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Abstract: Identifying accurate dynamic parameters is of great significance to improving the control
accuracy of industrial robots, but this area is relatively unexplored in the research. In this paper, a
new algorithm for accurately identifying the dynamic parameters of a 6-degrees-of-freedom (DOF)
robot is proposed by establishing a dynamic model. First, a multibody dynamic model of the robot
is established, which can decouple the dynamic parameters of the rigid bodies that make up the
robot. Decoupling is the basis of parameters identification. In order to ensure that the model is
suitable for large-angle range motion and has good real-time performance, quaternion is used as
the angle coordinate, and the model established thereby eliminates the singularity and improves
the calculation efficiency. Second, the dynamic model is rewritten, and the dynamic parameters are
separated as the parameters to be identified; thus, the parameters identification model is obtained.
Furthermore, an identification algorithm based on the least-squares method is proposed, which can
realize the accurate identification of dynamic parameters. The algorithm is verified by a simulation
example. The results show that the value of the maximum absolute error of the identified parameters
is −0.0264, and the maximum relative error is 0.031%, which proves the correctness and accuracy of
the algorithm.

Keywords: quaternion; dynamical modeling; dynamic model; parameters identification
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1. Introduction

At present, intelligent manufacturing and precision manufacturing have put forward
high-precision requirements for industrial robots. Obtaining precise dynamic parameters
(mass and principal moment of inertia) is necessary to achieve precise control [1,2], and
it is also of great significance to the vibration reduction of the robot. Generally speaking,
the dynamic parameters can be measured by physical experiments; that is, the mechanism
to be tested is disassembled into various rigid bodies, the mass is obtained by weighing,
and the principal moment of inertia is measured by the pendular motions [3]. However, to
obtain the dynamic parameters of an industrial robot, it is necessary to apply the method
of parameters identification. This is because industrial robots need high rigidity to ensure
the stability of their working process and the processing quality, which makes industrial
robots very heavy; furthermore, as a precision instrument, an industrial robot is not easy
to disassemble. These two factors make it difficult to obtain the dynamic parameters of
industrial robots by physical experiments.

There are two inverse problems in dynamics: one is control, and the other is parameters
identification. The dynamics problem is to calculate the position, velocity and acceleration
of the robot based on the joint forces and moments. The control problem is to calculate the
joint force and torque according to the motion trajectory of the robot and its corresponding
position, velocity and acceleration. Parameters identification uses an algorithm to solve the
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parameters to be identified by numerical analysis. In the algorithm, some parameters in the
dynamic equation are taken as the parameters to be identified, and the other parameters
are taken as the known parameters. Dynamic parameters identification is one kind of
parameters identification, in which the particular parameters to be identified are dynamic
parameters. Specifically, dynamic parameters identification is a computational method for
solving dynamic parameters in momentum conservation equations or dynamic equations.
Momentum conservation equations are only applicable to free-floating space robots, while
ground-fixed robots require the use of dynamic equations [4]. The fundamental idea
of parameters identification is to perform “input/output” analysis on the mathematical
model that contains the dynamic parameters and to estimate the parameters’ values by
minimizing the error between the real parameters and the dynamic parameters of the
mathematical model. The calculated dynamic parameters have high accuracy [5]. There
are many algorithms that can be used, such as least-squares method, gradient correction
method, maximum likelihood method and prediction error method.

At present, compared with the research in the field of control, the research on param-
eters identification of robots is relatively undeveloped, and there are few related studies.
Olsen et al. [6] studied the problem of identifying the velocity and acceleration according
to the joint angle. The joint angle was measured by the encoder installed on the motor
shaft, and thus, an identification method was proposed based on the maximum likelihood
method. Gautier et al. [7] proposed an algorithm for identifying joint velocity and accel-
eration based on the least-squares method by measuring the joint forces and moments.
The algorithm transformed the nonlinear least-squares problem into a linear problem by
simplifying the dynamic model. The effectiveness of the algorithm was verified on a
rigid 2-degrees-of-freedom (DOF) robot. Wang et al. [8] proposed an algorithm to identify
the joint torque of a 6-DOF robot, and a deep neural network method was applied in
the algorithm to compensate for the torque error introduced by uncertainty. The error
of the identified torque was less than 6% of the maximum torque. Xu et al. [9] studied
the identification of joint torque. The dynamic model was simplified by eliminating the
parameters with a low identification degree, and then a joint torque identification algorithm
was proposed. The verification experiments were carried out on the KUKA LBR iiwa14
R820 robot, and the results show that the algorithm can accurately identify the joint torque
of the robot. Urrea et al. [10] established an Eulerian–Lagrange dynamic model based on
the acceleration, velocity, position and voltage of the servo motor actuator and avoided
calculating the torque of each joint. Based on the dynamic model, a parameters identifica-
tion method was proposed. The parameters to be identified were nonlinear coupling terms,
and the method was used for the SCARA robot with 5-DOF.

