1

]−1

,

ψ = C3e(b2−b1)t
[
− C3k2

b2
e(b2−b1)t + C4e−b1t − k1

b1

]−1

,

(63)

where C4 is an arbitrary constant. The respective function ξ(t) is defined by Formula (60) with
τ = 0. It can be expressed in terms of elementary functions if, for example,

b1 = 0; b2 = 0; b1 = b2; C3 = 0; C4 = 0.

In particular, by setting τ = 0 and C3 = 0 in (60) and (63), we get

ϕ =
b1eb1t

b1C4 − k1eb1t , ψ = 0, ξ =
A∣∣b1C4 − k1eb1t

∣∣ exp
(

a2b1 − a1b2

a2 − a1
t
)

. (64)

Formulas (14), (54), (58) and (64) describe a new solution to the Lotka–Volterra system of
PDEs without delay (3).

Similarly, if b1 = b2 = b and τ = 0, we get

ϕ =
bebt

C4b− (C3k2 + k1)ebt , ψ =
bC3ebt

C4b− (C3k2 + k1)ebt , ξ =
A
b

ϕ. (65)

In general, the function ϕ for the delay ODE (62) must be defined on the interval [−τ, 0]:

ϕ = ϕ0(t) at −τ ≤ t ≤ 0. (66)

The Cauchy-type problem for the delay ODE (62) subject to the initial condition (66) can be
solved using the method of steps [59,60]. To this end, we split time t into segments of length τ and
denote

ϕ(t) = ϕm(t) at tm−1 ≤ t ≤ tm, (67)

where tm = mτ and m = 0, 1, 2, . . . Then, on integrating Equation (62) from tm−1 to t on the
interval [tm−1, tm], we get

ϕm(t) = ϕ◦m exp
[

b1(t− tm−1) +
∫ t

tm−1

(
k1 + k2C3e(b2−b1)(t−τ)

)
ϕm−1(t) dt

]
,

ϕ◦m = ϕm(tm−1) = ϕm−1(tm).
(68)
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The function ϕm(t) on the left-hand side of Formula (68) is sought on the interval [tm−1, tm],
whereas ϕm−1(t) on the right-hand side is defined on the preceding interval [tm−2, tm−1]. The
computations are carried out successively starting from m = 1, when the right-hand side is a known
function defined on the initial interval (66). This step results in ϕ1(t). Then, one sets m = 2 and
finds the function ϕ2(t) using (68) via the already known function ϕ1(t). The procedure continues
further in a similar fashion.

For ε 6= 0, in order to determine ξ = ξ(t), ϕ = ϕ(t), and ψ = ψ(t), one has to solve the
nonlinear system consisting of the last three equations in (57) with b1 = b2 and µ = 0.

3. Reductions and Exact Solutions of the System of Delay PDEs with Identical
Diffusion Coefficients (a1 = a2)
3.1. Reduction of the System of PDEs with Three Delays to a System of Two Second-Order ODEs
without Delay and One Linear PDE

We assume that the four delay times in system (3) are linked by the single relation (7).
On setting a1 = a2 = a, b1 = b2 = b, and c1 = c2 = 1, we look for solutions to

system (3) in the form

u = −k2eλ(t+τ1)θ(x, t) + ϕ(x), v = k1eλ(t+τ2)θ(x, t) + ψ(x), (69)

where λ is a free parameter, while θ = θ(x, t), ϕ = ϕ(x), and ψ = ψ(x) are functions to be
determined in the subsequent analysis.

Solutions of the form (69), where θ is a function of two independent variables and λ is
an arbitrary parameter, generalize substantially solutions (17), in which θ is independent
of t, and λ is expressed in terms of the system constants. We will refer to such solutions as
incomplete separable solutions.

We assume the function θ = θ(x, t) to satisfy the additional periodicity condition

θ(x, t + τ2 − τ1) = θ(x, t). (70)

One can verify that relations (18) remain valid under conditions (7) and (70). Con-
sidering the above and substituting (69) into (3), we obtain a closed system for ϕ and ψ
consisting of two second-order ODEs without delay:

aϕ′′xx + (b + k1 ϕ + k2ψ)ϕ = 0, (71)

aψ′′xx + (b + k1 ϕ + k2ψ)ψ = 0. (72)

The function θ = θ(x, t) satisfies the nonstationary Schrödinger equation

θt = aθ′′xx + (b− λ + k1 ϕ + k2ψ)θ (73)

and the periodic condition (70). Importantly, the coefficients of Equation (73) depend on
the space variable x alone.

