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Abstract: In this paper, we focus on two generalizations of the Lindley distribution and investigate,
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from the practical point of view.
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1. Introduction

One of the most widely used numerical characteristics of a random variable is its mean.
If X is a continuous random variable whose values are strictly positive and the probability
density function of X is f (x), then the geometric mean [1,2] is

GM(X) = e
∫ ∞

0 (ln x) f (x)dx, (1)

where x > 0.
The concept of geometric mean has various uses [1,3–7] in many fields of science.

A detailed approach can be found in [1]. The formulas for the geometric mean of some
probability distributions are also provided in [1]. In the present work, one of the topics of
discussion is the geometric mean of two continuous random variables that will be specified
in the next section.

Another look at a random variable is given by information theory. In this framework,
a central role is played by the concept of entropy, which is a measure of uncertainty. If X is
a discrete random variable with possible values xi, i = 1, ..., n, n ∈ N∗ and

pi = P(X = xi), i ∈ {1, ..., n},

Shannon entropy of X [8] is

H(X) = −
n

∑
i=1

pi loga pi. (2)

The basis of the logarithm can be 2 but, more generally, it can be chosen depending on
the application. If this base is equal to the number e, then it is obtained

H(X) = −
n

∑
i=1

pi ln pi. (3)
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If X is a continuous random variable with the probability density function f (x) and D
is the set where f (x) is strictly positive, then the differential entropy of X [9] is

h(x) = −
∫

D
f (x) ln f (x)dx. (4)

The differential entropy of a continuous random variable has some interesting proper-
ties [9] but compared to Shannon entropy for the discrete case it has certain limitations [10]
that must be taken into account. For example, the Shannon entropy is positive but the
differential entropy does not always have this property. To overcome such inconveniences,
another measure of uncertainty is proposed [10], namely the cumulative residual entropy.
If X is a non-negative random variable with cumulative distribution function F(x), then
the cumulative residual entropy of X is

E(X) = −
∫ ∞

0
F(x) ln F(x)dx, (5)

where
F(x) = 1− F(x). (6)

In [10] some properties of the cumulative residual entropy are given and the relation-
ship between it and the differential entropy is established. Also in [10], the usefulness of
CRE in reliability engineering and computer vision is shown. In various works, the concept
of CRE is a good starting point for obtaining new and interesting results. For instance,
in [11], the Bayesian estimator of the dynamic cumulative residual Rényi entropy is dis-
cussed. In [12], there are studied some properties of dynamic cumulative residual entropy
and in [13] is investigated the CRE for coherent and mixed systems where the component
lifetimes are identically distributed. In [14] is generated the CRE for the case of fractional
order and its properties are given, and in [15] is proposed a consistent estimator for CRE,
which has the property that its asymptotic distribution is normal.

The Lindley distribution [16,17] is one of the random variables that is important not
only for its direct applications but also for the many theoretical developments that have
followed it. For instance, in [17], some of its characteristics such as moments, entropies
and so on, are extensively studied. In addition, the Lindley distribution is proposed for
modeling the waiting time in a bank [17]. The probability density function of the Lindley
distribution is

f (x; θ) : (0, ∞)→ R, f (x; θ) =
θ2

θ + 1
(1 + x)e−θx, (7)

with θ > 0.
The cumulative distribution function of the Lindley distribution [17] is

F(x; θ) = 1− 1 + θ + θx
1 + θ

e−θx, x > 0.

Regarding the developments based on the Lindley distribution, it is worth noting the
introduction of new random variables [18–27]. In [18], two new families of distributions
with applications in repairable data are considered. A new model, namely the generalized
Lindley of integer order is given in [19] and its application in studying some medical
data is also emphasized. In [20], a new distribution that can be used in insurance is
proposed. The model of distribution discussed in [21] is suitable in reliability and fatigue
life probems. In [22], a three-parameter Lindley distribution is introduced. A five-parameter
generalized Lindley distribution is given in [23]. It was used in the study of four data sets,
among them a set of medical data and a set of data regarding the strength of glass in a
certain environment [23]. A discrete Lindley distribution is given in [24]. It is compared
with geometric and Poisson distributions and its usefulness in analyzing some data sets,
including medical data, is studied. A Lindley distribution of discrete type is given in [25]
and it is employed in the study of automobile claim data, a situation in which it is compared
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with the Poisson model. In [26], a distribution called exponential-modified discrete Lindley
distribution is proposed and used in modelling exceedances of flood peaks for a river or
the period between earthquakes having a certain magnitude. The three-parameter Lindley
distribution given in [22] is considered in [27] where some medical data are modeled. In the
present paper, two continuous distributions [22,23] that generalize the Lindley distribution
are discussed. Following the results already obtained [22,23], some new relationships
regarding these two distributions are given.