Dynamic parameters identification is a special case of parameters identification, and
the existing research is more sparse for the following reasons. First, with the increase in
the DOF of a robot, the number of variables and the complexity of the dynamic equations
increase significantly, and the phenomenon of parameters coupling becomes more obvious.
This makes it difficult for the traditional Newton–Euler method and Lagrange method to
decouple the dynamic parameters as the parameters to be identified. Second, the solution
of complex dynamic equations puts forward higher requirements for the rapid solution
capability of a computer. To solve the dynamic parameters in real time relies on the
computing power of the computer. Obstructed by the above two difficulties, the existing
dynamic parameters identification methods mainly measure the parameters such as motor
current, joint force and torque, and they use different calculation methods to estimate the
nonlinear coupling term of dynamic parameters. Since only some of the parameters in the
dynamic equation are sampled, the model is greatly simplified and is therefore more of
an estimation method. Díaz-Rodríguez et al. [11] used the combination of inertia tensor,
mass and the mass moments with respect to the center of gravity as the parameters to
be identified, and they established the Gibbs–Appell dynamic equation. Furthermore, an
identification algorithm based on the least-squares method was proposed. The algorithm
was applied to a 3-DOF parallel robot, and the results show that the variance between the
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identified value and the true value is 0.596 to 8.22. Gaz et al. [12] proposed a method to
identify the dynamic parameters of a Panda robot. The dynamic equations are established
by the Lagrange method and the Newton–Euler method, respectively, and the inverse
dynamic equation is obtained by taking the combination of mass, centroid position and
inertia as the dynamic parameters to be identified. This method can be used to identify
the nonlinear dynamic parameters of a Panda robot, and the identification algorithm is
the least-squares method. Briot et al. [13] proposed a systematic approach to derive a
dynamic parameters identification model for parallel robots. By making the robot track
some reference trajectories with no load and sampling the data of motor current and joint
position, the inertial parameters and drive gain of the robot are identified, and the inertial
parameters are nonlinear terms of mass and position coordinates. Hardeman et al. [14]
introduced a finite-element-based method that can automatically generate models with
identifiable dynamic parameters. The combination of mass, torque and inertia tensor
components is used as the parameter to be identified, and the identification method is the
linear least-squares method.

The requirements of higher control accuracy and higher accuracy of dynamic parame-
ters are proposed in intelligent manufacturing. These requirements urgently need to be
addressed. Therefore, it is necessary to develop a new algorithm to accurately identify the
dynamic parameters. The accuracy of the identification results depends on the accuracy of
the dynamic model. The more accurate the model, the greater the number of variables and
the more difficult the decoupling. The more DOFs a robot has, the greater the difficulty.