We multiply ODEs (71) and (72) by k1 and k2, respectively, and add up to obtain an
ODE for ρ = k1 ϕ + k2ψ. We write this equation in conjunction with ODE (71) and PDE (70)
as the following mixed algebraic-differential system of equations:

aρ′′xx + (b + ρ)ρ = 0, (74)

aϕ′′xx + (b + ρ)ϕ = 0, (75)

ρ = k1 ϕ + k2ψ, (76)

θt = aθ′′xx + (b− λ + ρ)θ. (77)

Systems (74)–(77) can be solved sequentially from one equation to another. We start
from the isolated stationary ODE (74). Divided by a, it coincides, up to obvious renaming,
with Equation (24). PDE (77) is subjected to the additional conditions (7) and (70), which
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hold true, for example, in the stationary case θ = θ(x) and the nonstationary case of τ2 = τ1
and τ4 = τ3.

3.2. Exact Solutions to the Reduced System Consisting of Two ODEs and One PDE

We first describe two simple classes of stationary exact solutions to system (74)–(77)
with ρ = const.

1◦. Stationary exact solution to system (74)–(77) with ρ = 0:

ρ = 0, ϕ =

{
C1 cos(

√
b x) + C2 sin(

√
b x) if b > 0,

C1 cosh(
√
−b x) + C2 sinh(

√
−b x) if b < 0;

(78)

ψ =


− k1

k2
[C1 cos(

√
b x) + C2 sin(

√
b x)] if b > 0,

− k1

k2
[C1 cosh(

√
−b x) + C2 sinh(

√
−b x)] if b < 0;

(79)

θ =


C3 cos[

√
(b− λ)/a x] + C4 sin[

√
(b− λ)/a x] if b > λ,

C3 cosh[
√
(λ− b)/a x] + C4 sinh[

√
(λ− b)/a x] if λ > b,

C3x + C4 if λ = b,

(80)

where C1, . . . , C4 are arbitrary constants.
2◦. Stationary exact solution to system (74)–(77) with ρ = −b:

ρ = −b, ϕ = C1x + C2, ψ = − k1

k2
(C1x + C2)−

b
k2

, (81)

θ =

{
C3 cosh(

√
λ/a x) + C4 sinh(

√
λ/a x) if λ > 0,

C3 cos(
√
−λ/a x) + C4 sin(

√
−λ/a x) if λ < 0.

(82)

3◦. More complicated stationary solutions to system (74)–(77) with ρ = ρ(x) 6= const
and θ = θ(x) can be constructed in a few steps as shown below (see Table 4).

(i) The isolated subsystem consisting of two ODEs (74) and (75) for ρ and ϕ coincides,
up to notation, with the system of ODEs (24) and (25) with β = b. It follows that
exact solutions to Equations (74) and (75) can be obtained using Table 2 and formulas
with β = b, in which the functions and determining parameters must be renamed as
follows: ϕ⇒ ρ, θ ⇒ ϕ, b⇒ b/a, β⇒ b/a, and k⇒ 1/a.

(ii) The function ψ is determined by substituting the functions ρ and ϕ obtained in step (i)
into (76), which results in

ψ = (ρ− k1 ϕ)/k2.

(iii) The isolated subsystem of two ODEs, (74) and (77), for ρ and θ with θt = 0 coincides,
up to notation, with systems (24) and (25). Hence, exact solutions to Equations (74)
and (77) can be obtained using the formulas from Table 2, where ϕ and the determining
parameters must be renamed as follows: ϕ ⇒ ρ, b ⇒ b/a, β ⇒ (b − λ)/a, and
k⇒ 1/a.
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Table 4. Stationary solutions to systems (74)–(77). Notations: ξ = 1
2

√
|b/a| x; C1, . . . , C4 are arbitrary

constants. The function ψ is defined by ψ = (ρ− k1 ϕ)/k2.

No.
Parameters

b and λ

Function ρ,
Equation (74)

Function ϕ,
Equation (75)

Function θ,
Equation (77)

1 λa < 0, b = 0 −6ax−2 C1x−2 + C2x3 √
x
[
C3 J5/2(

√
−λ/a x) + C4Y5/2(

√
−λ/a x)

]
2 λa > 0, b = 0 −6ax−2 C1x−2 + C2x3 √

x
[
C3 I5/2(

√
λ/a x) + C4K5/2(

√
λ/a x)

