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Abstract: In this paper, an extension of the power half-normal (PHN) distribution is introduced.
This new model is built on the application of slash methodology for positive random variables.
The result is a distribution with greater kurtosis than the PHN; i.e., its right tail is heavier than
the PHN distribution. Its probability density, survival and hazard rate function are studied, and
moments, skewness and kurtosis coefficientes are obtained, along with relevant properties of interest
in reliability. It is also proven that the new model can be expressed as the scale mixture of a PHN
and a uniform distribution. Moreover, the new model holds the PHN distribution as a limit case
when the new parameter tends to infinity. The parameters in the model are estimated by the method
of moments and maximum likelihood. A simulation study is given to illustrate the good behavior
of maximum likelihood estimators. Two real applications to survival and fatigue fracture data are
included, in which our proposal outperforms other models.

Keywords: half-normal distribution; power distribution; slash distribution; lifetime models; kurtosis;
maximum likelihood
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1. Introduction

The half-normal (HN) distribution is suitable to fit positive data. For this reason, it is of
interest in reliability and survival analysis as a lifetime model. The HN model also exhibits
a large number of theoretical properties; for instance, it can be obtained as a particular case
of the folded normal, the truncated normal, or the central chi distribution with one degree
of freedom; details can be seen in Johnson et al. [1]. Recall that a random variable (rv)
Z follows an HN distribution with scale parameter σ > 0, Z ∼ HN(σ) if its probability
density function (pdf) is given by

f (z; σ) =
2
σ

φ
( z

σ

)
, z > 0,

where σ > 0 and φ(·) denotes the pdf of a N(0, 1) distribution.
Properties of the HN distribution and first applications can be seen in the papers by

Rogers and Tukey [2] and Mosteller and Tukey [3]. Pewsey [4,5] introduced the general
location-scale HN distribution and studied asymptotic inference based on maximum
likelihood (ML) estimators. Later, Wiper et al. [6] obtained Bayesian results in the general
HN and half-t distributions. Cooray and Ananda [7] proposed the generalized half-
normal (GHN) distribution as a lifetime model useful for items subjects to static fatigue.
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Ahmadi and Yousefzadeh [8] obtained results in the GHN for type I interval censoring data.
Olmos et al. [9,10] used the slash methodology to extend the HN and GHN distributions.
They proposed models with more kurtosis than their precedents.

On the other hand, Gómez and Bolfarine [11] introduced the two-parameter PHN
distribution. This is a model useful to fit positive data with a shape parameter, which
provides flexibility to the pdf, survival, and hazard rate function with respect to the HN
distribution. They also showed that the PHN model is a competitor of the GHN model,
and therefore, it can be used as a static fatigue lifetime model. Due to its good properties,
the PHN will be the starting point to introduce our proposal. Our aim is to get the slashed
version of the PHN model.

Next, we recall the main features of the PHN model (see [11]). It is said that an rv X
follows a PHN distribution, X ∼ PHN(σ, α), if its pdf is given by

gX(x; σ, α) =
2α

σ
φ
( x

σ

)(
2Φ
( x

σ

)
− 1
)α−1

, x > 0,

where σ > 0 and α > 0 are scale and shape parameters, respectively, and Φ(·) denotes the
cumulative distribution function (cdf) of a N(0, 1).

Lemma 1 (Properties of PHN distribution, [11]). Let X ∼ PHN(σ, α). Then

1. The cdf of X is

GX(x; σ, α) =
(

2Φ
( x

σ

)
− 1
)α

, x > 0. (1)

2. The rth-moment is
E(Xr) = ασrκr(α), for r = 1, 2, . . ., (2)

with

κr = κr(α) =
∫ 1

0

(
Φ−1

(
1 + u

2

))r
uα−1du . (3)

3. In particular

(a) E(X) = ασκ1.
(b) Var(X) = ασ2(κ2 − ακ2

1
)
.

(c) Skewness coefficient, defined as
√

β1,X = E[(X−E[X])3]
(Var(X))3/2 , is

√
β1,X =

κ3 − 3ακ1κ2 + 2α2κ3
1√

α(κ2 − ακ2
1)

3/2
. (4)

(d) Kurtosis coefficient, defined as β2,X = E[(X−E[X])4]
(Var(X))2 , is

β2,X =
κ4 − 4ακ1κ3 + 6α2κ2

1κ2 − 3α2κ4
1

α(κ2 − ακ2
1)

2
. (5)

It can be seen in [11] that
√

β1,X and β2,X are decreasing functions of α. The aim of
this paper is to propose an extension of the PHN model whose kurtosis coefficient exhibits
a greater range of values than the kurtosis coefficient in the PHN model, and therefore, it
may be used to accommodate outlying observations.

In this sense, it is well known that the slash models have heavier tails than other
classical distributions, such as the normal one. Relevant papers, which illustrate the main
properties of slash models, are Segovia et al. [12], Wang et al. [13] and Iriarte et al. [14].

The outline of this paper is as follows. In Section 2, the stochastic representation of
the slash power half-normal (SPHN) model is given, its pdf, cdf, properties, relationships
and approximations to other models, expression as a mixture, moments, asymmetry and
kurtosis coefficients, and stochastic ordering properties are studied. In Section 3, given
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a random sample of the SPHN model, inference for the unknown parameters is carried
out by using moment and maximum likelihood methods. In Section 4, a simulation study
is carried out. An algorithm to generate random values in the SPHN model is proposed,
and the consistency of ML estimators is analyzed there. In Section 5, two real applications
dealing with survival and fatigue fracture data are given. In this section, our model is
compared to other competing models, such as PHN, GHN, Slash Power Maxwell (see [12]),
LogNormal and slash generalized half-normal (SGHN) (see [10]). It is proven that our
proposal outperforms the competitors. Finally, a brief discussion, some conclusions and
future tasks are given in Section 6.

2. The Slashed Power Half-Normal Distribution

In this section, the new model is introduced, and its theoretical properties are studied.
First, the stochastic representation of the SPHN model is given; that is, a continuous,
non-negative rv T follows a SPHN distribution, T ∼ SPHN(σ, α, q), if T is obtained as

T =
X

Y1/q (6)

where X ∼ PHN(σ, α) and Y ∼ U(0, 1) are independent, σ > 0, α > 0, and q > 0.
In (6), σ > 0 is a scale parameter, whereas α > 0 and q > 0 are shape parameters.

It will be seen in Section 2.3 that q increases the range of possible values for the kurtosis
coefficient in the SPHN model with respect to the PHN distribution. In the next proposition,
the pdf of (6) is obtained.

Proposition 1. Let T ∼ SPHN(σ, α, q). Then, the pdf of T is given by

fT(t; σ, α, q) =
σqαq
tq+1 Mα,q

(
2Φ
(

t
σ

)
− 1
)

, t > 0, (7)

where σ > 0, α > 0, q > 0, and

Mα,q(r) =
∫ r

0

[
Φ−1

(
1 + u

2

)]q
uα−1du. (8)

Proof. By using (6), the Jacobian technique, and marginalizing, the pdf of T is given by

fT(t; σ, α, q) =
2αq
σ

∫ 1

0
wqφ

(
tw
σ

)(
2Φ
(

tw
σ

)
− 1
)α−1

dw .

Making the change of variable r = tw
σ , we have

fT(t; σ, α, q) = 2σqαq
tq+1

∫ t/σ
0 rqφ(r)(2Φ(r)− 1)α−1dr.

Finally, by considering the change of variable u = 2Φ(r)− 1 , (7) is obtained.

Figure 1 shows the pdf of the SPHN model for fixed values of σ = 1, α = 2, and several
values of parameter q > 0. This plot suggests that the right tail in this model becomes
heavier as q becomes smaller.
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Figure 1. Plots of the SPHN(1, 2, q) model.

Moreover, Table 1 compares the right tail in the PHN and SPHN distributions for
several values of q, q ∈ {0.5, 1, 5, 10}. Note that for a fixed t value, the closer to zero q is,
the greater P(T > t) is obtained. These appreciations agree with the fact that q is mainly
related to the kurtosis in this new model, as it will be seen in Section 2.3.

Table 1. Right tail comparison for different SPHN and PHN distributions.