Based on the above difficulties, the problem of dynamic parameters identification of a
6-DOF industrial robot is studied in this paper, and a new algorithm based on a multibody
dynamic model is proposed that can accurately identify the dynamic parameters. Com-
pared with previous studies, this algorithm can decouple the dynamic parameters. Unlike
the previous methods, which take the nonlinear mixture term of the dynamic parameters as
the parameters to be identified, this algorithm can directly identify the dynamic parameters.
In addition, the algorithm has good accuracy, and the identified dynamic parameters have
low errors. Compared with the previous identification algorithms, three improvements
have been made in this paper to achieve accurate identification of dynamic parameters.
First, an accurate multibody dynamics model is established in this paper. The simplified
dynamic model is adopted in the previous method, which is beneficial to reducing the
amount of sampled data and the calculation amount of the identification algorithm, and the
corresponding identification algorithm can be used to solve some specific problems. When
the parameters to be identified are few or are only strongly correlated with some other
parameters, the model can be simplified, and the parameters with weak correlation can
be ignored, which can simplify complex dynamic problems and facilitate solving practical
problems. However, the simplification of the model will inevitably lead to the reduction
of the accuracy of the identification algorithm, which makes the identification algorithm
more of an estimation method. This is not suitable for precise control, so in order to ac-
curately identify the dynamic parameters, accurate modeling methods are required. In
this paper, an unsimplified multibody dynamic model is established, and the parameters
are not ignored. It is a complex and accurate model, and it is the mathematical basis for
improving the identification accuracy. Second, the dynamic parameters can be identified
directly in this paper. The traditional Newton–Euler method and Lagrange method are
adopted to establish the dynamic model in the previous method, and neither of these two
methods can decouple the dynamic parameters, which means that the dynamic parameters
cannot be taken as the parameters to be identified, and only the coupling terms of the
dynamic parameters can be used as the parameters to be identified. For different modeling
methods, the coupling terms of the dynamic parameters are different, so the coupling terms
identified by the identification algorithm are only suitable for a specific model and are not
universal. The coupling term of the dynamic parameters cannot fully reflect the essence of
inertia, and only the dynamic parameters can reflect the essence of inertia and are universal.
Therefore, it is more meaningful to identify the dynamic parameters for precise control.
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In this paper, a multibody dynamical modeling method is provided, and a multibody
dynamic model of the robot is established. Each rigid body that makes up the robot is
taken as an analysis object. The dynamic equations of each rigid body are established, and
then the dynamic equations of each rigid body are combined to obtain the dynamic model
of the robot. Therefore, the parameters of each rigid body are independent of each other
in the established dynamic model, so the parameters coupling is eliminated. It should be
emphasized that by considering the actual motion of the robot, the quaternion is chosen as
the generalized angular coordinate in this model for the following two reasons. One reason
is that when Euler angles or Cardano angles are used as angular coordinates, there will be
singularities, which will make the matrices show singularity, and the dynamic equations
cannot be solved. Therefore, singularities limit the range of motion of the robot. There is no
singularity in quaternions, which makes the robot more suitable for large-angle range of
motion. Another reason is that the quaternion can improve the computational efficiency,
because when calculating the coordinate transformation matrix, if the angle coordinates
are Euler angles or Cardano angles, the sine and cosine functions of the angle need to be
calculated 29 times, but when the angle coordinates are quaternions, the sine and cosine
functions do not need to be calculated. Since the coordinate transformation matrix needs
to be calculated many times in the dynamic solution process, the quaternion can greatly
reduce the calculation steps and improve the calculation efficiency. Then, the dynamic equa-
tion is rewritten to obtain the parameters identification equation. The rewritten method
separates the dynamic parameters as the parameters to be identified, so that the original
equation is converted into a dynamic parameters identification equation, which can be
identified by the least-squares method, and the dynamic parameters can be calculated.
Third, the identification algorithm proposed in this paper has higher accuracy. The previous
identification algorithm is based on actual needs to solve specific problems. The dynamic
model is simplified, and the coupling terms of the dynamic parameters are taken as the
parameters to be identified. The relative errors between the identified parameters and
their true values are usually in the range of several percentage points. The identification
algorithm in this paper is based on a complex and accurate multibody dynamic model, so it
has higher identification accuracy and can directly identify the dynamic parameters instead
of the coupling terms of the dynamic parameters, which can better meet the requirements
of precise control. A simulation example is provided. The results show that the value of
the maximum absolute error between the identified dynamic parameters and their true
values is −0.0264, and the maximum relative error is 0.031%. This lower error can meet the
requirements of precise control, which verifies the correctness and accuracy of the dynamic
model and the identification algorithm. The algorithm provides a theoretical basis for the
precise control and vibration reduction of the robot.

2. Dynamical Modeling of Robot

Accurate dynamic equations are the premise for accurate identification of dynamic
parameters, and at the same time, dynamic equations need to decouple the dynamic pa-
rameters of each rigid body, which is convenient for numerical methods to solve. For
multi-DOF robots, the traditional Newton–Euler method and Lagrange method are difficult
methods to achieve parameters decoupling. In this paper, the multibody dynamical model-
ing method is adopted, and the dynamic model of the robot is obtained by combining the
dynamic models of the rigid bodies that make up the robot. Since the parameters of each
rigid body are independent of each other, the parameters decoupling is realized, which
provides a theoretical model for the identification algorithm.