]
3 λ = −3b, b < 0 3b

2

(
tanh2 ξ − 1

)
C1 cosh−2 ξ + C2

[
(3 + 2 cosh2 ξ) tanh ξ + 3 ξ cosh−2 ξ

]
C3 sinh ξ cosh3 ξ + C4

(
2 + cosh−2 ξ + 8 cosh2 ξ − 16 cosh4 ξ

)
4 λ = −3b, b < 0 3b

2

(
coth2 ξ − 1

)
C1 sinh−2 ξ + C2

[
(3 + 2 sinh2 ξ) coth ξ + 3 ξ sinh−2 ξ

]
C3 cosh ξ sinh3 ξ + C4

(
2 + sinh−2 ξ + 8 sinh2 ξ − 16 sinh4 ξ

)
5 λ = −3b, b > 0 − 3b

2

(
tanh2 ξ + 1

)
C1 cos−2 ξ + C2

[
(3 + 2 cos2 ξ) tan ξ + 3 ξ cos−2 ξ

]
C3 sin ξ cos3 ξ + C4

(
2 + cos−2 ξ + 8 cos2 ξ − 16 cos4 ξ

)
6 λ = −3b, b > 0 − 3b

2

(
coth2 ξ + 1

)
C1 sin−2 ξ + C2

[
(3 + 2 sin2 ξ) cot ξ + 3 ξ sin−2 ξ

]
C3 cos ξ sin3 ξ + C4

(
2 + sin−2 ξ + 8 sin2 ξ − 16 sin4 ξ

)
7 λ = − 5

4 b, b < 0 3b
2

(
tanh2 ξ − 1

)
C1 cosh−2 ξ + C2

[
(3 + 2 cosh2 ξ) tanh ξ + 3 ξ cosh−2 ξ

]
C3 cosh3 ξ + C4 sinh ξ

(
4 + 3 cosh−2 ξ + 8 cosh2 ξ

)
8 λ = − 5

4 b, b < 0 3b
2

(
coth2 ξ − 1

)
C1 sinh−2 ξ + C2

[
(3 + 2 sinh2 ξ) coth ξ + 3 ξ sinh−2 ξ

]
C3 sinh3 ξ + C4 cosh ξ

(
4 + 3 sinh−2 ξ + 8 sinh2 ξ

)
9 λ = − 5

4 b, b > 0 − 3b
2

(
tan2 ξ + 1

)
C1 cos−2 ξ + C2

[
(3 + 2 cos2 ξ) tan ξ + 3 ξ cos−2 ξ

]
C3 cos3 ξ + C4 sin ξ

(
4 + 3 cos−2 ξ + 8 cos2 ξ

)
10 λ = − 5

4 b, b > 0 − 3b
2

(
cot2 ξ + 1

)
C1 sin−2 ξ + C2

[
(3 + 2 sin2 ξ) cot ξ + 3 ξ sin−2 ξ

]
C3 sin3 ξ + C4 cos ξ

(
4 + 3 sin−2 ξ + 8 sin2 ξ

)
11 λ = 1

4 b, b < 0 b
2

(
1 + 3 tan2 ξ) C1

(
1 + 3 tan2 ξ

)
+ C2

[
ξ
(
1 + 3 tan2 ξ

)
+ 3 tan ξ

]
C3 sin ξ cos−2 ξ + C4 cos−1 ξ

(
3 ξ tan ξ + 3− cos2 ξ

)
12 λ = 1

4 b, b < 0 b
2

(
1 + 3 cot2 ξ) C1

(
1 + 3 cot2 ξ

)
+ C2

[
ξ
(
1 + 3 cot2 ξ

)
+ 3 cot ξ

]
C3 cos ξ sin−2 ξ + C4 sin−1 ξ

(
3 ξ tan ξ + 3− sin2 ξ

)
13 λ = 1

4 b, b > 0 b
2

(
1− 3 tanh2 ξ) C1

(
1− 3 tanh2 ξ

)
+ C2

[
ξ
(
1− 3 tanh2 ξ

)
+ 3 tanh ξ

]
C3 sinh ξ cosh−2 ξ + C4 cosh−1 ξ

(
3 ξ tanh ξ − 3 + cosh2 ξ

)
14 λ = 1

4 b, b > 0 b
2

(
1− 3 coth2 ξ) C1

(
1− 3 coth2 ξ

)
+ C2

[
ξ
(
1− 3 coth2 ξ

)
+ 3 coth ξ

]
C3 cosh ξ sinh−2 ξ + C4 sinh−1 ξ

(
3 ξ coth ξ − 3 + sinh2 ξ

)
15 λ = 3

4 b, b < 0 3b
2

(
tanh2 ξ − 1

)
C1 cosh−2 ξ + C2

[
(3 + 2 cosh2 ξ) tanh ξ + 3 ξ cosh−2 ξ

]
C3 sinh ξ cosh−2 ξ + C4 cosh−1 ξ