Distribution P(T > 3) P(T > 4) P(T > 5)

SPHN (1, 2, 0.5) 0.5895 0.5107 0.4568
SPHN (1, 2, 1) 0.3756 0.2821 0.2257
SPHN (1, 2, 5) 0.0462 0.0118 0.0039
SPHN (1, 2, 10) 0.0173 0.0017 0.0002

PHN (1, 2) 0.0054 1.26× 10−4 1.14× 10−6

Remark 1. For completeness, plots of the pdf of the SPHN model for 0 < α < 1 and α = 1 (σ = 1),
and increasing values of q are given in Appendix A.1 and Appendix A.2, respectively. In this way,
we have displayed all the possibilities as for the shape of SHPN pdfs.

2.1. Properties

Next the cdf, survival and hazard rate function are obtained. Relationships with these
features in the PHN model are included.

Proposition 2. Let T ∼ SPHN(σ, α, q). Then, the cdf of T is given by

FT(t; σ, α, q) = GX(t; σ, α)− α
(σ

t

)q
Mα,q

(
2Φ
(

t
σ

)
− 1
)

, t > 0 , (9)

with GX(t; σ, α) the cdf of X ∼ PHN(σ, α) given in (1) and Mα,q(·) introduced in (8).

Proof. Combining (7) and (8), we write FT(t; σ, α, q) = αI, where

I = σq
∫ t

0

q
xq+1 Mα,q

(
2Φ
( x

σ

)
− 1
)

dx .

Integrating by parts I with u = Mα,q
(
2Φ
( x

σ

)
− 1
)

and dv = q σq

xq+1 dx, and using (1), (9)
is obtained.
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Corollary 1. Let T ∼ SPHN(σ, α, q). Then, the survival function, ST(t), and the hazard function,
hT(t), of T are given by

ST(t) = 1− GX(t; σ, α) + α
(σ

t

)q
Mα,q

(
2Φ
(

t
σ

)
− 1
)

, t > 0 ,

hT(t) =

σqαq
tq+1 Mα,q

(
2Φ
( t

σ

)
− 1
)

1− GX(t; σ, α) + α
(

σ
t
)q Mα,q

(
2Φ
( t

σ

)
− 1
) , t > 0,

with σ > 0, α > 0, q > 0, and Mα,q(·) given in (8).

From Corollary 1, the next relationship between the survival function of SPHN(σ, α, q)
and the PHN(σ, α) model follows.

Corollary 2. Let T ∼ SPHN(σ, α, q). Then, the survival function, ST(t), can be expressed as

ST(t) = SX(t; σ, α) + α
(σ

t

)q
Mα,q

(
2Φ
(

t
σ

)
− 1
)

, t > 0 ,

with SX(t; σ, α) the survival function of X ∼ PHN(σ, α).

Plots of the cdf, survival and hazard function of T ∼ SPHN(σ, α, q) are given in
Figure 2 for σ = 1 and α = 2 fixed and several values of q, q ∈ {0.5, 1, 3, 5, ∞} (q = ∞
corresponds to the PHN(σ, α)). On the other hand, plots for the cdf, survival and hazard rate
function of SPHN model, taken σ = 1, for 0 < α < 1 (α = 0.8), and α = 1, by considering
increasing values of q are given in Appendix A.1 and Appendix A.2, respectively.

These plots suggest that:

1. For increasing values of q, the SPHN(σ, α, q) approaches the PHN(σ, α) distribution
(proven in Proposition 5).

2. For σ and α fixed, these models are stochastically ordered with respect to q (proven in
Section 2.4).

Proposition 3. Let T ∼ SPHN(σ, α, q). Then

1. For 0 < α ≤ 1, the mode of T is at zero.
2. For 1 < α, the mode of T can be obtained as the solution for t > 0 of

gX(t; σ, α) = (q + 1)
α σq

tq+1 Mα,q

(
2Φ
(

t
σ

)
− 1
)

, (10)

where σ > 0, α > 0, q > 0, Mα,q(·) was introduced in (8), and gX denotes the pdf of a
PHN(σ, α) model.

Proof. 1. It follows from the fact that for 0 < α ≤ 1, the pdf of T is a strictly decreasing
function of t.
2. For 1 < α, let us consider d

dt fT(t; σ, α, q) = 0, i.e.,

d
dt

(
σqαq
tq+1 Mα,q

(
2Φ
(

t
σ

)
− 1
))

= 0 .

Equivalently,

d
dt

(
σqαq
tq+1

)
Mα,q

(
2Φ
(

t
σ

)
− 1
)
+

σqαq
tq+1

d
dt

(
Mα,q

(
2Φ
(

t
σ

)
− 1
))

= 0 .
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Thus,

σqαq(−q− 1)
tq+2 Mα,q

(
2Φ
(

t
σ

)
− 1
)
+

2α q
σt

φ

(
t
σ

)(
2Φ
(

t
σ

)
− 1
)α−1

= 0,

which is equivalent to (10).
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Thus,

σqαq(−q− 1)
tq+2 Mα,q

(
2Φ
(

t
σ

)
− 1
)
+

2α q
σt

φ

(
t
σ

)(
2Φ
(

t
σ

)
− 1
)α−1

= 0,

which is equivalent to (10).
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Figure 2. Plots of the cdf, survival function and hazard function for the SPHN(1, 2, q).

Remark 2. (10) must be solved numerically.

Next, it is proven that the SPHN model can be expressed as a scale mixture of distribu-
tions.

Proposition 4. Let T|U = u ∼ PHN(u−1/qσ, α) and U ∼ U(0, 1). Then, T ∼ SPHN(σ, α, q).

Proof. Note that the marginal pdf of T can be obtained as

fT(t; σ, α, q) =
∫ 1

0
fT|U(t|u) fU(u)du =

∫ 1

0

2αu1/q

σ
φ

(
tu1/q

σ

)(
2Φ

(
tu1/q

σ

)
− 1

)α−1

du .

Making the change of variable v = 2Φ
(

tu1/q

σ

)
− 1, the proposed result is obtained.

By applying the method proposed in Barranco-Chamorro et al. [15], the convergence
in law of the SPHN(σ, α, q) model, as q → ∞, to a PHN(σ, α) distribution is next estab-
lished. To highlight the fact that we are taking the limit for q→ ∞, the subindex q is used
to refer to Tq ∼ SPHN(σ, α, q).

Figure 2. Plots of the cdf, survival function and hazard function for the SPHN(1, 2, q).

Remark 2. (10) must be solved numerically.

Next, it is proven that the SPHN model can be expressed as a scale mixture of distributions.

Proposition 4. Let T|U = u ∼ PHN(u−1/qσ, α) and U ∼ U(0, 1). Then, T ∼ SPHN(σ, α, q).

Proof. Note that the marginal pdf of T can be obtained as

fT(t; σ, α, q) =
∫ 1

0
fT|U(t|u) fU(u)du =

∫ 1

0

2αu1/q

σ
φ

(
tu1/q

σ

)(
2Φ

(
tu1/q

σ

)
− 1

)α−1

du .

Making the change of variable v = 2Φ
(

tu1/q

σ

)
− 1, the proposed result is obtained.

By applying the method proposed in Barranco-Chamorro et al. [15], the convergence
in law of the SPHN(σ, α, q) model, as q → ∞, to a PHN(σ, α) distribution is next estab-
lished. To highlight the fact that we are taking the limit for q→ ∞, the subindex q is used
to refer to Tq ∼ SPHN(σ, α, q).

Proposition 5. Let Tq ∼ SPHN(σ, α, q). If q → ∞, then Tq converges in distribution to
X ∼ PHN(σ, α).

Proof. It is given in Appendix B.

Note that the result given in Proposition 5 states that for large values of q, the
SPHN(σ, α, q) model can be approached by a PHN(σ, α) distribution.
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2.2. Relationships among Distributions

In the following, we will see special cases that are associated with the SPHN distribution.

1. According to Proposition 5, if q→ ∞ then T d−→ X, where X ∼ PHN(σ, α). That is,
the SPHN model contains the PHN model as a limit case.