The 6-DOF robot is shown in Figure 1. It consists of 6 rigid bodies Bi(i = 1, 2, · · · , 6),
of which B6 is the end effector. The robot has 6 rotational DOFs, and the hinge point is
Oi(i = 1, 2, · · · , 6). Each rigid body is simplified to a homogeneous cylinder of length li and
radius Ri, and the coordinate system (Oi, e(i))(i = 1, 2, · · · , 6) is established at the position
of the centroid Oci(i = 1, 2, · · · , 6). The world coordinate system (O0, e(0)) is established
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on the intersection of the centroid of the bottom surface of the base B1 and the ground, and
the direction of the base vector e(i)1 , e(i)2 , e(i)3 of the coordinate system is shown in Figure 1b.
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Figure 1. The 6-DOF robot and schematic diagram of its coordinate system. (a) 6-DOF robot;
(b) Schematic diagram of coordinate system of 6-DOF robot.

The dynamic equation of a single rigid body Bi is obtained according to Newton–
Euler equation:

mi
..
ri = Fg

i −
ne

∑
k=1

SikFe
k (i = 1, 2, · · · , 6), (1)

Ji ·
.

ωi + ωi × (Ji · ωi) = −
ne

∑
k=1

(Cik × Fe
k + SikMa

k) (i = 1, 2, · · · , 6) (2)

where mi,
..
ri, Ji, ωi, and

.
ωi are the mass, centroid acceleration, principal moment of inertia,

angular velocity and angular acceleration of Bi, respectively; Fg
i is the gravity received by

Bi, Fe
k and Ma

k are the force element and active moment exerted on Bi by the inside body
Bi−1, with there being ne in total; the body–hinge vector Cik is the vector between the hinge
point Ok(k = i, i + 1) and the centroid Oci, and the directions are all from the inside to
the outside, that is, Cik = 1

2 lie
(i)
1 (i = 1, 2, · · · , 6; k = i, i + 1); the incidence element Sij is

defined as

Sij =


1 Oj has incidence with Bi and starts with Bi

−1 Oj has incidence with Biand ends with Bi

0 Oj has no incidence with Bi

(i, j = 1, 2, · · · , n). (3)

In order to facilitate computer calculation, the dynamic equations Equations (1) and (2)
are written in matrix form (underlined indicates matrix form) as

mi
..
ri = Fg

i −
ne

∑
k=1

SikFe
k (i = 1, 2, · · · , 6), (4)

J(i)i
.

ω
(i)
i + ω̃

(i)
i J(i)i ω

(i)
i = −

ne

∑
k=1

(Cik × Fe
k + SikMa

k) (i = 1, 2, · · · , 6). (5)
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The right superscript (i) indicates the expression in (Oi, e(i)), and no superscript
indicates the expression in (O0, e(0)). ω̃

(i)
i is a third-order antisymmetric matrix:

ω̃
(i)
i =

 0 −ω
(i)
i3 ω

(i)
i2

ω
(i)
i3 0 −ω

(i)
i1

−ω
(i)
i2 ω

(i)
i1 0

. (6)

ω
(i)
i1 , ω

(i)
i2 , ω

(i)
i3 are the 3 components of ω

(i)
i in the e(i)1 , e(i)2 , e(i)3 directions, respectively.

The angular coordinates of the robot can adopt Euler angles, Cardano angles, Ro-
drigues parameters and quaternions. However, the first three all have singularities when
they move in a wide range of angles, which limits the working space of the robot and
makes the robot unable to process large components such as aircraft skins. Quaternions
can eliminate singularities and are suitable for motion in a large-angle range, so dynamic
parameters can be identified at any pose in the workspace. In addition, for quaternion,
there is no need to solve the sine and cosine of the angle coordinates, which reduces the
calculation steps and improves the calculation efficiency.

The quaternion is adopted as the generalized angular coordinate, and Euler equation
Equation (5) is written as

2J(i)i R∗
i

..
Λi + 4R∗

i
.
R
∗T
i J(i)i R∗

i

.
Λi = −

ne

∑
k=1

(Cik × Fe
k + SikMa

k) (i = 1, 2, · · · , 6). (7)

Among these,
.

Λi and
..
Λi are the first and second derivatives of the quaternion

Λi = (λi0 λi1 λi2 λi3)
T. R∗

i and
.
R
∗T
i are as follows:

R∗
i =

 −λi1 λi0 λi3 −λi2
−λi2 −λi3 λi0 λi1
−λi3 λi2 −λi1 λi0

 (i = 1, 2, · · · , 6), (8)

.
R
∗T
i =


−

.
λi1 −

.
λi2 −

.
λi3.