(
3 ξ tanh ξ − 3 + cosh2 ξ

)
16 λ = 3

4 b, b < 0 3b
2

(
coth2 ξ − 1

)
C1 sinh−2 ξ + C2

[
(3 + 2 sinh2 ξ) coth ξ + 3 ξ sinh−2 ξ

]
C3 cosh ξ sinh−2 ξ + C4 sinh−1 ξ

(
3 ξ coth ξ − 3 + sinh2 ξ

)
17 λ = 3

4 b, b > 0 − 3b
2

(
tan2 ξ + 1

)
C1 cos−2 ξ + C2

[
(3 + 2 cos2 ξ) tan ξ + 3 ξ cos−2 ξ

]
C3 sin ξ cos−2 ξ + C4 cos−1 ξ

(
3 ξ tan ξ + 3− cos2 ξ

)
18 λ = 3

4 b, b > 0 − 3b
2

(
cot2 ξ + 1

)
C1 sin−2 ξ + C2

[
(3 + 2 sin2 ξ) cot ξ + 3 ξ sin−2 ξ

]
C3 cos ξ sin−2 ξ + C4 sin−1 ξ

(
3 ξ cot ξ + 3− sin2 ξ

)
19 λ = b, b < 0 3b

2

(
tanh2 ξ − 1

)
C1 cosh−2 ξ + C2

[
(3 + 2 cosh2 ξ) tanh ξ + 3 ξ cosh−2 ξ

]
C3(3 tanh2 ξ − 1) + C4

[
3 tanh ξ + (3 tanh2 ξ − 1) artanh ξ

]
20 λ = b, b < 0 3b

2

(
coth2 ξ − 1

)
C1 sinh−2 ξ + C2

[
(3 + 2 sinh2 ξ) coth ξ + 3 ξ sinh−2 ξ

]
C3(3 coth2 ξ − 1) + C4

[
3 coth ξ + (3 coth2 ξ − 1) arcoth ξ

]
21 λ = b, b < 0 b

2

(
1 + 3 tan2 ξ) C1

(
1 + 3 tan2 ξ

)
+ C2

[
ξ
(
1 + 3 tan2 ξ

)
+ 3 tan ξ

]
C3 cos−2 ξ + C4

[
sin(2ξ) + 3 tan ξ + 3 ξ cos−2 ξ

]
22 λ = b, b < 0 b

2

(
1 + 3 cot2 ξ) C1

(
1 + 3 cot2 ξ

)
+ C2

[
ξ
(
1 + 3 cot2 ξ

)
+ 3 cot ξ

]
C3 sin−2 ξ + C4

[
cos(2ξ) + 3 tan ξ + 3 ξ sin−2 ξ

]
23 λ = b, b > 0 − 3b

2

(
tan2 ξ + 1

)
C1 cos−2 ξ + C2

[
(3 + 2 cos2 ξ) tan ξ + 3 ξ cos−2 ξ

]
C3(3 tan2 ξ + 1) + C4

[
3 tan ξ + (3 tan2 ξ + 1) arctan ξ

]
24 λ = b, b > 0 − 3b

2

(
cot2 ξ + 1

)
C1 sin−2 ξ + C2

[
(3 + 2 sin2 ξ) cot ξ + 3 ξ sin−2 ξ

]
C3(3 cot2 ξ + 1) + C4

[
3 cot ξ + (3 cot2 ξ + 1) arccot ξ

]
25 λ = b, b > 0 b

2

(
1− 3 tanh2 ξ) C1

(
1− 3 tanh2 ξ

)
+ C2

[
ξ
(
1− 3 tanh2 ξ

)
+ 3 tanh ξ

]
C3 cosh−2 ξ + C4

[
sinh(2ξ) + 3 tanh ξ + 3 ξ cosh−2 ξ

]
26 λ = b, b > 0 b

2

(
1− 3 coth2 ξ) C1

(
1− 3 coth2 ξ

)
+ C2

[
ξ
(
1− 3 coth2 ξ

)
+ 3 coth ξ

]
C3 sinh−2 ξ + C4

[
cosh(2ξ) + 3 coth ξ + 3 ξ sinh−2 ξ

]
27 λ = 9

4 b, b < 0 b
2

(
1 + 3 tan2 ξ) C1

(
1 + 3 tan2 ξ

)
+ C2

[
ξ
(
1 + 3 tan2 ξ

)
+ 3 tan ξ

]
C3 cos3 ξ + C4 sin ξ

(
4 + 3 cos−2 ξ + 8 cos2 ξ

)
28 λ = 9

4 b, b < 0 b
2

(
1 + 3 cot2 ξ) C1

(
1 + 3 cot2 ξ

)
+ C2

[
ξ
(
1 + 3 cot2 ξ

)
+ 3 cot ξ

]
C3 sin3 ξ + C4 cos ξ

(
4 + 3 sin−2 ξ + 8 sin2 ξ