2. If α = 1, then T = Y with σ = 1
2 β, where Y follows a slash half-normal (SHN)

distribution introduced in Olmos et al. [9].
3. If q→ ∞ and α = 1, then T d−→ M, where M follows an HN(σ) distribution.

These relationships among distributions are summarized in Figure 3.

SPHN(σ, α, q)

α=1, σ= 1
2 β

""

q−→∞

||
α=1, q−→∞

��

PHN(σ, α)

α=1

""

SHN(β, q)

β=2σ, q−→∞

||
HN(σ)

Figure 3. Relationships among distributions in the SPHN family.

2.3. Moments

The next proposition gives us the expresion of noncentral moments in the SPHN
distribution. The expected value, variance, skewness and kurtosis coefficients follow in a
straightforward way.

Proposition 6. Let T ∼ SPHN(σ, α, q). Then, for r = 1, 2, . . . and q > r, the rth-non-central
moment of T exists and is given by

µr = E(Tr) =
qασr

q− r
κr(α), (11)

where κr = κr(α) =
∫ 1

0

(
Φ−1

(
1+u

2

))r
uα−1du.

Proof. By using the stochastic representation for the SPHN distribution given in (6), we
have that

µr = E(Tr) = E
((

X

Y
1
q

)r)
= E

(
XrY−

r
q
)
= E(Xr)E

(
Y−

r
q
)

.

On the one hand, we have that E
(

Y−
r
q
)

exists for q > r and E
(

Y−
r
q
)
= q

q−r . On the other
hand, E(Xr) = ασrκr(α) is the rth-moment of a PHN(σ, α) model given in (2).

So, (11) is obtained.

Remark 3. Note that from Proposition 6, given T ∼ SPHN(σ, α, q), for r ≥ q, µr = E(Tr)
is infinity.

From (2) and (11), the following relationship between the moments of SHPN and PHN
models follows.
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Corollary 3. Let T ∼ SPHN(σ, α, q) and X ∼ PHN(σ, α). Then

E(Tr) =
q

q− r
E(Xr), q > r. (12)

Corollary 4. Let T ∼ SPHN(σ, α, q). Then

E(T) =
σαq

q− 1
κ1, q > 1, (13)

Var(T) =
σ2αq

[
(q− 1)2κ2 − αq(q− 2)κ2

1
]

(q− 1)2(q− 2)
, q > 2, (14)

where κr = κr(α) =
∫ 1

0

(
Φ−1

(
1+u

2

))r
uα−1du.

For illustrative purposes, the expected value, variance and mode for different values
of parameters in the SHPN model are given in Table 2. We observe that the expected
value, variance and mode decrease as q increases for the the values of the parameters
under consideration.

Table 2. Values of mean, variance and mode.

Parameters Mean Variance Mode

σ = 1, α = 2, q = 3 1.692 2.045 1.066
σ = 1, α = 2, q = 4 1.505 1.010 1.033
σ = 1, α = 2, q = 5 1.410 0.738 1.009

σ = 1.5, α = 2, q = 3 2.539 4.601 1.599
σ = 1.5, α = 2, q = 4 2.257 2.272 1.549
σ = 1.5, α = 2, q = 5 2.116 1.661 1.514

σ = 2, α = 2, q = 3 3.385 8.180 2.131
σ = 2, α = 2, q = 4 3.009 4.039 2.065
σ = 2, α = 2, q = 5 2.821 2.953 2.019

Corollary 5. Let T ∼ SPHN(σ, α, q). Then, the skewness,
√

β1, and kurtosis, β2, coefficients
are, for q > 3,

√
β1 =

√
(q− 2)

[
(q− 1)3(q− 2)κ3 − 3qα(q− 1)2(q− 3)κ1κ2 + 2q2α2(q− 2)(q− 3)κ3

1
]

√
αq(q− 3)[(q− 1)2κ2 − αq(q− 2)κ2

1]
3/2

,

and for q > 4,

β2 =
A

αq(q− 3)(q− 4)[(q− 1)2κ2 − αq(q− 2)κ2
1]

2
,

where A = (q− 1)2(q− 2)2[(q− 1)(q− 3)κ4 − 4αq(q− 4)κ1κ3] + α2q2(q− 2)(q− 3)(q−
4)[6(q− 1)2κ2

1κ2 − 3αq(q− 2)κ4
1].

Remark 4. The skewness and kurtosis coefficients were obtained by using

√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3
2

, and β2 =
µ4 − 4µ1µ3 + 6µ2µ2

1 − 3µ4
1

(µ2 − µ2
1)

2
.

Figures 4 and 5 provides plots for the skewness and kurtosis coefficients in the SPHN
distribution. Both coefficients depend on α and q parameters.

√
β1 and β2 do not depend

on σ, since σ is a scale parameter.
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Figure 4. Plots of the skewness coefficient in the SPHN model.
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2.4. Stochastic Ordering

Proposition 7. Let X ∼ PHN(σ, α), T1 ∼ SPHN(σ, α, q1), and T2 ∼ SPHN(σ, α, q2) with
0 < q1 < q2 (σ, α > 0 fixed). Then, X is stochastically smaller than T2, X ≤st T2, and T2 is
stochastically smaller than T1, T2 ≤st T1. So, as summary, we can write

X ≤st T2 ≤st T1 . (15)

Proof. From Corollary 2, and the fact that Mα,q(·), defined in (8), is a decreasing function
of q, we can write the following relationship among the survival functions of X, T1 and T2

SX(t; σ, α) ≤ ST2(t; σ, α, q2) ≤ ST1(t; σ, α, q1), ∀t .

It can be seen in [16] that this is the definition of stochastic order, and therefore, (15)
follows.

Corollary 6. Let X ∼ PHN(σ, α), T1 ∼ SPHN(σ, α, q1), and T2 ∼ SPHN(σ, α, q2) with
1 < q1 < q2 (σ, α > 0 fixed). Then

E(X) ≤ E(T2) ≤ E(T1) . (16)

Proof. Since for qi > 1, E(Ti) exists i = 1, 2, then, it can be seen in [16] that from (15)
follows (16).

In addition, some relationships can be given for the order statistics of these distribu-
tions.

Proposition 8. Let X1, . . . , Xn be a random sample of X ∼ PHN(σ, α), and let us denote by X(j)

the j-th order statistic in this sample, j = 1, . . . , n. Similarly, let us consider Ti
1, . . . , Ti

n a random
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2.4. Stochastic Ordering

Proposition 7. Let X ∼ PHN(σ, α), T1 ∼ SPHN(σ, α, q1), and T2 ∼ SPHN(σ, α, q2) with
0 < q1 < q2 (σ, α > 0 fixed). Then, X is stochastically smaller than T2, X ≤st T2, and T2 is
stochastically smaller than T1, T2 ≤st T1. So, as summary, we can write

X ≤st T2 ≤st T1 . (15)

Proof. From Corollary 2, and the fact that Mα,q(·), defined in (8), is a decreasing function
of q, we can write the following relationship among the survival functions of X, T1 and T2

SX(t; σ, α) ≤ ST2(t; σ, α, q2) ≤ ST1(t; σ, α, q1), ∀t .

It can be seen in [16] that this is the definition of stochastic order, and therefore,
(15) follows.

Corollary 6. Let X ∼ PHN(σ, α), T1 ∼ SPHN(σ, α, q1), and T2 ∼ SPHN(σ, α, q2) with
1 < q1 < q2 (σ, α > 0 fixed). Then

E(X) ≤ E(T2) ≤ E(T1) . (16)

Proof. Since for qi > 1, E(Ti) exists i = 1, 2, then, it can be seen in [16] that from (15)
follows (16).

In addition, some relationships can be given for the order statistics of these distributions.

Proposition 8. Let X1, . . . , Xn be a random sample of X ∼ PHN(σ, α), and let us denote by X(j)

the j-th order statistic in this sample, j = 1, . . . , n. Similarly, let us consider Ti
1, . . . , Ti

n a random
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sample of Ti ∼ SPHN(σ, α, qi), i = 1, 2, with q1 < q2, and Ti
(j) denotes the j-th order statistic for

the sample of Ti. Then, the j-th order statistics are also stochastically ordered, explicitly,

X(j) ≤st T2
(j) ≤st T1

(j) , j = 1, . . . , n. (17)

Proof. It can be seen in [16] that this result is a consequence of (15).