2. Preliminaries Materials and Methods

This work focuses on two random variables that are related to the Lindley distribution.
It is about a continuous random variable with three parameters [22] and one with five
parameters [23]. For each one, the geometric mean and the cumulative residual entropy
will be determined. There is a relationship between cumulative residual entropy and
differential entropy [10] but in this paper the formulas for the cumulative residual entropy
will be deduced using only its definition. For both random variables that will be analyzed
we will consider that all parameters are strictly positive, except for β that is nonnegative.
The three-parameter Lindley distribution X [22] has the probability density function

fX(x; θ, α, µ) : (0, ∞)→ R, fX(x; θ, α, µ) =
θ2

θα + µ
(α + µx)e−θx. (8)

The corresponding cumulative distribution function is [22]

FX(x; θ, α, µ) : R→ R, FX(x; θ, α, µ) =

 1−
(

1 +
θµx

θα + µ

)
e−θx, x > 0

0, x ≤ 0
.

The five-parameter Lindley distribution Y [23] has the probability density function

fY(y; δ, α, η, θ, β) : (β, ∞)→ R, fY(y; δ, α, η, θ, β) =
θ

δα + η
[δα + ηθ(y− β)]e−θ(y−β). (9)

In this case, the cumulative distribution function is [23]

FY(y; δ, α, η, θ, β) : R→ R, FY(y; δ, α, η, θ, β) =

 1−
[

1 +
θη(y− β)

δα + η

]
e−θ(y−β), y > β

0, y ≤ β
.

The three-parameter distribution [22] can be viewed as a sub-model of the five-
parameter distribution [23] because the five-parameter distribution reduces to the three-
parameter distribution for β = 0, δ = θ and η = µ [23]. Some details about the relations
between the parameters of these two random variables are given in [23].

In the next section of the paper, some notions and results related to mathematical
analysis will be used. These are briefly presented below.

The Euler–Mascheroni constant is

γ = lim
n→∞

(
n

∑
k=1

1
k
− ln n

)
≈ 0.57721

and one of the ways this constant can be written [28] is

γ = −
∫ ∞

0
e−x ln xdx. (10)

If p > 0, gamma function [29] is defined as
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Γ(p) =
∫ ∞

0
xp−1e−xdx. (11)

Among the many properties of the gamma function [29], there are the following
relationships:

Γ(1) =
∫ ∞

0
e−xdx = 1 (12)

and
Γ(n) = (n− 1)!, for n ∈ N, n ≥ 2. (13)

The integral

E1(x) =
∫ ∞

x

e−t

t
dt (14)

is related to the exponential integral [30].

3. Results

Theorem 1. If X is a random variable having the probability density function

fX(x; θ, α, µ) : (0, ∞)→ R, fX(x; θ, α, µ) =
θ2

θα + µ
(α + µx)e−θx,

with θ > 0, α > 0, µ > 0, then

GM(X) =
1
θ

e
µ

θα+µ−γ, (15)

where γ is the Euler–Mascheroni constant.

Proof. We have
GM(X) = eI1 ,

where
I1 =

∫ ∞

0
(ln x) fX(x; θ, α, µ)dx.

Consider the integrals

J1 =
∫ ∞

0
(ln x)e−θxdx, J2 =

∫ ∞

0
x(ln x)e−θxdx.

We have

J1 =
∫ ∞

0
(ln x)e−θxdx =

∫ ∞

0

(
ln

t
θ

)
e−t 1

θ
dt =

=
1
θ

[∫ ∞

0
(ln t)e−tdt− ln θ

∫ ∞

0
e−tdt

]
=
−γ− ln θ

θ
.