)
29 λ = 9

4 b, b > 0 b
2

(
1− 3 tanh2 ξ) C1

(
1− 3 tanh2 ξ

)
+ C2

[
ξ
(
1− 3 tanh2 ξ

)
+ 3 tanh ξ

]
C3 cosh3 ξ + C4 sinh ξ

(
4 + 3 cosh−2 ξ + 8 cosh2 ξ

)
30 λ = 9

4 b, b > 0 b
2

(
1− 3 coth2 ξ) C1

(
1− 3 coth2 ξ

)
+ C2

[
ξ
(
1− 3 coth2 ξ

)
+ 3 coth ξ

]
C3 sinh3 ξ + C4 cosh ξ

(
4 + 3 sinh−2 ξ + 8 sinh2 ξ

)
31 λ = 4b, b < 0 b

2

(
1 + 3 tan2 ξ) C1

(
1 + 3 tan2 ξ

)
+ C2

[
ξ
(
1 + 3 tan2 ξ

)
+ 3 tan ξ

]
C3 sin ξ cos3 ξ + C4

(
2 + cos−2 ξ + 8 cos2 ξ − 16 cos4 ξ

)
32 λ = 4b, b < 0 b

2

(
1 + 3 cot2 ξ) C1

(
1 + 3 cot2 ξ

)
+ C2

[
ξ
(
1 + 3 cot2 ξ

)
+ 3 cot ξ

]
C3 cos ξ sin3 ξ + C4

(
2 + sin−2 ξ + 8 sin2 ξ − 16 sin4 ξ

)
33 λ = 4b, b > 0 b

2

(
1− 3 tanh2 ξ) C1

(
1− 3 tanh2 ξ

)
+ C2

[
ξ
(
1− 3 tanh2 ξ

)
+ 3 tanh ξ

]
C3 sinh ξ cosh3 ξ + C4

(
2 + cosh−2 ξ + 8 cosh2 ξ − 16 cosh4 ξ

)
34 λ = 4b, b > 0 b

2

(
1− 3 coth2 ξ) C1

(
1− 3 coth2 ξ

)
+ C2

[
ξ
(
1− 3 coth2 ξ

)
+ 3 coth ξ

]
C3 cosh ξ sinh3 ξ + C4

(
2 + sinh−2 ξ + 8 sinh2 ξ − 16 sinh4 ξ

)

4◦. If τ2 = τ1 and τ2 = τ4, some nonstationary exact solutions to systems (74)–(77)
with ρ = 0 are defined by Formulas (78) and (79) for ϕ and ψ with any expression of the
function θ = θ(x, t) specified below:

θ =
[
(x2 + 2at) + C

]
e(b−λ)t,

θ = exp
[
(aµ2 + b− λ)t± µx

]
,

θ =
1√

t
exp

[
− x2

4at
+ (b− λ)t

]
,

θ = exp
[
(b− λ− aµ2)t

]
cos(µx),

θ = exp
[
(b− λ− aµ2)t

]
sin(µx),

θ = exp[−µx + (b− λ)t] cos(µx− 2aµ2t),

θ = exp[−µx + (b− λ)t] sin(µx− 2aµ2t),

θ = exp(−µx) cos(βx− 2aβµt), β =
√

µ2 + (b− λ)/a,

θ = exp(−µx) sin(βx− 2aβµt), β =
√

µ2 + (b− λ)/a,

(83)
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where C and µ are arbitrary constants. Some other nonstationary exact solutions to systems
(74)–(77) with ρ = 0 can be obtained using Formulas (78) and (79) and the expression θ =
e(b−λ)tξ, where ξ = ξ(x, t) is any solution of the standard linear heat equation ξt = aξxx.

5◦. If τ2 = τ1 and τ2 = τ4, there are nonstationary exact solutions to systems (74)–(77)
with ρ = −b that are defined by Formula (81) for ϕ and ψ and any expression of θ from (83)
with b = 0.