3. Inference

In this section, the estimation of parameters is carried out by applying moment and
maximum likelihood (ML) methods. A simulation study is carried out in Section 4 to asses
the performance of ML estimates when the sample size increases.

3.1. Moment Estimators

Let T1, T2, . . . , Tn be a random sample of T ∼ SPHN(σ, α, q). From E(T) = T and (11),
we can write

σ =
(q− 1)T

αqκ1
. (18)

By using (11) again, and replacing the second and third population moments by the
corresponding second and third sampling moments, the following equations are obtained

T2αq(q− 2)κ2
1 = T2

(q− 1)2κ2, (19)

T3α2q2(q− 3)κ3
1 = T3

(q− 1)3κ3 . (20)

The system of equations generated by (19) and (20) be solved numerically: for instance,
by using, R [17], leading to the moment estimators α̂M and q̂M. The moment estimator, σ̂M,
is obtained from Equation (18), by replacing α by α̂M and q by q̂M.

3.2. ML Estimators

In this subsection, the ML equations are introduced for the parameters (σ, α, q) on the
SPHN model. Let t1, t2, . . . , tn be a random sample from T ∼ SPHN(σ, α, q). Then, the
log-likelihood function can be expressed as

l(σ, α, q) = nq log(σ) + n log(α) + n log(q)− (q + 1)
n

∑
i=1

log(ti) +
n

∑
i=1

log(M(vi)), (21)

where vi = 2Φ
(

ti
σ

)
− 1 and M(vi) = Mα,q(vi) i = 1, . . . , n.

The ML estimates are obtained by maximizing the equation given in (21). Taking the
first derivative of the log-likelihood function with respect to each parameter, the following
estimating equations are obtained, where we denote by θ = (σ, α, q)

∂l(θ)
∂σ

=
nq
σ

+
n

∑
i=1

M1(vi)

M(vi)
= 0, (22)

∂l(θ)
∂α

=
n
α

+
n

∑
i=1

M2(vi)

M(vi)
= 0, (23)

∂l(θ)
∂q

= n log(σ) +
n
q
−

n

∑
i=1

log(ti) +
n

∑
i=1

M3(vi)

M(vi)
= 0, (24)

where M1(vi) =
∂M(vi)

∂σ , M2(vi) =
∂M(vi)

∂α and M3(vi) =
∂M(vi)

∂q .
Equations (22)–(24) must be solved by using numerical procedures, such as the optim

function in R software. Other maximization techniques could be applied, which directly
maximize the log-likelihood function: for instance, the method proposed in McDonald [18].
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Under regularity conditions, the asymptotic distribution of the MLEs θ̂ = (σ̂, α̂, q̂)
is a trivariate normal with mean vector θ and variance–covariance matrix that is the
inverse of the Fisher information matrix, I(θ)−1. Usually, I(θ) is estimated by the observed
information matrix I(θ̂) given by

I(θ̂) =
(
− ∂2 l(θ)

∂θ∂θT

)∣∣∣∣
θ=θ̂

=




Iσ,σ Iσ,α Iσ,q
Iα,σ, Iα,α Iα,q
Iq,σ Iq,α Iq,q



∣∣∣∣∣∣
θ=θ̂

,

whose elements are

Iσ,σ = −∂2l(θ)
∂σ2 =

nq
σ2 −

n

∑
i=1

M1,1(vi) M(vi)−M2
1(vi)

M2(vi)
,

Iσ,α = −∂2l(θ)
∂σ ∂α

= −
n

∑
i=1

M1,2(vi) M(vi)−M1(vi)M2(vi)

M2(vi)

Iσ,q = −∂2l(θ)
∂σ ∂q

= −n
σ
−

n

∑
i=1

M1,3(vi) M(vi)−M3(vi)M1(vi)

M2(vi)
,

Iα,α = −∂2l(θ)
∂α2 =

n
α2 −

n

∑
i=1

M2,2(vi)M(vi)−M2
2(vi)

M2(vi)
,

Iα,q = −∂2l(θ)
∂α∂q

= −
n

∑
i=1

M2,3(vi) M(vi)−M3(vi)M2(vi)

M2(vi)

Iq,q = −∂2l(θ)
∂q2 =

n
q2 −

n

∑
i=1

M3,3(vi) M(vi)−M2
3(vi)

M2(vi)
,

with Mj,k(vi) =
∂2 M(vi)
∂θj∂θk

and θ = (σ, α, q).
From the asymptotic normality of MLEs, approximate confidence intervals can be

proposed for θi. So, an Asymptotic Confidence Interval (ACI) at confidence level 1− γ,
0 < γ < 1, for θi = σ, α, q is

ACI(θi, 1− γ) = θ̂i ± z1−γ/2 s.e.(θ̂i), where θ̂i = {σ̂, α̂, q̂},

the standard error of θ̂i, s.e.(θ̂i), is the squared root of the ith diagonal element of I(θ̂)−1,
and z1−γ/2 denotes the quantile of order 1− γ/2 in the N(0, 1) distribution.

4. Simulation Study

In this section, a simulation study is conducted aiming to investigate ML estimation
performance for parameters σ, α and q in the SPHN model. Specifically, 1000 random
samples of sizes n = 50, 100 and 200 were generated under the SPHN model by using
the algorithm given below. A summary of the results obtained in this study are depicted
in Table 3. The empirical means correspond to the means of the estimated parameters
over the 1000 simulated samples. The SE given in Table 3 is the average of the standard
errors obtained in every simulation, s.e.(θ̂i), which were calculated as the square root of
the corresponding diagonal element in the inverse of the observed information matrix.
Moreover, Asymptotic Confidence Intervals (ACIs) at confidence level 1− γ, 0 < γ < 1,
have been built based on the asymptotic normality of MLEs. Specifically,

ACI(θi, 1− γ) =
(

θ̂i − z1−γ/2 s.e.(θ̂i), θ̂i + z1−γ/2 s.e.(θ̂i)
)

, with θ̂i = {σ̂, α̂, q̂}. (25)

The level confidence is 1− γ = 0.95. To asses the performance of these summaries,
the empirical covarage probability (CP) of (25) has been included in Table 3. That is the
proportion of ACIs that contain the true value of the parameter.
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In Table 3, RMSE denotes the square root of the empirical mean squared error: for
instance, for α̂, it is calculated as

RMSE(α̂) =

√
1
n

n

∑
i=1

(α̂i − α)2 ,

and so on.
Next, the algorithm used to generate samples from T ∼ SPHN(σ, α, q) is introduced.

The Algorithm 1 is based on (6) and the inversion of the cdf given in (1).

Algorithm 1: for generate samples from T ∼ SPHN(σ, α, q).

1: Simulate W ∼ U(0, 1).
2: Compute X = σΦ−1

(
1+W1/α

2

)
.

3: Simulate Y ∼ U(0, 1).
4: Compute T = X

Y
1
q

.

As conclusions of this simulation study, we highlight that as the sample size increases,
estimates become closer to the true parameter values. These results suggest that the
estimated standard errors and RMSE become smaller as sample size increases: that is, the
proposed estimators are consistent. As for the ACI, the results are satisfactory. We highlight
that their empirical CP approaches to the nominal 0.95 confidence level as n increases.

Following reviewers’ recommendations, similar plots to the ones proposed in [19] have
been carried out to illustrate the results in Table 3. So, the empirical coverage probabilities
obtained for the asymptotic confidence intervals at 95% for σ, α and q for the sample sizes
n = 50, 100, 200 have been plotted in Figure 6. The columns correspond to the cases
(σ = 1, α = 1, q), (σ = 5, α = 2, q) and (σ = 5, α = 4, q) in Table 3 and the panels by rows to
q = {0.2, 0.5, 1, 2, 3}. It can be appreciated there that, in all cases, the empirical coverage
probability approaches the confidence level 0.95 as the sample size increases. This plot also
suggests that the approximate confidence intervals for q and σ perform better than those
for α.

Table 3. Empirical means and SE for the ML estimates of σ, α and q.

