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Abstract: The Kiepert trefoil is an algebraic curve with remarkable geometric and number theoretic
properties. Ludwig Kiepert, generalizing ideas due to Serret and Liouville, determined that it could
be parametrized by arc length in terms of elliptic functions. In this note, we observe some other
properties of the curve. In particular, the curve is a special example of a buckled ring, and thus a
solitary wave solution to the planar filament equation, evolving by rotation. It is also a solitary wave
solution to a flow in the (three-dimensional) filament hierarchy, evolving by translation.
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1. Introduction

The problem of finding curves whose arc length can be expressed as an elliptic integral
of the first kind inspired many nineteenth century mathematicians. A. Legendre [1] saw
that the Bernoulli Lemniscate, r2 = 2 cos(2θ), had this property, which was already known
by Fagnano, and sought other examples. J. Serret constructed a family of such curves [2],
and J. Liouville extended Serret’s results [3]. See [4], pp. 727, 733–739, for a readable
account of Liouville’s work.

In 1870, Friedrich Wilhelm A. L. Kiepert extended the family of such curves [5]. Among
the curves he found was the curve referred to here as the Kiepert trefoil, given by the polar
equation r3 = 2 cos(3θ) (or more generally, r3 = α3 cos(3θ)). It is an algebraic curve of
genus 1. Its arc length parametrization is given by certain elliptic functions known as
Dixon functions [6]. The curve possesses many remarkable geometric and number theoretic
properties; some of them can be found in [6–10].

In this note, we will focus on the Kiepert trefoil as solution to two variational problems.
For the first, we will see that it evolves by pure rotation under the planar filament flow. For
the other, the trefoil can be characterized as the only closed curve except for the circle that
evolves under the flow by translation in the binormal direction (Theorem 1).

2. The Filament Equation

The vortex filament equation is an equation for the evolution of curves given by

∂γ

∂t
= γt = I1 = κB (1)

where s→ γ(t, s) is an arc-length parametrized curve evolving in time t, κ = κ(t, s) is the
curvature, τ = τ(t, s) is the torsion and {T, N, B} is the orthonormal Frenet frame. The
Frenet equations are

γs = T Ts = κN, Ns = −κT + τB, Bs = −τN.
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If the initial curve γ(0, s) is an elastic curve, then under (1) γ evolves by rigid motion.
It is a solitary wave solution or soliton. The elastic curves are the critical points of the
variational problem

Fλ(γ) =
∫

κ2 + λ ds,

where λ is a Lagrange multiplier acting as a length constraint. The solutions with λ = 0 are
the free elastic curves (see [11] for details.)

Equation (1) is just the first of an infinite hierarchy of commuting flows, determined
by vector fields In, which correspond under the Hasimoto transformation to the nonlinear
Schrödinger Equation (NLS). (See [12,13].) We will consider the next two flows. They are

γt = I2 =
1
2

κ2T + κsN + κτB (2)

and
γt = I3 = κ2τT + (2κsτ + κτs)N + (κτ2 − κss −

1
2

κ3)B. (3)

Critical points for
∫ 1

2 κ2τds are soliton solutions to the flow G given by (2); critical
points for

∫ 1
2 (κs)2 + 1

2 κ2τ2 − 1
8 κ4ds are soliton solutions for the flowH given by (3).

3. The Second Flow

The flow G defined by Equation (2) has the nice property that initial curves with no
torsion (i.e., planar curves) remain planar under the evolution. This happens for alternate
terms in the hierarchy and allows one to consider the planar filament equation (see, e.g., [14]).

Buckled rings are equilibrium configurations of closed elastic rings under uniform
pressure. They are solitons of the planar filament equation (see [12,14]); that is, they evolve
by isometries and parameter shift under the flow. Buckled rings are closed (i.e., periodic)
solutions of the differential equation

κss +
1
2

κ3 + λκ = p

where λ is a Lagrange multiplier corresponding to a length constraint and p is the pressure.
The quantity p may also be viewed as a Lagrange multiplier corresponding to a constraint
on the area. Integrating,

(κs)
2 +

1
4

κ4 + λκ2 − 2pκ = c. (4)

Various authors have given explicit solutions to the buckled ring problem, from early
work by Greenhill [15] to the recent work of Djondjorov et al. [16]. The most challenging
detail concerns the condition for a solution to be a closed curve.