6◦. For τ1 6= τ2, one can seek exact solutions to PDE (73) that satisfy the periodicity
condition (70) and relation (7) in the form

θm(x, t) = ξm(x) cos(βmt) + ηm(x) sin(βmt), βm =
2πm

τ2 − τ1
, m = 0, 1, 2, . . . , (84)

where m = 0 corresponds to a stationary solution. Substituting (84) into (71) yields the
following linear stationary system of ODEs for ξm = ξm(x) and ηm = ηm(x):

aξ ′′m + (b− λ + k1 ϕ + k2ψ)ξm − βmηm = 0,

aη′′m + (b− λ + k1 ϕ + k2ψ)ηm + βmξm = 0.
(85)

Since PDE (73) is linear in θ, an arbitrary linear combination of exact solutions (84),

θ =
∞

∑
n=1

αmθm(x, t) =
∞

∑
n=1

αm[ξm(x) cos(βmt) + ηm(x) sin(βmt)],

where αm are arbitrary constants, is also an exact solution to this equation.

Example 2. For any of the four simplest solutions (5), the general solution of Equation (73)
satisfying the periodicity condition (70) can be represented as

θ(x, t) =
∞

∑
m=0

exp(−µmx)
[
Am cos(βmt− γmx) + Bm sin(βmt− γmx)

]
+

∞

∑
m=1

exp(µmx)
[
Cm cos(βmt + γmx) + Dm sin(βmt + γmx)

]
, (86)

where

µm =

(√
d2 + β2

m − d
2a

)1/2

, γm =

(√
d2 + β2

m + d
2a

)1/2

,

d = b− λ + k1 ϕ◦ + k2ψ◦, βm =
2πm

τ2 − τ1
.

The constants Am, Bm, Cm, and Dm, otherwise arbitrary, must ensure the convergence of the
series (86) and derivatives θt and θ′′xx; the convergence is certainly ensured if, for example, we set
Am = Bm = Cm = Dm = 0 for all m > M, where M is an arbitrary positive integer.

Let us highlight two special cases:

(i) Time-periodic solutions decaying as x → ∞ are given by Formula (86) with A0 = B0 = 0
and Cm = Dm = 0, m = 1, 2, . . . ;

(ii) Time-periodic solutions bounded as x → ∞ are given by Formula (86) with Cm = Dm = 0,
m = 1, 2, . . .

3.3. Reduction of the System of PDEs with a Single Delay to a System of Two First-Order Delay
ODEs and One Linear PDE

We look for incomplete separable solutions to system (3) with a1 = a2 = a, b1 = b2 = b,
and c1 = c2 = 1 and a common delay time (53) in the form

u = −k2θ(x, t) + ϕ(t), v = k1θ(x, t) + ψ(t), (87)
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with the functions θ = θ(x, t), ϕ = ϕ(t), and ψ = ψ(t) to be determined in the subsequent
analysis.

On substituting (87) into the system of PDEs (3), we arrive at a nonlinear system of
delay ODEs for ϕ and ψ,

ϕ′t = bϕ + ϕ(k1 ϕ̄ + k2ψ̄), ϕ̄ = ϕ(t− τ),

ψ′t = bψ + ψ(k1 ϕ̄ + k2ψ̄), ψ̄ = ψ(t− τ),
(88)

and a linear parabolic PDE with variable coefficients for θ:

θt = aθxx + (b + k1 ϕ̄ + k2ψ̄)θ. (89)

The system of delay ODEs (88) coincides with system (59) at b1 = b2 = b. Hence, it
can be integrated as described in Section 2.7, where some exact solutions can also be found.
With the substitution

θ = exp
[

bt +
∫
(k1 ϕ̄1 + k2ψ̄1) dt

]
ξ(x, t),

Equation (89) can be reduced to the standard linear heat equation

ξt = aξxx,

whose exact solutions can be found, for example, in [61].

4. Related Systems of PDEs with Several Space Variables and Delays Other
Generalizations
4.1. Reductions and Exact Solutions of a Multidimensional System with Different Diffusion
Coefficients and Delays

Now, let us look at the following Lotka–Volterra-type nonlinear diffusion system of
PDEs with n space variables:

ut = a1∆u + u[b1 + c1(k1ū1 + k2v̄2)],

vt = a2∆v + v[b2 + c2(k1ū3 + k2v̄4)],
(90)

where ∆ = ∑n
j=1

∂2

∂x2
j

is the Laplace operator and x1, . . . , xn are Cartesian coordinates, while

the other notations are the same as in system (3). As above, we assume that relation (7)
holds.

System (90) admits reductions to simpler equations, which are similar to the reductions
of system (3). We will illustrate this with specific examples and, in addition, present some
exact solutions to (90) as well as solutions expressible in terms of solutions to linear PDEs.