True Value n = 50 n = 100 n = 200

(σ,α,q) Means (SE) RMSE CP Means (SE) RMSE CP Means (SD) RMSE CP

(1, 1, 0.2) σ̂ 1.2756 (1.2458) 0.8082 0.9190 1.1000 (0.4882) 0.6382 0.9480 1.0492 (0.3259) 0.3963 0.9680
α̂ 1.4480 (1.2375) 2.1143 0.9190 1.2444 (0.5203) 0.9947 0.9350 1.0743 (0.2300) 0.3050 0.9550
q̂ 0.2095 (0.0342) 0.0363 0.9290 0.2035 (0.0233) 0.0238 0.9350 0.2026 (0.0163) 0.0161 0.9650

(1, 1, 0.5) σ̂ 1.0902 (0.4679) 0.6130 0.9310 1.0384 (0.3114) 0.3490 0.9520 1.0220 (0.2167) 0.2239 0.9660
α̂ 1.2433 (0.5597) 1.2440 0.9060 1.0937 (0.2760) 0.5732 0.9560 1.0327 (0.1511) 0.1552 0.9710
q̂ 0.5307 (0.1046) 0.1176 0.9360 0.5167 (0.0706) 0.0763 0.9520 0.5080 (0.0485) 0.0505 0.9780

(1, 1, 1) σ̂ 1.0615 (0.3547) 0.4391 0.9050 1.0272 (0.2385) 0.2564 0.9340 1.0135 (0.1668) 0.1758 0.9680
α̂ 1.1044 (0.2987) 0.4388 0.9140 1.0463 (0.1797) 0.1978 0.9330 1.0225 (0.1217) 0.1254 0.9680
q̂ 1.1134 (0.3335) 0.4455 0.9160 1.0544 (0.1866) 0.2101 0.9230 1.0229 (0.1248) 0.1352 0.9650

(1, 1, 2) σ̂ 1.0303 (0.3110) 0.3048 0.9070 1.0368 (0.2125) 0.2363 0.9330 1.0167 (0.1405) 0.1398 0.9590
α̂ 1.0761 (0.2339) 0.2654 0.9370 1.0280 (0.1521) 0.1601 0.9590 1.0117 (0.1039) 0.1014 0.9780
q̂ 2.9366 (6.2097) 5.2450 0.9120 2.5031 (1.7373) 2.3456 0.9470 2.1185 (0.4051) 0.4622 0.9720
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Table 3. Cont.

True Value n = 50 n = 100 n = 200

(σ,α,q) Means (SE) RMSE CP Means (SE) RMSE CP Means (SD) RMSE CP

(1, 1, 3) σ̂ 1.0049 (0.3290) 0.2750 0.9360 1.0244 (0.2111) 0.1911 0.9560 1.0211 (0.1393) 0.1395 0.9700
α̂ 1.0848 (0.2257) 0.2514 0.9120 1.0330 (0.1454) 0.1493 0.9350 1.0111 (0.0986) 0.0983 0.9630
q̂ 6.0879 (31.8647) 15.6052 0.8190 4.2446 (7.8499) 6.8776 0.8420 3.6100 (3.3989) 3.2592 0.8650

(1, 2, 0.2) σ̂ 1.3295 (0.7451) 1.7989 0.9590 1.0159 (0.4083) 0.4906 0.9690 1.0154 (0.2835) 0.3181 0.9770
α̂ 4.8723 (10.4037) 16.7010 0.9010 5.4312 (8.4096) 25.9159 0.9170 2.5311 (1.3470) 2.9316 0.9410
q̂ 0.2098 (0.0327) 0.0352 0.9370 0.2030 (0.0221) 0.0226 0.9540 0.2022 (0.0156) 0.0152 0.9640

(1, 2, 0.5) σ̂ 1.0344 (0.4007) 0.4556 0.9390 1.0080 (0.2698) 0.3167 0.9580 1.0060 (0.1860) 0.1902 0.9790
α̂ 4.7341 (8.3355) 26.6807 0.9000 3.0202 (2.6570) 17.3013 0.9590 2.1518 (0.4745) 0.5434 0.9750
q̂ 0.5245 (0.0934) 0.0991 0.9280 0.5126 (0.0637) 0.0688 0.9580 0.5059 (0.0440) 0.0455 0.9720

(1, 2, 1) σ̂ 1.0362 (0.2978) 0.3843 0.9110 1.0172 (0.2007) 0.2185 0.9290 1.0058 (0.1402) 0.1464 0.9550
α̂ 2.6554 (1.5279) 4.1685 0.9440 2.1698 (0.52600) 0.6510 0.9690 2.0801 (0.3386) 0.3638 0.9710
q̂ 1.0886 (0.3429) 0.5496 0.9170 1.0382 (0.1560) 0.1693 0.9300 1.0156 (0.1060) 0.1133 0.9600

(1, 2, 2) σ̂ 1.0469 (0.2610) 0.2788 0.9330 1.0147 (0.1678) 0.1825 0.9570 1.0081 (0.1145) 0.1119 0.9660
α̂ 2.2165 (0.6503) 0.8276 0.9450 2.1070 (0.4123) 0.4585 0.9520 2.0405 (0.2687) 0.2683 0.9610
q̂ 2.7106 (8.2183) 4.6692 0.9450 2.2108 (0.6296) 0.9698 0.8690 2.0656 (0.3028) 0.3293 0.9790

(1, 2, 3) σ̂ 1.0079 (0.2491) 0.2356 0.9240 1.0236 (0.1631) 0.1693 0.9370 1.0115 (0.1094) 0.1131 0.9540
α̂ 2.2321 (0.6068) 0.7837 0.9300 2.0868 (0.3648) 0.3965 0.9560 2.0342 (0.2470) 0.2540 0.9650
q̂ 4.4271 (21.5189) 6.5850 0.9330 3.7860 (5.0595) 4.0973 0.9500 3.2516 (0.7341) 0.8807 0.9760

(5, 1, 0.2) σ̂ 7.1646 (4.7763) 8.8383 0.9150 5.6108 (2.3005) 3.1957 0.9310 5.3230 (1.5285) 1.9831 0.9640
α̂ 1.5457 (2.5030) 4.8049 0.9340 1.1815 (0.4875) 0.7967 0.9480 1.0602 (0.2235) 0.2538 0.9710
q̂ 0.2121 (0.0348) 0.0379 0.9400 0.2048 (0.0233) 0.0242 0.9540 0.2032 (0.0164) 0.0165 0.9640

(5, 1, 0.5) σ̂ 5.7373 (2.4456) 3.5837 0.8340 5.2045 (1.5400) 1.7220 0.8820 5.1184 (1.0609) 1.1176 0.9130
α̂ 1.1659 (0.4008) 0.5596 0.9230 1.0860 (0.2721) 0.5568 0.9350 1.0320 (0.1502) 0.1582 0.9690
q̂ 0.5406 (0.1080) 0.1230 0.9250 0.5172 (0.0706) 0.0746 0.9460 0.5076 (0.0485) 0.0493 0.9760

(5, 1, 1) σ̂ 5.5348 (2.3423) 1.8272 0.9130 5.1725 (1.1825) 1.3342 0.9300 5.0665 (0.8744) 0.8161 0.9640
α̂ 1.0863 (0.2764) 0.3496 0.9130 1.0438 ( 0.1991) 0.1778 0.9320 1.0202 (0.1204) 0.1251 0.9680
q̂ 1.1710 (0.9094) 1.1789 0.9120 1.0572 (0.2180) 0.1868 0.9420 1.0216 (0.1349) 0.1238 0.9670

(5, 1, 2) σ̂ 5.1390 (1.5468) 1.5353 0.9130 5.2000 (1.0311) 1.1426 0.9350 5.0772 (0.6857) 0.6987 0.9680
α̂ 1.0858 (0.2367) 0.2748 0.9180 1.0239 (0.1503) 0.1566 0.9520 1.0120 (0.1034) 0.0998 0.9730
q̂ 3.1212 (11.2902) 5.8760 0.9320 2.4613 (1.2155) 2.0554 0.9450 2.1162 (0.4021) 0.4727 0.9670