λi0 −
.
λi3

.
λi2.

λi3
.
λi0 −

.
λi1

−
.
λi2

.
λi1

.
λi0

 (i = 1, 2, · · · , 6). (9)

Since quaternions are not independent parameters, there are self-constraints:

ΛT
i Λi − 1 = 0 (i = 1, 2, · · · , 6). (10)

In order to combine with Equation (7), the second derivative of Equation (10) is
obtained as

ΛT
i

..
Λi +

.
Λ

T
i

.
Λi = 0 (i = 1, 2, · · · , 6). (11)

Combine Equation (11) with Equation (7), that is, add constraint, and the Euler equa-
tion expressed in quaternion coordinates is obtained as

[
2J(i)i R∗

i
ΛT

i

]
..
Λi +

 4R∗
i

.
R
∗T
i J(i)i R∗

i

.
Λi

.
Λ

T
i

.
Λi

 =

 −
ne
∑

k=1
(Cik × Fe

k + SikMa
k)

0

 (i = 1, 2, · · · , 6). (12)

The combination of Equations (4) and (12) is the dynamic equation of Bi expressed by
quaternion, which is abbreviated as

Ai
..
q

i
= Bi (i = 1, 2, · · · , 6). (13)

where
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Ai =

 miE 0
0 2J(i)i R∗

i
0 ΛT

i

, Bi =


0

−4R∗
i

.
R
∗T
i J(i)i R∗

i

−
.

Λ
T
i

.
Λi

+


Fg

i −
ne
∑

k=1
SikFe

k

−
ne
∑

k=1
(Cik × Fe

k + SikMa
k)

0


q

i
= (ri Λi)

T = (xi yi zi λi0 λi1 λi2 λi3)
T

(14)

The dynamic equation of the 6-DOF robot is derived by combining the dynamic
equations of the 6 rigid bodies

A
..
q = B. (15)

where
A = diag(A1 A 2 · · · A6), B = (BT

1 BT
2 · · · BT

6 )
T

. (16)

3. Dynamic Parameters Identification of Robot

Dynamic parameters identification is an inverse problem of dynamics. In dynamics,
the motion parameters of the robot, that is, the position, velocity and acceleration of rigid
bodies, are taken as parameters to be determined. In dynamic parameters identification,
the dynamic parameters, that is, the mass and the principal moment of inertia of the
rigid bodies, are taken as the parameters to be determined. The two are essentially the
same equation, the difference being that the parameters to be identified (output quantities)
are different. Therefore, the parameters identification model is obtained by rewriting
the dynamic model. The dynamic parameters in the dynamic model are separated as
the parameters to be identified. The key lies in decoupling the kinematics and dynamic
parameters in the dynamic equation. The multibody dynamic equation can decouple the
parameters well and then serve as the theoretical basis for the parameters identification
model. In this section, a dynamic parameters identification model is obtained by rewriting
the multibody dynamic model, and an identification algorithm is proposed based on
the least-squares method. The algorithm can be used to accurately identify the dynamic
parameters of the 6-DOF robot.

The dynamic parameters of the robot are the mass mi and the 3 principal moments of
inertia J(i)i11

, J(i)i22
, J(i)i33

of each rigid body. In order to identify the dynamic parameters of Bi, it
is necessary to rewrite the Newton–Euler equation into the identification form, that is, to
separate mi and J(i)i11

, J(i)i22
, J(i)i33

as the parameters to be identified, and use the least-squares
method to identify them.

First, Newton equation Equation (4) is rewritten as ..
xi ..

yi ..
zi + g

 mi
mi
mi

 = −
ne

∑
k=1

SikFe
k (i = 1, 2, · · · , 6). (17)

where
..
xi,

..
yi,

..
zi are the 3 components of

..
ri in the e(0)1 , e(0)2 , e(0)3 directions, and g is the

value of the gravitational acceleration. Equation (17) is the Newton equation in the
identification form.