1◦. There is an exact solution to system (90) with a2 6= a1 that generalizes solutions (15)
and (16):

u = −k2ea1µ(t+τ1)θ(x)− b1

c1k1
, v = k1ea1µ(t+τ2)θ(x), µ =

b1c2 − b2c1

c1(a2 − a1)
, (91)

where x = (x1, . . . , xn), and θ = θ(x) is a function satisfying the Helmholtz equation

∆θ = µθ. (92)
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In the three-dimensional case, with n = 3, the linear PDE (92) admits, for example, the
following exact solutions [61]:

θ =
1
r
[
A1 exp(−√µ r) + A2 exp(

√
µ r)

]
, r =

√
x2

1 + x2
2 + x2

3, µ > 0;

θ =
1
r
[
A1 cos(

√
−µ r) + A2 sin(

√
−µ r)

]
, r =

√
x2

1 + x2
2 + x2

3, µ < 0;

θ = sin(ν1x1 + A1) sin(ν2x2 + A2) sin(ν3x3 + A3), µ = −ν2
1 − ν2

2 − ν2
3 < 0;

θ = sinh(ν1x1 + A1) sinh(ν2x2 + A2) sinh(ν3x3 + A3), µ = ν2
1 + ν2

2 + ν2
3 > 0;

θ = sin(ν1x1 + A1) sin(ν2x2 + A2) sinh(ν3x3 + A3), µ = −ν2
1 − ν2

2 + ν2
3 ;

θ = sin(ν1x1 + A1) sinh(ν2x2 + A2) sinh(ν3x3 + A3), µ = −ν2
1 + ν2

2 + ν2
3 ,

(93)

where A1, A2, A3, ν1, ν2 and ν3 are arbitrary constants. Any instance of the function sinh in
the last three solutions can be replaced with cosh.

2◦. Suppose that
c1 = a1, c2 = a2 (a1 6= a2). (94)

Then, system (90) admits a radially symmetric exact solution of the form

u = −k2eλ(t+τ1)θ(r) + ϕ(r), v = k1eλ(t+τ2)θ(r), λ =
a2b1 − a1b2

a2 − a1
, (95)

where r =
√

x2
1 + · · ·+ x2

n. The functions ϕ = ϕ(r) and θ = θ(r) are described by the
nonautonomous system of ODEs

ϕ′′rr +
n− 1

r
ϕ′r + (b + kϕ)ϕ = 0, (96)

θ′′rr +
n− 1

r
θ′r + (β + kϕ)θ = 0, (97)

where b = b1/a1, k = k1, and β = (b2 − b1)/(a2 − a1). Systems (96) and (97) are a
generalization of systems (24) and (25).

Equation (96) with b = 0 admits the exact solution

ϕ =
2n− 8

kr2 . (98)

Substituting (98) into (97) and multiplying by r2, we arrive at the equation

r2θ′′rr + (n− 1)rθ′r + (βr2 + 2n− 8)θ = 0, (99)

which coincides, up to notation, with a special case of an ODE discussed in the book [58]
(see Equation (132) with n = 2 on page 535). It follows that the general solution of ODE (99)
is given by

θ =

{
r(2−n)/2[C1 Jν

(√
β r
)
+ C2Yν

(√
β r
)]

if β > 0,

r(2−n)/2[C1 Iν

(√
−β r

)
+ C2Kν

(√
−β r

)]
if β < 0,

ν = 1
2 |6− n|,

(100)

where C1 and C2 are arbitrary constants, Jν(ξ) and Yν(ξ) are the Bessel functions of the
first and second kind, and Iν(ξ) and Kν(ξ) are the modified Bessel functions of the first
and second kind. In the three-dimensional case, which corresponds to n = 3 and ν = 3/2,
Formula (100) can be rewritten in terms of elementary functions.
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4.2. Reductions and Exact solutions of a Multidimensional System with Identical Diffusion
Coefficients and Delays

We assume that

a1 = a2 = a, b1 = b2 = b, c1 = c2 = 1. (101)

System (90) with coefficients (101) admits exact solutions of the form

u = −k2eλ(t+τ1)θ(x, t) + ϕ(x), v = k1eλ(t+τ2)θ(x, t) + ψ(x), (102)

where λ is a free parameter, while θ = θ(x, t), ϕ = ϕ(x), and ψ = ψ(x) are described by the
mixed algebraic-differential system of equations

a∆ρ + (b + ρ)ρ = 0,

a∆ϕ + (b + ρ)ϕ = 0,

ρ = k1 ϕ + k2ψ,

θt = a∆θ + (b− λ + ρ)θ,

(103)

with θ additionally adopted to satisfy the periodicity condition θ(x, t + τ2 − τ1) = θ(x, t).
System (103) generalizes systems (74)–(77).