(5, 1, 3) σ̂ 5.0359 (1.6298) 1.3186 0.9200 5.0808 (1.0229) 0.9645 0.9490 5.1051 (0.6823) 0.6916 0.9680
α̂ 1.0719 (0.2196) 0.2480 0.9290 1.0372 (0.1454) 0.1524 0.9410 1.0115 (0.0983) 0.1003 0.9600
q̂ 5.5128 (40.7540) 10.3607 0.8670 4.0842 (10.7407) 5.8639 0.8910 3.5737 (1.6583) 3.5863 0.9080

(5, 2, 0.2) σ̂ 6.2208 (3.4545) 4.2936 0.9240 5.2606 (2.1131) 2.2751 0.9450 5.1968 (1.4418) 1.6041 0.9640
α̂ 5.1805 (25.4483) 23.6679 0.8940 3.8097 (7.1766) 10.5513 0.9110 2.3044 (0.8466) 1.0814 0.9200
q̂ 0.2171 (0.0340) 0.0371 0.9070 0.2062 (0.0225) 0.0226 0.9420 0.2018 (0.0155) 0.0151 0.9660

(5, 2, 0.5) σ̂ 5.3204 (2.0113) 2.6829 0.9350 5.1098 (1.3326) 1.4756 0.9420 5.0095 (0.9002) 0.9582 0.9620
α̂ 3.1852 (2.6410) 4.8063 0.9010 2.4125 (0.9534) 2.1373 0.9200 2.1544 (0.4681) 0.5838 0.9390
q̂ 0.5367 (0.0961) 0.1081 0.9480 0.5139 (0.0636) 0.0677 0.9650 0.5038 (0.0435) 0.0458 0.9780

(5, 2, 1) σ̂ 5.1151 (1.4670) 1.8693 0.9100 5.0798 (0.9838) 1.0709 0.9220 5.0359 (0.6745) 0.7345 0.9330
α̂ 3.6045 (3.4441) 23.5407 0.8500 2.1829 (0.5345) 0.9166 0.8980 2.0815 ( 0.3328) 0.3933 0.9200
q̂ 1.1051 (0.5248) 0.8640 0.9390 1.0358 (0.1548) 0.1665 0.9570 1.0176 (0.1054) 0.1129 0.9720

(5, 2, 2) σ̂ 5.1574 (1.2498) 1.4238 0.9110 5.0913 (0.8157) 0.9276 0.8900 5.0464 (0.5606) 0.5956 0.9650
α̂ 2.3183(0.7369) 1.2030 0.9490 2.1076 (0.4006) 0.4665 0.9530 2.0411 (0.2661) 0.2847 0.9600
q̂ 2.7879 (3.6209) 7.7982 0.9260 2.1672 (0.5127) 0.6408 0.9490 2.0771 (0.3078) 0.3513 0.9690

(5, 2, 3) σ̂ 5.1098 (1.2615) 1.2178 0.9100 5.1094 (0.8084) 0.8635 0.9310 5.0502 (0.5223) 0.5619 0.9550
α̂ 2.2587 (0.6545) 1.0586 0.9250 2.0858 (0.3623) 0.4156 0.9490 2.0386 (0.2428) 0.2554 0.9630
q̂ 4.7063 (20.0928) 7.5044 0.9340 3.8496 (4.7614) 4.6096 0.9600 3.2650 (0.7597) 0.9814 0.9750

(5, 4, 0.2) σ̂ 5.9042 (3.2053) 3.9180 0.9050 5.1234 (1.9895) 2.0869 0.9320 4.9130 (1.3224) 1.3365 0.9520
α̂ 15.5998 (98.4168) 36.5604 0.7830 12.6370 (28.5041) 39.3718 0.7860 7.6859 (8.6139) 20.8462 0.8180
q̂ 0.2205 (0.0336) 0.0364 0.9150 0.2090 (0.0223) 0.0222 0.9360 0.2029 ( 0.0152) 0.0153 0.9440

(5, 4, 0.5) σ̂ 5.1084 (1.8148) 1.9934 0.9210 5.0839 (1.2629) 1.3986 0.9420 5.0012 (0.8331) 0.9553 0.8970
α̂ 13.7575 (27.8922) 47.6750 0.779 6.9460 (6.5967) 16.5931 0.8210 4.8960 (2.0477) 4.0452 0.8420
q̂ 0.5386 (0.0903) 0.0973 0.9210 0.5153 (0.0604) 0.0646 0.9450 0.5083 (0.0416) 0.0443 0.9640

(5, 4, 1) σ̂ 4.9761 ( 1.3131) 1.4340 0.9590 4.9748 (0.8876) 0.9616 0.9650 4.9689 (0.5988) 0.6400 0.9700
α̂ 7.6639 (10.0667) 23.3789 0.8220 4.8691 (1.8710) 3.7083 0.8490 4.3453 (1.0154) 1.2519 0.8790
q̂ 1.0477 (0.2055) 0.2238 0.9370 1.0319 (0.1391) 0.1492 0.9400 1.0110 (0.0946) 0.0950 0.9600

(5, 4, 2) σ̂ 5.0894 (1.0537) 1.2673 0.9250 5.0116 (0.6943) 0.7811 0.9630 5.0327 (0.4963) 0.5229 0.9710
α̂ 5.4842 (2.5477) 6.1704 0.9280 4.4710 (1.1923) 1.6281 0.9460 4.1662 (0.7346) 0.8332 0.9640
q̂ 2.4047 ( 1.2242) 3.0378 0.9590 2.1001 (0.3816) 0.4388 0.9620 2.0613 (0.2596) 0.2781 0.9740

(5, 4, 3) σ̂ 5.0853 (1.0467) 1.0945 0.9350 5.0768 (0.7025) 0.7645 0.9460 5.0166 (0.4485) 0.4817 0.9620
α̂ 4.8945 (1.8456) 3.0342 0.9250 4.3010 (1.0213) 1.3791 0.9480 4.1370 (0.6541) 0.7266 0.9680
q̂ 4.1080 (9.3733) 4.9578 0.9060 3.5935 (9.7476) 3.3672 0.9100 3.1361 (0.5106) 0.5840 0.9220
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Figure 6. Empirical CP for the ACI (n = 50, 100, 200) in the SPHN model (σ = 1, α = 1, q) =

SHN(1, q), (σ = 5, α = 2, q), (σ = 5, α = 4, q) with q = {0.2, 0.5, 1, 2, 3}. In all panels, results for α

(red point), q (green triangle), and σ (blue square).

5. Applications

In this section, two real data sets with high kurtosis levels are considered. In these
data sets, the PHN, GHN, Slash Power Maxwell (SPM) introduced in Segovia et al. [12],
SGHN introduced in Olmos et al. [10] and SPHN distributions are considered. Details
about these models can be seen in Appendix C.

The parameters are estimated by ML. The Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC), histograms and Q-Q plots are considered to compare
these models.

5.1. Application 1

Let us consider the data set of kevlar 49/epoxy, which corresponds to fatigue fracture
to constant pressure at the 90% stress level until the fail happened. This data set has been
previously analyzed by Andrews and Herzberg [20], Barlow et al. [21] and Olmos et al. [9,10]
among others. The data set consists of 101 observations with the presence of outliers.
Explicitly, in Table 4:

Table 4. Data set of kevlar 49/epoxy.

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.08 0.09 0.09
0.10 0.10 0.11 0.11 0.12 0.13 0.18 0.19 0.20 0.23 0.24 0.24 0.29 0.34 0.35
0.36 0.38 0.40 0.42 0.43 0.52 0.54 0.56 0.60 0.60 0.63 0.65 0.67 0.68 0.72
0.72 0.72 0.73 0.79 0.79 0.80 0.80 0.83 0.85 0.90 0.92 0.95 0.99 1.00 1.01
1.02 1.03 1.05 1.10 1.10 1.11 1.15 1.18 1.20 1.29 1.31 1.33 1.34 1.40 1.43
1.45 1.50 1.51 1.52 1.53 1.54 1.54 1.55 1.58 1.6 1.63 1.64 1.80 1.80 1.81
2.02 2.05 2.14 2.17 2.33 3.03 3.03 3.34 4.20 4.69 7.89
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In Table 5, the descriptive analysis is provided. We can see that this data set exhibits a
high sample kurtosis coefficient of 16.709, so it is interesting to see what can our model do here.