Then, Euler equation Equation (7) is rewritten as idS(i)
i11

idS(i)
i12

idS(i)
i13

idS(i)
i21

idS(i)
i22

idS(i)
i23

idS(i)
i31

idS(i)
i32

idS(i)
i33




J(i)i11

J(i)i22

J(i)i33

 = −
ne

∑
k=1

(Cik × Fe
k + SikMa

k) (i = 1, 2, · · · , 6). (18)

where J(i)i11
, J(i)i22

, J(i)i33
are the 3 components of Ji in the e(i)1 , e(i)2 , e(i)3 directions, and
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idS(i)
i11 = 4(

.
λi0λi0 +

.
λi1λi1 +

.
λi2λi2 +

.
λi3λi3)(

.
λi1λi0 −

.
λi0λi1 +

.
λi2λi3 −

.
λi3λi2) + 2(

..
λi1λi0 −

..
λi0λi1 +

..
λi2λi3 −

..
λi3λi2)

idS(i)
i12 = 4(

.
λi0λi3 −

.
λi1λi2 +

.
λi2λi1 −

.
λi3λi0)(

.
λi2λi0 −

.
λi0λi2 −

.
λi1λi3 +

.
λi3λi1)

idS(i)
i13 = 4(

.
λi2λi0 −

.
λi0λi2 −

.
λi1λi3 +

.
λi3λi1)(

.
λi1λi2 −

.
λi0λi3 −

.
λi2λi1 +

.
λi3λi0)

idS(i)
i21 = 4(

.
λi1λi2 −

.
λi0λi3 −

.
λi2λi1 +

.
λi3λi0)(

.
λi1λi0 −

.
λi0λi1 +

.
λi2λi3 −

.
λi3λi2)

idS(i)
i22 = 4(

.
λi0λi0 +

.
λi1λi1 +

.
λi2λi2 +

.
λi3λi3)(

.
λi2λi0 −

.
λi0λi2 −

.
λi1λi3 +

.
λi3λi1) + 2(

..
λi2λi0 −

..
λi0λi2 −

..
λi1λi3 +

..
λi3λi1)

idS(i)
i23 = 4(

.
λi0λi1 −

.
λi1λi0 −

.
λi2λi3 +

.
λi3λi2)(

.
λi1λi2 −

.
λi0λi3 −

.
λi2λi1 +

.
λi3λi0)

idS(i)
i31 = 4(

.
λi0λi2 −

.
λi2λi0 +

.
λi1λi3 −

.
λi3λi1)(

.
λi1λi0 −

.
λi0λi1 +

.
λi2λi3 −

.
λi3λi2)

idS(i)
i32 = 4(

.
λi1λi0 −

.
λi0λi1 +

.
λi2λi3 −

.
λi3λi2)(

.
λi2λi0 −

.
λi0λi2 −

.
λi1λi3 +

.
λi3λi1)

idS(i)
i33 = 4(

.
λi0λi0 +

.
λi1λi1 +

.
λi2λi2 +

.
λi3λi3)(

.
λi1λi2 −

.
λi0λi3 −

.
λi2λi1 +

.
λi3λi0) + 2(

..
λi1λi2 −

..
λi0λi3 −

..
λi2λi1 +

..
λi3λi0)

(19)

Since the quaternions are not independent parameters, constraints need to be added,
so the quaternion self-constraint condition Equation (10) is combined with Equation (18) as

idS(i)
i11

idS(i)
i12

idS(i)
i13

idS(i)
i21

idS(i)
i22

idS(i)
i23

idS(i)
i31

idS(i)
i32

idS(i)
i33

ΛT
i Λi − 1


[

idJ(i)i
1

]
=

 −
ne
∑

k=1
(Cik × Fe

k + SikMa
k)

0

 (i = 1, 2, · · · , 6). (20)

Equation (20) is the Euler equation in the identification form.
Finally, by combining Equations (17) and (20), the dynamic equation in the identifica-

tion form of Bi is obtained, which is abbreviated as

idYi
idXi =

idZi. (21)

where

idYi =


..
xi ..

yi ..
zi + g

idS(i)i11
id S(i)i12

id S(i)i13
idS(i)i21

id S(i)i22
id S(i)i23

idS(i)i31
id S(i)i32

id S(i)i33

ΛT
i Λi − 1

, idXi =

[
id mi
idJ(i)i

1

]
, idZi =

 −
ne
∑

k=1
SikFe

k

−
ne
∑

k=1
(Cik × Fe

k + SikMa
k )

0

. (22)

In order to improve the reliability and accuracy of the parameter idXi to be identified,
it is necessary to sample idYi,id Zi at multiple times and obtain multiple sets of data.

For time tj,
id
j Yi =

idXi
id
j Zi. (23)

where id
j Yi,idj Zi is the sampled data at time tj.