Presented below are two simple stationary solutions to system (103) with ρ = const.
1◦. Solution with ρ = 0 expressible in terms of solutions to two independent Helm-

holtz equations:
∆ϕ + (b/a)ϕ = 0,

∆θ + [(b− λ)/a]θ = 0,
(104)

where ψ is expressed via ϕ by the formula ψ = −(k1/k2)ϕ.
In the three-dimensional case, a few exact solutions to the linear PDEs (104) can

be obtained using Formula (93) in which one must set µ = −b/a and µ = −(b− λ)/a,
respectively. For other solutions to the linear PDEs (104), see [61].

2◦. Solution with ρ = −b expressible in terms of solutions to the independent Laplace
and Helmholtz equations

∆ϕ = 0,

∆θ − (λ/a)θ = 0,
(105)

where ψ is expressed via ϕ by the formula ψ = −(k1 ϕ + b)/k2. For solutions to the linear
PDEs (105), see [61].

4.3. Further Generalizations and Modifications

1◦. The nonlinear system of delay PDEs (3) can be generalized to the anisotropic case
(when the diffusion coefficients depend on the spatial coordinate):

ut = a1[σ(x)ux]x + u[b1 + c1(k1ū1 + k2v̄2)],

vt = a2[σ(x)vx]x + v[b2 + c2(k1ū3 + k2v̄4)],
(106)

where σ(x) is a given function.
As previously, the constants (5) and (6) are the simplest exact solutions of system (106).

If condition (7) is satisfied, then system (106) admits generalized separable solutions of the
form (8), where the function θ(x) is a solution to the second-order linear ODE

[σ(x)θ′x]
′
x = µθ. (107)

The constants λ and µ appearing in (8) and (107) are defined by Formulas (12) and (13).
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Exact solutions of the linear ODE (107) for various σ(x) can be found in the hand-
book [58]. In particular, for σ(x) = xk and σ(x) = ekx, the general solutions of ODE (107)
can be expressed in terms of Bessel functions or modified Bessel functions.

Under conditions (7) and (21), system (106) admits more complicated generalized
separable solutions of the form (17).

2◦. A further generalization of the system of delay PDEs (3) is

ut = a1L[u] + u[b1 + c1F(x, k1ū1 + k2v̄2)],

vt = a2L[v] + v[b2 + c2F(x, k1ū3 + k2v̄4)].
(108)

Here, F(x, ρ) is an arbitrary function of two arguments, while L[u] is an arbitrary
linear differential operator with respect to the spatial variable of the form

L =
m

∑
j=1

σj(x)
∂j

∂xj , (109)

where σj(x) are some given functions and m is a positive integer.
Under conditions (7) and (21), systems (108) and (109) admit a generalized separable

solution of the form (17), where the functions ϕ = ϕ(x), ψ = ψ(x), and θ = θ(x) satisfy the
system of ODEs

a1L[ϕ] + [b1 + a1F(x, ρ)]ϕ = 0,

a2L[ψ] + [b2 + a2F(x, ρ)]ψ = 0,

L[θ] +
[ b2 − b1

a2 − a1
+ F(x, ρ)

]
θ = 0,

(110)

where ρ = k1 ϕ + k2ψ.
If the function F(x, ρ) is explicitly independent of x, so that F(x, ρ) = f (ρ), then

system (110) admits particular solutions of the form

ϕ = ϕ◦ = const, ψ = ψ◦ = const, θ = θ(x).

In this case, if all the coefficients σj of the differential operator (109) are independent
of x, then the last equation in (110) for θ will be a linear ODE with constant coefficients.

3◦. Nonlinear Klein–Gordon-type systems with delay, which are obtained from the
reaction–diffusion delay systems (3), (106) and (108) by formally replacing the first time
derivative ut with the second derivative utt, also admit exact generalized separable solu-
tions of the form (4).

5. Brief Conclusions

We have described several reductions of a Lotka–Volterra-type nonlinear multi-parameter
reaction–diffusion system with several delay times to simpler systems of ODEs with or
without delay, as well as reductions to mixed systems consisting of ODEs and a single
linear PDE without delay.

We have found many new exact solutions to the reaction–diffusion delay system
in question, including over 50 solutions expressible in terms of elementary functions.
Moreover, setting the delay times in these solutions to zero can result in many new exact
solutions in terms of elementary functions to a simpler nonlinear Lotka–Volterra-type
system without delays.

The exact solutions presented in this paper all involve several free constants of inte-
gration. Such solutions may be suitable for testing approximate analytical and numerical
methods for solving reaction–diffusion equations as well as other nonlinear PDEs with
delays.
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