Table 5. Descriptive analysis for fatigue fracture data.

Mean S.D. Median Range Min. Max. Skewness Kurtosis

1.025 1.119 0.800 7.88 0.010 7.890 3.002 16.709

For the SPHN model, the moment estimates are σ̂M = 0.384, α̂M = 3.653 and
q̂M = 2.140. These estimates are used as starting values to get the ML estimates by us-
ing numerical methods.

Table 6 shows the estimated parameters for each model under consideration. If we
apply the AIC and BIC criteria, then the SPHN distribution must be preferred over the
GHN, PHN, SPM and SGHN distributions, since its AIC and BIC are the smallest ones.

Table 6. Estimated values, standard errors (SE) in parentheses and criteria.

Distribution ML Estimates (s.e.) AIC BIC

LogNormal µ̂ = 0.336 (0.002) σ̂ = 1.844 (0.017) 230.62 240.47
GHN σ̂ = 1.224 (0.017) α̂ = 0.711 (0.003) 210.67 215.90
PHN σ̂ = 0.641 (0.005) α̂ = 1.821 (0.033) 217.24 222.47
SPM α̂ = 1.753 (0.008) β̂ = 0.362 (8.41× 10−4) q̂ = 10.012 (0.004) 213.68 221.47

SGHN σ̂ = 0.835 (0.019) α̂ = 0.823 (0.007) q̂ = 3.009 (1.235) 208.67 216.51
SPHN σ̂ = 0.962 (0.031) α̂ = 0.760 (0.009) q̂ = 2.822 (0.828) 207.43 215.28

Figure 7 shows the histograms for the fatigue fracture data set, along with the fitted
distributions by using ML estimates in SPHN, GHN and SGHN models. The QQ-plot is
also included to asses the good fit provided by the SPHN model to this data set.
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Figure 7. Left panel: Histograms of the fatigue fracture data fitted with the GHN, SGHN and SPHN
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5.2. Application 2

Here, the data set previously analyzed by Gómez and Bolfarine [11] is considered.
This data set corresponds to 72 survival times of guinea pigs injected with different doses
of tubercle bacilli, which are in Table 7.

Table 7. Data set of survival times of guinea pigs.

12 15 22 24 24 32 32 33 34 38 38 43
44 48 52 53 54 54 55 56 57 58 58 59
60 60 60 60 61 62 63 65 65 67 68 70
70 72 73 75 76 76 81 83 84 85 87 91
95 96 98 99 109 110 121 127 129 131 143 146
146 175 175 211 233 258 258 263 297 341 341 376

The moment estimates for the parameters in the SPHN model are: σ̂M = 41.681,
α̂M = 3.185 and q̂M = 2.304. Again, these estimates are used as initial values to get the ML
estimates by using numerical methods.

In Table 8, the descriptive analysis is given. We have that the sample kurtosis coefficient
is 5.61, so it is also interesting to see if the SPHN distribution can provide a good fit to this
data set.

Table 8. Descriptive analysis for the survival times of guinea pigs.

Mean S.D. Median Range Min. Max. Skewness Kurtosis

99.82 81.12 70.00 364 12.00 376.00 1.80 5.61

Table 9 shows the estimated parameters for each distribution. If we apply the statistical
information criteria then, in all cases, both criteria choose the SPHN model over the GHN,
PHN, SPM and SGHN distributions.
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Table 7. Data set of survival times of guinea pigs.

12 15 22 24 24 32 32 33 34 38 38 43
44 48 52 53 54 54 55 56 57 58 58 59
60 60 60 60 61 62 63 65 65 67 68 70
70 72 73 75 76 76 81 83 84 85 87 91
95 96 98 99 109 110 121 127 129 131 143 146
146 175 175 211 233 258 258 263 297 341 341 376

The moment estimates for the parameters in the SPHN model are: σ̂M = 41.681,
α̂M = 3.185 and q̂M = 2.304. Again, these estimates are used as initial values to get the ML
estimates by using numerical methods.

In Table 8, the descriptive analysis is given. We have that the sample kurtosis coefficient
is 5.61, so it is also interesting to see if the SPHN distribution can provide a good fit to this
data set.

Table 8. Descriptive analysis for the survival times of guinea pigs.

Mean S.D. Median Range Min. Max. Skewness Kurtosis

99.82 81.12 70.00 364 12.00 376.00 1.80 5.61

Table 9. Estimated values, SE and information criteria.

Distribution ML Estimates (s.e.) AIC BIC

LogNormal µ̂ = 4.344 (0.007) σ̂ = 0.710 (0.004) 788.67 793.22
GHN σ̂ = 129.238 (141.55) α̂ = 1.016 (0.008) 807.29 812.03
PHN σ̂ = 1.254 (0.035) α̂ = 117.343 (124.50) 805.24 807.48
SPM α̂ = 0.003 (5.29× 10−7) β̂ = 0.783 (1.50× 10−4) q̂ = 1.578 (0.009) 788.98 795.81

SGHN σ̂ = 54.156 (1.138) α̂ = 2.594 (2.326× 10−7) q̂ = 1.663 (0.003) 785.56 792.39
SPHN σ̂ = 36.015 (0.022) α̂ = 3.216 (0.226) q̂ = 1.799 (0.017) 785.04 791.87

Table 9 shows the estimated parameters for each distribution. If we apply the statistical
information criteria then, in all cases, both criteria choose the SPHN model over the GHN,
PHN, SPM and SGHN distributions.

Figure 8 shows the histograms for the guinea pigs survival time data along with the
fitted distributions: SPHN, LogNormal, and SGHN, whose parameters were estimated by
ML. The QQ-plot is also included for the proposed SPHN model, which provides the best
fit to this data set.
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Figure 8. Left panel: Histograms of the survival times of guinea pigs data fitted by the LogNormal,
SGHN and SPHN distributions. Right panel: QQ-plot of the SPHN distribution.

6. Conclusions

This paper introduces the SPHN distribution, which is built from the PHN distribution
by using the slash methodology proposed in (6). In this way, a model with higher kurtosis
than the PHN is obtained. The SPHN is a three-parameter model whose right tail is heavier
for smaller values of the kurtosis parameter q. Relevant results of interest in reliability
are discussed, such as cdf, survival, hazard rate function and stochastic orderings. The
convergence in distribution to the PHN model is studied when the parameter of kurtosis
q increases, along with the relationships with the PHN, SHN and HN models. All these
relationships are summarized in Figure 3 and enhance the interest of our model. It is shown
that the SPHN can be expressed of a scale mixture of a PHN and a uniform distribution.
This property allows us to propose an algorithm to generate random values of the SPHN
model. The unknown parameters in the model are estimated via ML. A simulation study is
given where the good properties of ML estimators can be seen. As applications, two real
data sets are considered with moderate and high kurtosis. These are Applications 2 and 1,
respectively. Several common models are considered as competitors of SPHN. By applying
information criteria (AIC and BIC), it is shown that our proposal provides the best fit to
these data sets. Due to this fact, it is of interest to spread out the use and applications of
this model.

Author Contributions: Conceptualization, L.B. and Y.M.G.; methodology, Y.M.G. and H.W.G.; soft-
ware, L.B.; validation, H.W.G., I.B.-C. and O.V.; formal analysis, L.B., I.B.-C. and Y.M.G.; investigation,

Figure 8. Left panel: Histograms of the survival times of guinea pigs data fitted by the LogNormal,
SGHN and SPHN distributions. Right panel: QQ-plot of the SPHN distribution.
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6. Conclusions

This paper introduces the SPHN distribution, which is built from the PHN distribution
by using the slash methodology proposed in (6). In this way, a model with higher kurtosis
than the PHN is obtained. The SPHN is a three-parameter model whose right tail is heavier
for smaller values of the kurtosis parameter q. Relevant results of interest in reliability
are discussed, such as cdf, survival, hazard rate function and stochastic orderings. The
convergence in distribution to the PHN model is studied when the parameter of kurtosis
q increases, along with the relationships with the PHN, SHN and HN models. All these
relationships are summarized in Figure 3 and enhance the interest of our model. It is shown
that the SPHN can be expressed of a scale mixture of a PHN and a uniform distribution.
This property allows us to propose an algorithm to generate random values of the SPHN
model. The unknown parameters in the model are estimated via ML. A simulation study is
given where the good properties of ML estimators can be seen. As applications, two real
data sets are considered with moderate and high kurtosis. These are Applications 2 and 1,
respectively. Several common models are considered as competitors of SPHN. By applying
information criteria (AIC and BIC), it is shown that our proposal provides the best fit to
these data sets. Due to this fact, it is of interest to spread out the use and applications of
this model.
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Appendix A

In this appendix, plots for the pdf, cdf, survival and hazard rate function are given to
illustrate the behavior of these functions in the cases.