Consider

J21 =
∫ w

0
x(ln x)e−θxdx, J22 =

∫ ∞

w
x(ln x)e−θxdx,

where w ∈ (0, ∞).
We have

J21 = lim
u→0
u>0

∫ w

u
x(ln x)e−θxdx = lim

u→0
u>0

∫ w

u
x(ln x)

(
e−θx

−θ

)′
dx =

= lim
u→0
u>0

{
−1

θ

[
w(ln w)e−θw − u(ln u)e−θu

]
+

1
θ

∫ w

u
(1 + ln x)e−θxdx

}
=
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= −1
θ

w(ln w)e−θw +
1
θ

lim
u→0
u>0

∫ θw

θu

(
1 + ln

t
θ

)
e−t 1

θ
dt =

= −1
θ

w(ln w)e−θw +
1
θ2 lim

u→0
u>0

[∫ θw

θu
(ln t)e−tdt + (1− ln θ)

∫ θw

θu
e−tdt

]

and

J22 = lim
v→∞

∫ v

w
x(ln x)e−θxdx = lim

v→∞

∫ v

w
x(ln x)

(
e−θx

−θ

)′
dx =

= lim
v→∞

{
−1

θ

[
v(ln v)e−θv − w(ln w)e−θw

]
+

1
θ

∫ v

w
(1 + ln x)e−θxdx

}
=

=
1
θ

w(ln w)e−θw +
1
θ

lim
v→∞

∫ θv

θw

(
1 + ln

t
θ

)
e−t 1

θ
dt =

=
1
θ

w(ln w)e−θw +
1
θ2 lim

v→∞

[∫ θv

θw
(ln t)e−tdt + (1− ln θ)

∫ θv

θw
e−tdt

]
.

We obtain

J2 = J21 + J22 =
1
θ2

[∫ ∞

0
(ln t)e−tdt + (1− ln θ)

∫ ∞

0
e−tdt

]
=

1
θ2 (−γ + 1− ln θ).

Finally,

I1 =
∫ ∞

0
(ln x) f (x; θ, α, µ)dx =

θ2

θα + µ

∫ ∞

0
(ln x)(α + µx)e−θxdx =

=
θ2

θα + µ
(αJ1 + µJ2) =

θ2

θα + µ

(
α
−γ− ln θ

θ
+ µ
−γ + 1− ln θ

θ2

)
=

= − ln θ +
µ

θα + µ
− γ

and

GM(X) = eI1 =
1
θ

e
µ

θα+µ−γ.

Theorem 2. If Y is a random variable having the probability density function

fY(y; δ, α, η, θ, β) : (β, ∞)→ R, fY(y; δ, α, η, θ, β) =
θ

δα + η
[δα + ηθ(y− β)]e−θ(y−β),

with δ,α, η, θ ∈ (0, ∞), β ∈ [0, ∞), then

GM(Y) =

 eI2 , β > 0
1
θ

e
η

δα+η−γ, β = 0
, (16)

where

I2 = ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβE1(θβ). (17)

Proof. If β > 0, we have

I2 =
∫ ∞

β
(ln y) fY(y; δ, α, η, θ, β)dy =

1
δα + η

lim
v→∞

∫ v

β
(ln y)[δα + ηθ(y− β)]θe−θ(y−β)dy =
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=
1

δα + η
lim

v→∞

∫ θ(v−β)

0

(
ln

θβ + z
θ

)
(δα + ηz)e−zdz =

=
1

δα + η
lim

v→∞

∫ θ(v−β)

0

(
ln

θβ + z
θ

)
(δα + ηz)(−e−z)′dz =

=
1

δα + η
lim

v→∞

{[(
ln

θβ + z
θ

)
(δα + ηz)(−e−z)

]∣∣∣∣θ(v−β)

0
+

+
∫ θ(v−β)

0

(
δα + ηz
θβ + z

+ η ln
θβ + z

θ

)
e−zdz

}
=

=
δα ln β

δα + η
+

1
δα + η

lim
v→∞

∫ θ(v−β)

0

(
η +

δα− ηθβ

θβ + z
+ η ln

θβ + z
θ

)
e−zdz =

=
δα ln β

δα + η
+

1
δα + η

lim
v→∞

[
η
∫ θ(v−β)

0
e−zdz +

∫ θ(v−β)

0

δα− ηθβ

θβ + z
e−zdz+

+η
∫ θ(v−β)

0

(
ln

θβ + z
θ

)
e−zdz

]
=

=
ηΓ(1) + δα ln β

δα + η
+

1
δα + η

lim
v→∞

[∫ θ(v−β)

0

δα− ηθβ

θβ + z
e−zdz+

+η
∫ θ(v−β)

0

(
ln

θβ + z
θ

)
(−e−z)′dz

]
=

=
η + δα ln β

δα + η
+

1
δα + η

lim
v→∞

{∫ θ(v−β)

0

δα− ηθβ

θβ + z
e−zdz−

−η

[(
ln

θβ + z
θ

)
e−z
]∣∣∣∣θ(v−β)