The fact that the Kiepert trefoil is a solution to the buckled ring problem was noted
by Greenhill ([15] p. 477), but seems to have been forgotten until recently. Wegner men-
tions it in a recent paper [17]. The curvature of the trefoil r3 = α3 cos(3θ) satisfies the
differential equation

(κs)
2 +

1
4

κ4 = Ak A =
16
α3 (5)

The solution to this equation can be expressed very simply as a multiple of the recipro-
cal of a Weierstrass ℘-function ℘(s; 0, g3) corresponding to the hexagonal lattice. Exploiting
this fact, we can embed the trefoil within a family of solutions defined as follows: The
Weierstrass function ℘(z; g2, g3) is the elliptic function satisfying the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 (6)

Proposition 1. Given a and b, let g2 = ab and g3 = a2/4. Then κ(s) = a
℘(s;g2,g3)

+ b is a

solution to Equation (4) for λ = − 3
2 b2, p = 2a− b3, and c = ( 3

4 b4 − 4ab).
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For convenience assume p = 2. This is accomplished by setting a = b3/2 + 1. As
b varies we have a one-parameter family of solutions to Equation (4), infinitely many of
which are buckled rings. (Figures 1–3). For b = 0, the curve is the trefoil r3 = 4 cos(3θ).
Note that the trefoil is a special solution: λ = 0. By analogy with the free elastic curve,
one can say that the trefoil is a free buckled ring. In particular, the Kiepert trefoil evolves
by a pure rotation. The vector field I2 = 1

2 κ2T + κsN along the trefoil is a Killing field, the
restriction of an infinitestimal isometry of the plane (see, e.g., [13,14]).
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Figure 1. The trefoil (left); b = 0.3694 (right).
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Figure 2. b = 0.5764 (left); b = 0.7225 (right).
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Figure 3. b = −0.53 (left); b = −0.362 (right).
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4. The Third Flow

Now we consider the evolution Equation (3); γt = I3. Unlike the previous example,
planar solutions need not remain planar under the flow. Restricting attention to planar
solutions, the Euler–Lagrange equation for critical points ofH is

E = κssss +
5
2

κ2κss +
5
2

κκ2
s +

3
8

κ5 = 0. (7)

Since this corresponds to a completely integrable finite-dimensional Hamiltonian
system, the solutions of this equation should in theory be determined by quadratures, and
indeed there are sufficiently many first integrals in involution. From the general theory
(see [18] for details), there are two important vector fields defined along a solution curve.
The vector field

J =
(
−3

8
κ4 +

1
2

κ2
s − κκss

)
T +

(
−κsss −

3
2

κ2κs

)
N

is constant along solutions. The vector field I3 = (−κss − 1
2 κ3)B satisfies the equation

T × J = (I3)s (8)

As shown in [18], the vector fields I3 and J determine a cylindrical coordinate system
and allow one to solve the Frenet equations once the curvature κ is determined.

In [8], the authors consider special solutions to Equation (7) satisfying the equation

(κs)
2 +

1
4

κ4 = P(κ)

where P(κ) is a polynomial. Note that buckled rings all satisfy such an equation. They
establish that the only polynomials are P1(κ) = aκ2 + 4a2 and P2(κ) = bκ.

The solutions using P1 (up to scaling) are two specific (non-closed) elastic curves with
curvature

κ = Acn(αs, p) A = 2αp

where the elliptic modulus is

p2 =
3−
√

3
6

or p2 =
3 +
√

3
6

.

For the polynomial P2, the only solutions (up to scaling) are the Kiepert trefoil and
the cirle (if b 6= 0) and the line (b = 0). In particular, the trefoil is the only buckled ring
satisfying Equation (7).

In fact, for the trefoil the vector field J vanishes. Consequently, Equation (8) implies
that I3 is a constant vector field. Conversely, for planar curves, if I3 is constant then J = 0.

The Hamiltonian flow for this member of the hierarchy is γt = I3. Thus we can
conclude:

Theorem 1. The Kiepert trefoil and the circle are the only closed curves that evolve by translation
under the flow (3).
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