Mathematics 2022, 10, 1528 18 of 21

Appendix A.1. SPHN for 0 < α < 1
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Figure A1. SPHN (1, α = 0.8, q) for different values of q. In all panels, q = 0.5 (red), q = 1
(black), q = 3 (green), q = 5 (blue), and q = ∞ (purple). (a) pdf of SPHN(1, α = 0.8, q). (b) cdf
of SPHN(1, α = 0.8, q). (c) Survival function of SPHN(1, α = 0.8, q). (d) hazard rate function of
SPHN(1, α = 0.8, q).

Figure A1. SPHN (1, α = 0.8, q) for different values of q. In all panels, q = 0.5 (red), q = 1
(black), q = 3 (green), q = 5 (blue), and q = ∞ (purple). (a) pdf of SPHN(1, α = 0.8, q). (b) cdf
of SPHN(1, α = 0.8, q). (c) Survival function of SPHN(1, α = 0.8, q). (d) hazard rate function of
SPHN(1, α = 0.8, q).

Appendix A.2. SPHN for α = 1, Which Corresponds to the SHN Model

Mathematics 2022, 1, 0 19 of 21

Appendix A.2. SPHN for α = 1, Which Corresponds to the SHN Model

0
.0

0
.2

0
.4

0
.6

0
.8

t

f(
t)

0 2 4 6 8

q=0.5
q=1
q=3
q=5
PHN

(a)

t

F
(t

)

0 2 4 6 8

0
0

.2
0

.6
1

q=0.5
q=1
q=3
q=5
PHN

(b)

t

S
(t

)

0 2 4 6 8

0
0

.2
0

.6
1

q=0.5
q=1
q=3
q=5
PHN

(c)

0
1

2
3

4
5

6

t

h
(t

)

0 2 4 6

q=0.5
q=1
q=3
q=5
PHN

(d)
Figure A2. SPHN (1, α = 1, q) = SHN(1, q) for different values of q. In all panels, q = 0.5 (red),
q = 1 (black), q = 3 (green), q = 5 (blue), and q = ∞ (purple). (a) pdf of SPHN(1, α = 1, q).
(b) cdf of SPHN(1, α = 1, q). (c) Survival function of SPHN(1, α = 1, q). (d) hazard rate function of
SPHN(1, α = 1, q).

Appendix B

In this appendix, the proof of Proposition 5 is given.

(Proof of Proposition 5). From (6), we can write Tq = X
Y1/q , with q > 0, X ∼ PHN(σ, α),

and Y ∼ U(0, 1).
Recall that if Y ∼ U(0, 1), then Y1/q ∼ Beta(q, 1), and therefore

E
(

Y1/q
)

=
q

q + 1
,

Var
(

Y1/q
)

=
q

(q + 1)2(q + 2)
.

By using Chebyshev’s inequality, we have that

P
[∣∣∣Y1/q − E[Y1/q]

∣∣∣ > ε
]
≤ q

ε2(q + 1)2(q + 2)
, ∀ε > 0, (A1)

and since the right-hand side of (A1) tends to zero as q→ ∞

{Y1/q − E[Y1/q]} P−→ 0,

Figure A2. Cont.
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Appendix B

In this appendix, the proof of Proposition 5 is given.

(Proof of Proposition 5). From (6), we can write Tq = X
Y1/q , with q > 0, X ∼ PHN(σ, α),

and Y ∼ U(0, 1).
Recall that if Y ∼ U(0, 1), then Y1/q ∼ Beta(q, 1), and therefore

E
(

Y1/q
)

=
q

q + 1
,

Var
(

Y1/q
)

=
q

(q + 1)2(q + 2)
.

By using Chebyshev’s inequality, we have that

P
[∣∣∣Y1/q − E[Y1/q]

∣∣∣ > ε
]
≤ q

ε2(q + 1)2(q + 2)
, ∀ε > 0, (A1)

and since the right-hand side of (A1) tends to zero as q→ ∞

{Y1/q − E[Y1/q]} P−→ 0,

Figure A2. SPHN (1, α = 1, q) = SHN(1, q) for different values of q. In all panels, q = 0.5 (red),
q = 1 (black), q = 3 (green), q = 5 (blue), and q = ∞ (purple). (a) pdf of SPHN(1, α = 1, q).
(b) cdf of SPHN(1, α = 1, q). (c) Survival function of SPHN(1, α = 1, q). (d) hazard rate function of
SPHN(1, α = 1, q).

Appendix B

In this appendix, the proof of Proposition 5 is given.

Proof of Proposition 5. From (6), we can write Tq = X
Y1/q , with q > 0, X ∼ PHN(σ, α),

and Y ∼ U(0, 1).
Recall that if Y ∼ U(0, 1), then Y1/q ∼ Beta(q, 1), and therefore

E
(

Y1/q
)

=
q

q + 1
,

Var
(

Y1/q
)

=
q

(q + 1)2(q + 2)
.

By using Chebyshev’s inequality, we have that

P
[∣∣∣Y1/q − E[Y1/q]

∣∣∣ > ε
]
≤ q

ε2(q + 1)2(q + 2)
, ∀ε > 0, (A1)

and since the right-hand side of (A1) tends to zero as q→ ∞

{Y1/q − E[Y1/q]} P−→ 0,

where P−→ denotes convergence in probability [22]. On the other hand, for E[Y1/q]q, we
have that

E[Y1/q] =
q

q + 1
−→ 1, q→ ∞.

Therefore,

Y1/q = Y1/q − E[Y1/q] + E[Y1/q]
P−→ 1 as q→ ∞.

By applying Slutsky’s theorem (Corollary 2.3.2 in [23]) to Tq, it follows that

Tq =
X

Y1/q
d−→ X as q→ ∞,

i.e., Tq converges in distribution to X ∼ PHN(σ, α) distribution as q→ ∞.

Appendix C

In this appendix, details are given about the models under consideration in Section 5.
These models are:
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• Log-Normal, X ∼ LN(µ, σ), whose pdf is

f (x; µ, σ, ) =
1

xσ
√

2π
exp

{
− (lnx− µ)2

2σ2

}
, x > 0, µ ∈ R, σ > 0. (A2)

• Generalized Half Normal, X ∼ GHN(σ, α). Cooray and Ananda (2008) [7]) proposed
this model as an alternative to gamma, Weibull, log-normal and Birnbaum–Saunders
distribution for modeling lifetime data. The pdf is

f (x; σ, α) =

√
2
π

(α

x

)( x
σ

)α
exp
{
−1

2

( x
σ

)2α
}

, x > 0, σ > 0, α > 0, (A3)

σ is a scale parameter and α is a shape parameter.
• PHN(σ, α) introduced in Section 1.
• Slash Power Maxwell, X ∼ SPM(α, β, q), by Segovia et al. (2020) [12], whose pdf is

f (x; α, β, q) =
2qΓ
(

q+3β
2β

)

√
παq/2βxq+1 G

(
αx2β;

q + 3β

2β
, 1
)

, x > 0, α > 0, β > 0, q > 0,

(A4)
where Γ(·) denotes the gamma function and G(x; a, b) is the cdf of a gamma G(a, b)
distribution.

• Slash Generalized Half Normal, X ∼ SGHN(σ, α, q), proposed by Olmos et al.
(2014) [10], whose pdf is

f (x; σ, α, q) =
q
√

2q/α

π σqΓ
(

q+α
2α

)

xq+1 G
(

x2α;
q + α

2α
,

1
2σ2α

)
, x > 0, (A5)

where σ > 0, α > 0, q > 0, and G(x; a, b) denotes the cdf of a gamma G(a, b) distribution.
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