Sampling occurred n times, namely 1 ≤ j ≤ n, corresponding to tj(j = 1, 2, · · · , n),
respectively. (It should be noted that the selection of these n times is arbitrary. n times in the
motion process can be randomly selected, and the accuracy of the identification results will
not be affected by the selection of sampling times.) Then, the equation system is composed,
abbreviated as

idKi
idXi =

idLi. (24)

where

idKi =


id
1 Yi
id
2 Yi

...
id
n Yi

, idLi =


id
1 Zi
id
2 Zi

...
id
n Zi

. (25)
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Equation (24) is the dynamic equation in the identification form of Bi after sampling n
times, and its least-squares solution is

idXi = (idKi
TidKi)

−1
idKi

TidLi. (26)

The dynamic parameters of Bi can be identified according to Equation (26).
The dynamic equation in identification form of the 6-DOF robot is obtained by com-

bining the dynamic equations in identification form of the 6 rigid bodies:

idX = (idK
TidK)

−1
idK

TidL. (27)

where

idX =


idX1
idX2

...
idX6

, idK =


idK1
idK2

...
idK6

, idL =


idL1
idL2

...
idL6

. (28)

4. Numerical Simulation Example

The three-dimensional model of the robot is established with ADAMS software, and
numerical simulation is carried out to verify the correctness and accuracy of the identifica-
tion algorithm.

Each rigid body is regarded as a homogeneous cylinder, the material is steel, and the
gravity acceleration value is set to 9.80665. The length li and radius Ri of each Bi are set to
obtain the true values of dynamic parameters, as shown in Table 1.

Table 1. Physical parameters of each rigid body.

Rigid Body Bi B1 B2 B3 B4 B5 B6

li (m) 1.045 1.245 1.21 0.315 0.29 0.3
Ri (m) 0.5 0.3 0.2 0.2 0.2 0.3
mi (kg) 6402.6012 2746.0726 1186.1661 308.7953 284.2877 661.7042

J(i)i11
(kg·m2) 800.3251 123.5733 23.7233 6.1759 5.6858 29.7767

J(i)i22
(kg·m2) 982.8126 416.4934 156.5838 5.6413 4.8353 19.8511

J(i)i33
(kg·m2) 982.8126 416.4934 156.5838 5.6413 4.8353 19.8511

Movement target: The robot only moves once, so that the generated data can identify
the dynamic parameters of the six rigid bodies of the robot at the same time.

Movement settings: the initial state is still, and the posture is shown in Figure 1. Both
hinge O1 and hinge O2 rotate at the angular acceleration of 9.5493 rad/s2 (that is, 30◦/s2),
and all other hinges are locked so that they do not rotate. The simulation termination time
is 2 s, and the number of steps is 100. The pose change of the robot during the movement is
shown in Figure 2.

Theoretically, the number of the groups of selected data and the accuracy of the
identification result are positively correlated. However, larger data volume may lead to an
increase in the complexity of and time consuming by the calculation. In this experiment,
five groups of data are selected, which are the data for 0.3 s, 0.6 s, 0.9 s, 1.2 s and 1.5 s (other
arbitrary times can also be randomly selected).

The types of sampled data are as follows. We sampled the quaternion coordinates,
as well as the force element Fe

i and acting moment Ma
i , of the inside body. Additionally,

the angular velocity, angular acceleration and centroid acceleration of each rigid body are
also sampled.
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The dynamic parameters are identified by Equation (27), and the results are shown
in Table 2.

Table 2. Identified dynamic parameters of robot.

Rigid Body Bi B1 B2 B3 B4 B5 B6

mi

(
e(0)1 ) (kg) — 2746.0722 1186.1661 308.7955 284.2877 661.7043

mi

(
e(0)2 ) (kg) — 2746.0723 1186.1661 308.7955 284.2875 661.7043

mi

(
e(0)3 ) (kg) 6402.6044 2746.0723 1186.1660 308.7955 284.2877 661.7042

J(i)i11
(kg·m2) 800.3250 123.5954 23.7230 6.1756 5.6862 29.7768

J(i)i22
(kg·m2) 982.8128 416.4670 156.5862 5.6405 4.8355 19.8512

J(i)i33
(kg·m2) 982.8128 416.4991 156.5844 5.6404 4.8368 19.8514

Among these, mi(e
(0)
1 ), mi(e

(0)
2 ), mi(e

(0)
3 ) are the identified mass parameters of Bi in the

e(0)1 , e(0)2 , e(0)3 directions, respectively. In particular, since B1 only has acceleration in the e(0)3

direction, the mass parameters in the e(0)1 , e(0)2 directions cannot be identified.
The accuracy of the identification algorithm can be quantitatively evaluated by the

absolute error between the identified dynamic parameters and their true values. The
absolute error is shown in Table 3.