0
+ η

∫ θ(v−β)

0

e−z

θβ + z
dz

}
=

=
η + (δα + η) ln β

δα + η
+

1
δα + η

lim
v→∞

[
(δα− ηθβ)

∫ θ(v−β)

0

e−z

θβ + z
dz + η

∫ θ(v−β)

0

e−z

θβ + z
dz
]
=

= ln β +
η

δα + η
+

δα− ηθβ + η

δα + η
lim

v→∞

∫ θ(v−β)

0

e−z

θβ + z
dz =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ lim

v→∞

∫ θ(v−β)

0

e−θβ−z

θβ + z
dz =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ lim

v→∞

∫ θv

θβ

e−t

t
dt =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ
∫ ∞

θβ

e−t

t
dt =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβE1(θβ).

If β = 0, we have
GM(Y) = eI3 ,

where

I3 =
∫ ∞

0
(ln y)

θ

δα + η
(δα + ηθy)e−θydy =

θ

δα + η
(δαJ1 + ηθ J2) =

=
θ

δα + η

(
δα
−γ− ln θ

θ
+ ηθ

−γ + 1− ln θ

θ2

)
= − ln θ +

η

δα + η
− γ.

Theorem 3. If Y is a random variable having the cumulative distribution function
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FY(y; δ, α, η, θ, β) : R→ R, FY(y; δ, α, η, θ, β) =

 1−
[

1 +
θη(y− β)

δα + η

]
e−θ(y−β), y > β

0, y ≤ β
,

with δ,α, η, θ ∈ (0, ∞), β ∈ [0, ∞), then

E(Y) = 1
θ(δα + η)

[
δα + 2η − ηe

δα+η
η E1

(
δα + η

η

)]
. (18)

Proof. We have

FY(y; δ, α, η, θ, β) =

[
1 +

θη(y− β)

δα + η

]
e−θ(y−β), for y > β,

and

E(Y) = −
∫ ∞

β
FY(y; δ, α, η, θ, β) ln FY(y; δ, α, η, θ, β)dy =

= − lim
v→∞

∫ v

β

[
1 +

θη(y− β)

δα + η

]
e−θ(y−β) ln

{[
1 +

θη(y− β)

δα + η

]
e−θ(y−β)

}
dy =

= −1
θ

lim
v→∞

∫ θ(v−β)

0

(
1 +

ηz
δα + η

)
e−z ln

[(
1 +

ηz
δα + η

)
e−z
]

dz =

= −1
θ

lim
v→∞

∫ θ(v−β)

0

(
1 +

ηz
δα + η

)
e−z
[
−z + ln

(
1 +

ηz
δα + η

)]
dz =

=
1
θ

lim
v→∞

∫ θ(v−β)

0

{
ze−z +

η

δα + η
z2e−z −

(
1 +

ηz
δα + η

)[
ln
(

1 +
ηz

δα + η

)]
e−z
}

dz =

=
1
θ

{
Γ(2) +

η

δα + η
Γ(3)− lim

v→∞

∫ θ(v−β)

0

(
1 +

ηz
δα + η

)[
ln
(

1 +
ηz

δα + η

)]
e−zdz

}
=

=
1
θ

[
Γ(2) +

η

δα + η
Γ(3)− lim

v→∞

∫ θ(v−β)

0

δα + η + ηz
δα + η

(
ln

δα + η + ηz
δα + η

)
e−zdz

]
=

=
1
θ

(
1 +

2η

δα + η

)
− 1

θ
lim

v→∞

∫ θ(v−β)

0

δα + η + ηz
δα + η

(
ln

δα + η + ηz
δα + η

)
(−e−z)′dz =

=
δα + 3η

θ(δα + η)
− 1

θ
lim

v→∞

{[
δα + η + ηz

δα + η

(
ln

δα + η + ηz
δα + η

)(
−e−z)]∣∣∣∣θ(v−β)

0
+

+
η

δα + η

∫ θ(v−β)

0

(
1 + ln

δα + η + ηz
δα + η

)
e−zdz

}
=

=
δα + 3η

θ(δα + η)
− η

θ(δα + η)
lim

v→∞

∫ θ(v−β)

0

[
e−z +

(
ln

δα + η + ηz
δα + η

)
e−z
]

dz =

=
δα + 3η

θ(δα + η)
− η

θ(δα + η)

[
Γ(1) + lim

v→∞

∫ θ(v−β)

0

(
ln

δα + η + ηz
δα + η

)
(−e−z)′dz

]
=

=
δα + 3η

θ(δα + η)
− η

θ(δα + η)
− η

θ(δα + η)
lim

v→∞

[(
−e−z ln

δα + η + ηz
δα + η

)∣∣∣∣θ(v−β)

0
+

+
∫ θ(v−β)

0

η

δα + η + ηz
e−zdz

]
=

=
δα + 2η

θ(δα + η)
− η

θ(δα + η)
lim

v→∞

∫ θ(v−β)

0

η

δα + η + ηz
e−zdz =

=
δα + 2η

θ(δα + η)
− η

θ(δα + η)
e

δα+η
η lim

v→∞

∫ θ(v−β)

0

η

δα + η + ηz
e−z− δα+η

η dz =

=
δα + 2η

θ(δα + η)
− η

θ(δα + η)
e

δα+η
η lim

v→∞

∫ θ(v−β)+
δα+η

η

δα+η
η

1
t

e−tdt =
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=
δα + 2η

θ(δα + η)
− η

θ(δα + η)
e

δα+η
η

∫ ∞

δα+η
η

1
t

e−tdt =

=
1

θ(δα + η)

[
δα + 2η − ηe

δα+η
η E1

(
δα + η

η

)]
.

Theorem 4. If X is a random variable having the cumulative distribution function

FX(x; θ, α, µ) : R→ R, FX(x; θ, α, µ) =

 1−
(

1 +
θµx

θα + µ

)
e−θx, x > 0

0, x ≤ 0
,

with θ > 0, α > 0, µ > 0, then

E(X) =
1

θ(θα + µ)

[
θα + 2µ− µe

θα+µ
µ E1

(
θα + µ

µ

)]
. (19)

Proof. The proof comes directly from Theorem 3, by choosing β = 0, δ = θ and η = µ.

4. Discussion

Regarding the characteristics of the random variables, one can notice that in some pa-
pers the geometric mean is considered [1–7]. In the field of the study of uncertainty related
to a random variable, the cumulative residual entropy [10] overcomes some drawbacks of
differential entropy.

In this paper, two generalizations of the Lindley distribution [22,23] were discussed.
The three-parameter distribution [22] is a submodel of the five-parameter [23] one. The
work focused on the geometric mean and cumulative residual entropy of these two distri-
butions. The cumulative residual entropy of the one with three parameters can be deduced
directly from the one with five parameters, as shown in Theorems 3 and 4.

In connection with the geometric mean, remark that the integral I2 from Theorem 2
can be transformed as follows:

I2 = ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβE1(θβ) =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ
∫ ∞

θβ

e−t

t
dt =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ lim

v→∞

∫ v

θβ

e−t

t
dt =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ lim

v→∞

∫ v

θβ
e−t(ln t)′dt =

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)
eθβ lim

v→∞

[(
e−t ln t

)∣∣v
θβ

+
∫ v

θβ
e−t ln tdt

]
=

= ln β +
η

δα + η
+

(
1− ηθβ

δα + η

)(
− ln θ − ln β + eθβ

∫ ∞

θβ
e−t ln tdt

)
=

=
η

δα + η
+

ηθβ ln β

δα + η
+

(
1− ηθβ

δα + η

)(
− ln θ + eθβ

∫ ∞

θβ
e−t ln tdt

)
.

We have

lim
β→0
β>0

[
η

δα + η
+

ηθβ ln β

δα + η
+

(
1− ηθβ

δα + η

)(
− ln θ + eθβ

∫ ∞

θβ
e−t ln tdt

)]
=

=
η

δα + η
− ln θ +

∫ ∞

0
e−t ln tdt = − ln θ +

η

δα + η
− γ.
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Therefore the geometric mean of the five-parameter distribution is right continuous
at zero with respect to the parameter β. By taking, in Theorem 2, β = 0 and then making
the substitutions δ = θ, η = µ, the geometric mean of the three-parameter distribution
with three parameters can be deduced from the geometric mean of the five-parameter
distribution. Due to the special position of the parameter β in the calculation of inte-
grals, the geometric mean was independently calculated for each distribution, as seen in
Theorems 1 and 2.

5. Conclusions

From the rather large set of Lindley-type distributions, two related distributions were
selected for study. For each of them, the formulas for geometric mean and cumulative
residual entropy were obtained. These results are in addition to those already known
from previous works, thus increasing the area of knowledge concerning the theme of
Lindley-type distributions.
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