An analysis of the causes of the absolute error is as follows. First, the identification
algorithm based on the dynamic model involves many variables and requires a large
number of calculations, and the calculation results can only retain a limited number of
significant figures. Therefore, the operation times of the computation and the accumulated
absolute error are positively correlated. Second, the counting rule of the ADAMS software
is that the data retain 7 significant figures, so the value of the data is positively correlated
with the absolute error, and the number of decimal places reserved for the data is negatively
correlated with the absolute error.
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Table 3. The absolute error between the dynamic parameters and their real values.

Rigid Body

Absolute Error

mi(e
(0)
1 )

(kg)
mi(e

(0)
2 )

(kg)
mi(e

(0)
3 )

(kg)
J(i)i11

(kg·m2)
J(i)i22

(kg·m2)
J(i)i33

(kg·m2)

B6 0.0001 0.0001 0 0.0001 0.0001 0.0003
B5 0 −0.0002 0 0.0004 0.0002 0.0015
B4 0.0002 0.0002 0.0002 −0.0003 −0.0008 −0.0009
B3 0 0 −0.0001 −0.0003 0.0024 0.0006
B2 −0.0004 −0.0003 −0.0003 0.0224 −0.0264 0.0057
B1 — — 0.0032 −0.0001 0.0002 0.0002

According to Table 3, the value of the maximum absolute error of the identified dy-
namic parameters is as low as −0.0264, and according to the absolute errors, the maximum
relative error can be obtained as 0.031%, which verifies the correctness and accuracy of the
identification algorithm.

The previous parameters identification research aimed to identify the velocity, accel-
eration, joint torque or nonlinear coupling terms of dynamic parameters, which cannot
identify the dynamic parameters directly. Moreover, the research is based on models with
different degrees of simplification, and the relative errors of the identified parameters are
usually in the range of several percentage points. The previous research is indeed very
meaningful for solving practical problems encountered by researchers, and it must be
affirmed. However, this method does not apply to our research, and we need to develop a
new method.

A more complex and accurate identification algorithm is proposed for the first time in
this paper. Compared with previous studies, the algorithm is different as follows. First, the
models are different. The identification algorithm in this paper is based on a multibody
dynamic model, and the model is not simplified, so it is more accurate. Although an
accurate model leads to a more complex derivation process and more data sampling, it is
very necessary to improve the accuracy of identification. Second, the identified parameters
are different. The dynamic parameters (rather than the nonlinear coupling term of the
dynamic parameters) can be decoupled and directly used as the dynamic parameters
to be identified in the identification algorithm of this paper. The nonlinear coupling
term of dynamic parameters is only applicable to a specific identification model and is
not universal. Different models have different nonlinear coupling terms to be identified;
dynamic parameters are applicable to all models and are more universal. Third, the
accuracy is improved. Because the model is more accurate and the dynamic parameters are
decoupled, the algorithm can identify the dynamic parameters more accurately, and the
relative errors of the identified parameters are all less than 0.031%. Since the error is limited
to a small range, the identification accuracy of this algorithm can meet the requirement of
precise control.

5. Conclusions

In this paper, the problem of dynamic parameters identification is studied, and an
identification algorithm is proposed, which can be used to accurately identify the dynamic
parameters of the 6-DOF industrial robot.

(1) The identification algorithm is based on the multibody dynamic model. The kinematic
and dynamic parameters of each rigid body of the robot can be decoupled in the multi-
body dynamic model. Since parameters decoupling is the basis of the identification
algorithm, the multibody dynamic model is especially suitable for multi-DOF robots.

(2) The quaternions are used as angular coordinates in the identification algorithm, which
eliminates the singularity and makes the algorithm suitable for the large-angle range
of motion; at the same time, the calculation efficiency is improved, which enables the
algorithm to have better real-time performance.
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(3) Numerical simulation of the identification algorithm is carried out. The results
show that the value of the maximum absolute error of the identified parameters
is −0.0264, and the maximum relative error is 0.031%. The algorithm is correct
and accurate, which provides a theoretical basis for the accurate identification of
dynamic parameters and has positive significance for the precise control and vibration
reduction of the robot.
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